

ORDINANCE NO. -2026

AN ORDINANCE OF WEST HAVEN CITY, UTAH, ADOPTING AN IMPACT FEE FOR TRANSPORTATION, STORM WATER, PARKS, RECREATION, OPEN SPACE, AND TRAILS IN CONFORMANCE WITH THE PROVISIONS OF UTAH'S IMPACT FEES ACT, TITLE 11, CHAPTER 36a; ADOPTING THE IMPACT FEE FACILITIES PLANS (IFFP) AND IMPACT FEE ANALYSIS (IFA) FOR THE SAME AND EACH SUMMARY OF THE IFFP AND IFA FOR TRANSPORTATION, STORM WATER, PARKS, RECREATION, OPEN SPACE, AND TRAILS IN CONFORMANCE WITH THE PROVISIONS OF UTAH'S IMPACT FEES ACT, TITLE 11, CHAPTER 36a; AND ESTABLISHING AN EFFECTIVE DATE FOR THESE ACTIONS.

BE IT ORDAINED BY THE CITY COUNCIL OF WEST HAVEN CITY, UTAH, AS FOLLOWS:

Section 1. Recitals:

WHEREAS, the City of West Haven (herein "City") is a municipal corporation duly organized and existing under the laws of the State of Utah; and,

WHEREAS, in conformance with the provisions of the laws of the State of Utah, the City Council, as the governing body of the City, may exercise all legislative powers by ordinance; and,

WHEREAS, in conformance with the provisions of the laws of the State of Utah, the governing body of the City may pass any ordinance to regulate, require, prohibit, govern, control, or supervise any activity, business, conduct, or condition authorized by State law or any other provision of law; and,

WHEREAS, the City Council finds that in conformance with the provisions of Utah Code Ann. Title 11, Chapter 36A – Impact Fee Act (hereinafter "Impact Fee Act"), the City is authorized to enact and promulgate certain impact fees within the City; and

WHEREAS, the City Council finds that in conformance with the provisions of the Impact Fee Act, the City has in the past enacted and promulgated certain impact fees within the City; and,

WHEREAS, UCA §11-36a-301 requires that, before amending or enacting new impact fees, a City shall prepare an Impact Fee Facilities Plan; and,

WHEREAS, the UCA §11-36-501 and §11-36-503 require that a City post on the Utah Public Notice Website a notice of intent to prepare an Impact Fee Facilities Plan and Impact Fee Analysis, respectively; and,

WHEREAS, pursuant to UCA §11-36-501 and §11-36a-503, the City Council finds that a notice of intent to prepare an Impact Fee Facilities Plan and an Impact Fee Analysis for each of the following: Transportation, Storm Water, Parks, Recreation, Open Space, and Trails, was posted on April 7, 2025, on the Utah Public Notice Website, and is attached as **Exhibit A**; and,

WHEREAS, the City Council finds that in conformance with the provisions of UCA §11-36a-301 et.seq., the City has complied with preparing an Impact Fee Facilities Plan and a summary of the Impact Fee Facilities Plan (UCA §11-36a-502 (1)(b)) designed to be understood by a lay person for Transportation (referred to as "Transportation" or "Roads"), and it is attached as **Exhibit B**; and,

WHEREAS, the City Council finds that in conformance with the provisions of UCA §11-36a-301 et.seq., the City has complied with preparing an Impact Fee Facilities Plan and a summary of the Impact Fee Facilities Plan (UCA §11-36a-502 (1)(b)) designed to be understood by a lay person for Storm Drain and Storm Water ("Storm Water"), and it is attached as **Exhibit C**; and,

WHEREAS, the City Council finds that in conformance with the provisions of UCA §11-36a-301 et.seq., the City has complied with preparing an Impact Fee Facilities Plan and a summary of the Impact Fee Facilities Plan (UCA §11-36a-502 (1)(b)) designed to be understood by a lay person for Parks, Recreation, Open Space, and Trails (referred to as "Parks" or "Park"), and it is attached as **Exhibit D**; and,

WHEREAS, the City Council finds that each of the attached Impact Fee Facilities Plans determines the public facilities required to serve development resulting from new development activity; and,

WHEREAS, the City Council finds that in conformance with the provisions of UCA §11-36a-303, the City has prepared a written Impact Fee Analysis and a summary of the Impact Fee Analysis designed to be understood by a lay person for Transportation, and it is attached as **Exhibit E**; and,

WHEREAS, the City Council finds that in conformance with the provisions of UCA §11-36a-303, the City has prepared a written Impact Fee Analysis and a summary of the Impact Fee Analysis designed to be understood by a lay person for Storm Water, and it is attached as **Exhibit F**; and,

WHEREAS, the City Council finds that in conformance with the provisions of UCA §11-36a-303, the City has prepared a written Impact Fee Analysis and a summary of the Impact Fee Analysis designed to be understood by a lay person for Parks, and it is attached as **Exhibit D**; and,

WHEREAS, the City Council finds that they have reviewed each attached Impact Fee Facilities Plan and determined that the City's plan for financing system improvements establishes that impact fees on development activities are necessary to maintain a proposed level of service as contained in Utah Code §11-36a-302 (3) Impact Fee Facilities Plan Requirements; and,

WHEREAS, in conformance with the provisions of Utah Code §11-36-302, §11-36-304, and §11-36-305, the City Council finds that each attached Impact Fee Facilities Plan (contained in Exhibits B, C, and D) and Impact Fee Analysis (contained in Exhibits E, F, and D) has been prepared, calculated, and conforms in every way with the provisions and requirements of the Impact Fee Act; and,

WHEREAS, the City Council finds that the imposition and collection of Impact Fees are necessary to provide the public facilities required by the demands and needs of new development, at existing service levels, necessary to preserve public health, safety, and welfare; and,

WHEREAS, the City Council finds that each of the impact fees, as calculated under the provisions and requirements of the Impact Fee Act, is a fair and equitable means of providing public facilities to serve new development; and,

WHEREAS, the City Council finds that they have based impact fee amounts calculated on realistic estimates and that the assumptions underlying those estimates are disclosed in each Impact Fee Analysis and are consistent with requirements of the Impact Fees Act; and,

WHEREAS, pursuant to UCA §11-36a-401, the City Council finds that the City may not impose impact fees that exceed the highest fee justified by an Impact Fee Analysis; and,

WHEREAS, pursuant to UCA §11-36a-504, the City Council finds that a notice to hold a public hearing with the intent to adopt an impact fee enactment ordinance for Transportation, Storm Water, and Parks was posted on _____, 2025, on the Utah Public Notice Website and meets the Notice requirements contained in the Impact Fee Act; and,

WHEREAS, the City Council finds that the City has given public notice of each proposed Impact Fee Facility Plan and Impact Fee Analysis and their corresponding summaries and has made a copy of each available as required before the date of the public hearing; and,

WHEREAS, the City Council finds that the City held a public hearing to hear public comment in accordance with the notice and hearing requirements of UCA §10-9a-205 and 10-9a-502; and,

WHEREAS, the City Council finds that prior to enacting an impact fee, the City is required to establish one or more service areas within which it shall calculate and impose impact fees for various land use categories; and,

WHEREAS, the City Council finds that the Impact Fee Service Area for each Impact Fee Analysis and the geographic area where the proposed public facilities will be located include the entire City incorporated boundaries, and as amended through annexations; and,

WHEREAS, the City Council finds that UCA §11-36a-601 requires special individualized accounting for impact fees; and,

WHEREAS, the City seeks to be in compliance with current statutory requirements; and,

WHEREAS, the City Council finds that the public convenience and necessity, public safety, health, and welfare is at issue in this matter and requires the adoption of each of the Impact Fee Facilities Plans and Impact Fees Analysis and associated summaries for Transportation, Storm Water, and Parks by the City together with the adoption of a Transportation Impact Fee, Storm Water Impact Fee, and a Parks Impact Fee.

NOW, THEREFORE, BE IT ORDAINED by the City Council of West Haven City as follows:

Section 2. Recitals and Exhibits:

The Recitals and all Exhibits of this Ordinance are integral to the enactment and administration of Impact Fees, and the City Council hereby fully incorporates, approves, and adopts the Recitals and Exhibits as part of the enactment of this Impact Fee Ordinance.

Section 3. Impact Fee Service Area Established:

The Transportation, Storm Water, Parks Impact Fee Service Area is the City's incorporated boundaries, as amended through annexations, and is hereby designated as one service area.

Section 4. Adoption of Each Impact Fee Facilities Plan and Summary:

The City Council hereby adopts each of the Impact Fee Facilities Plans and corresponding summaries for Transportation, Storm Water, and Parks as attached as Exhibits B, C, and D.

Section 5. Adoption of Each Impact Fee Analysis and Summary:

The City Council hereby adopts each of the Impact Fee Analysis and corresponding summaries for Transportation, Storm Water, and Parks, as attached as Exhibits E, F, and D.

Section 6. Transportation Impact Fee Enacted:

That based on and in consideration of the above-listed findings of the City Council, a Transportation Impact Fee is hereby enacted as described and detailed in this Ordinance, said fee having been determined to comport with applicable law and the findings of the Transportation Impact Fee Analysis.

The Transportation Impact Fees imposed by this Ordinance shall be paid before, and as a condition of, the issuance of a building permit or other applicable City-issued permit for any Development Activity or New Development in the amount listed per the Land Use Category in the table below, or by using the formula for Non-Standard Transportation Impact Fee, also described below. The Building Official or the Community Development Director may calculate the impact fee for any single-family or multi-family dwelling, and the City Engineer shall calculate the impact fee for all other uses or when calculating the impact fee using the formula for Non-Standard Impact Fees.

The Transportation Impact Fee Facilities Plan, as contained in Exhibit B, and the Transportation Impact Fee Analysis, contained in Exhibit E, shall be used in cases where clarification is required regarding the analysis, methodology, and formula used in calculating the Impact Fees. If any conflict arises between the table below, the Non-Standard Impact Fee formula, and the Impact Fee Analysis, the City Manager shall reconcile and interpret the correct methodology and formula for calculating the Impact Fees. The City Manager may contact the professionals who certified the Impact Fee Facilities Plan and Impact Fee Analysis for assistance in clarifying the methodology and formula used to calculate the Impact Fees.

The City Council may require the collection of Impact Fees on a Development Activity being annexed to the City's incorporated limits if the annexation area impacts Public Facilities and/or System Improvements.

LAND USE CATEGORY	ITE CODE	DEMAND UNIT*	AVERAGE DAILY TRIPS	PASS BY REDUCTION	PASS BY TRIPS REDUCED	TOTAL TRIPS	PROPOSED IMPACT FEE
Cost per Trip							\$298.38
Single Family Residential	210	Unit	9.43	0%	-	9.43	\$2,814
Multi Family Low Rise**	220	Unit	6.74	0%	-	6.74	\$2,011
Multi Family Mid Rise***	221	Unit	4.54	0%	-	4.54	\$1,355
Senior Adult Housing-Detached	251	Unit	4.31	0%	-	4.31	\$1,286
Senior Adult Housing-Attached	252	Unit	3.24	0%	-	3.24	\$967
Assisted Living	254	Beds	2.60	0%	-	2.60	\$776
Hotel	310	Rooms	7.99	0%	-	7.99	\$2,384
Light Industrial	110	KSF	4.08	0%	-	4.08	\$1,217
Industrial Park	130	KSF	3.37	0%	-	3.37	\$1,006
Mini Warehouse	151	KSF	1.45	0%	-	1.45	\$433
Elementary School	520	Students	2.27	0%	-	2.27	\$677
Middle/J. High School	522	Students	2.10	0%	-	2.10	\$627
High School	525	Students	1.94	0%	-	1.94	\$579
Daycare Center	565	KSF	47.62	0%	-	47.62	\$14,209
Nursing Home	620	Beds	3.06	0%	-	3.06	\$913
Clinic	630	KSF	37.60	0%	-	37.60	\$11,219
Church	560	KSF	7.60	0%	-	7.60	\$2,268
General Office	710	KSF	10.84	0%	-	10.84	\$3,234
Medical Dental Office	720	KSF	36.00	0%	-	36.00	\$10,742
Free-Standing Discount Superstore	813	KSF	50.52	28%	14.15	36.37	\$10,853
Hardware/Paint Store	816	KSF	8.07	26%	2.10	5.97	\$1,782
Shopping Center/General Commercial	820	KSF	37.01	34%	12.58	24.43	\$7,288
New Car Sales	841	KSF	27.84	0%	-	27.84	\$8,307
Tire Store	848	KSF	27.69	0%	-	27.69	\$8,262
Supermarket	850	KSF	93.84	36%	33.78	60.06	\$17,920
Convenience Market w/ Gas Pumps	853	KSF	624.20	66%	411.97	212.23	\$63,324
Discount Club	857	KSF	42.26	23%	9.72	32.54	\$9,709
Home Improvement Superstore	862	KSF	30.74	48%	14.76	15.98	\$4,770
Department Store	875	KSF	22.88	0%	-	22.88	\$6,827
Pharmacy/Drugstore w/ Drive Thru	881	KSF	108.40	49%	53.12	55.28	\$16,496
Drive-In Bank	912	KSF	100.35	47%	47.16	53.19	\$15,869
Quality Restaurant	931	KSF	83.84	44%	36.89	46.95	\$14,009
High Turnover/Sit Down Restaurant	932	KSF	107.20	43%	46.10	61.10	\$18,232
Fast Food with Drive Thru	934	KSF	467.48	50%	233.74	233.74	\$69,743
Quick Lube	941	KSF	69.57	0%	-	69.57	\$20,758
Self-Service Car Wash	947	Wash Stalls	108.00	0%	-	108.00	\$32,225

Source for trip statistics is the Institute of Traffic Engineers (ITE) Manual, 11th Edition. Adjustment factors can be found using the "List of Land Uses with Vehicle Pass-By Rates and Data." Land use categories indicated are not all inclusive. Refer to ITE manual for appropriate category and adjustment factors if not found in this report. For non-standard uses, the non-standard formula can be used. Each land use within proposed development will be evaluated.

* KSF: 1,000 Square Feet

** Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have two or three floors (levels). Various configurations fit this description, including walkup apartment, mansion apartment, and stacked townhouse.

*** Mid-rise multifamily housing includes apartments and condominiums located in a building that has between four and 10 floors of living space. Access to individual dwelling units is through an outside building entrance, a lobby, elevator, and a set of hallways.

NON-STANDARD IMPACT FEES

The City reserves the right under the Impact Fees Act to assess an adjusted fee to fairly assess the impact that a non-standard land use will have upon public facilities.¹ This adjustment could result in a different impact fee if the City determines that a particular user may create a different impact than what is standard for its land use. The City may also decrease the impact fee if the developer can provide documentation, evidence, or other credible analysis that the proposed impact will be lower than what is proposed in this analysis.

FORMULA FOR NON-STANDARD TRANSPORTATION IMPACT FEES:

Total Demand Units x Estimate Trips per Unit x Adjustment Factors x \$298.38 = Impact Fee per Unit

Section 7. Storm Water Impact Fee Enacted:

That based on and in consideration of the above-listed findings of the City Council, a Storm Water Impact Fee is hereby enacted as described and detailed in this Ordinance, said fee having been determined to comport with applicable law and the findings of the Storm Water Impact Fee Analysis.

Storm Water Impact Fees imposed by this Ordinance shall be paid before, and as a condition of, the issuance of a building permit or other applicable City-issued permit for any Development Activity or New Development in the amount listed for single-family lot categories in the table below. For all other Development Activities, including multi-family housing, the Storm Water Impact Fee shall be calculated using the formula \$0.21 per impervious square foot multiplied by the number of impervious square feet on the lot. The Building Official or the Community Development Director may calculate the impact fee for Development Activities on any single-family lot based on the table, and the City Engineer shall calculate the impact fee for all other Development Activities, including multi-family housing, using the above formula of \$0.21 per impervious square foot multiplied by the number of impervious square feet on the lot.

The Storm Water Impact Fee Facilities Plan, as contained in Exhibit C, and the Storm Water Impact Fee Analysis, as contained in Exhibit F, shall be used in cases where clarification is required regarding the analysis, methodology, and formula used for the calculation of the Impact Fees. If any conflict arises between the table below, the above storm water impact fee formula for non-residential, or the Impact Fee Analysis, the City Manager shall reconcile and interpret the correct methodology and formula for calculating the Impact Fees. The City Manager may contact the professionals who certified the Impact Fee Analysis for assistance in clarifying the methodology and formula used to calculate the Impact Fees.

The City Council may require the collection of Impact Fees on a Development Activity being annexed to the City's incorporated limits if the annexation area impacts Public Facilities and/or System Improvements.

TABLE 11: MAXIMUM IMPACT FEE SCHEDULE BY LOT SIZE

Single-Family Lot Categories	Average Impervious SF*	Average Impervious % of Category	Impact Fee for Lot Category
¼ acre and less	4,281	39.3%	\$916.68
Greater than ¼ acre up to ½ acre	6,108	28.0%	\$1,307.89
Greater than ½ acre up to 1 acre	7,626	17.5%	\$1,632.94
Greater than 1 acre up to 2 acres	8,962	10.3%	\$1,919.01
Greater than 2 acres up to 3 acres	9,563	7.3%	\$2,047.70
Greater than 3 acres up to 4 acres	11,454	6.6%	\$2,452.61
Greater than 4 acres	13,027		\$2,789.44

*Amended IFFP July 2025

All other development including multi-family housing will be charged \$0.21 per impervious square foot.

Section 8. Parks Impact Fee Enacted:

That, based on and in consideration of the above-listed findings of the City Council, a Parks Impact Fee is hereby enacted as described and detailed in this Ordinance, said fee having been determined to comport with applicable law and the findings of the Parks Impact Fee Analysis.

The Parks Impact Fees imposed by this Ordinance shall be paid before, and as a condition of, the issuance of a building permit or other applicable City-issued permit for any Development Activity or New Development in the amount listed in the table below or by using the formula for Non-Standard Parks, Recreation, Open Space, and Trails Impact Fee, also described below. The Building Official or the Community Development Director may calculate the impact fee for any single-family or multi-family dwelling using the table below, and the City Engineer shall calculate the impact fee using the formula for Non-Standard Parks, Recreation, Open Space, and Trails Impact Fee.

The Parks Impact Fee Facilities Plan and Impact Fee Analysis, as contained in Exhibit D, shall be used in cases where clarification is required regarding the analysis, methodology, and formula used for the calculation of the Impact Fees. If any conflict arises between the table below, the Non-Standard Impact Fee formula, and the Impact Fee Analysis, the City Manager shall reconcile and interpret the correct methodology and formula for calculating the Impact Fees. The City Manager may contact the professionals who certified the Impact Fee Analysis for assistance in clarifying the methodology and formula used to calculate the Impact Fees.

The City Council may require the collection of Impact Fees on a Development Activity being annexed to the City's incorporated limits if the annexation area impacts Public Facilities and/or System Improvements.

PARKS AND RECREATION IMPACT FEE CALCULATION

Utilizing the estimated value per capita within the system and the value per capita to provide the same level of improvements, the total fee per capita is shown in **TABLE 6.1** below. The impact fee also includes a buy-in fee which development activity will contribute toward the excess capacity of system. It is anticipated that new development will also pay general taxes similar to existing development for the general operation and maintenance of the system.

TABLE 6.1: ESTIMATE OF IMPACT FEE VALUE PER CAPITA

TYPE OF IMPROVEMENT			TOTAL COST PER CAPITA
Combined			\$1,452
OTHER COMPONENTS TO FEE	ADDITIONAL VALUE	DEMAND SERVED	TOTAL VALUE PER CAPITA
Impact Fee Credit	-	9,850	\$0
Professional Expense	\$10,850	9,850	\$1
Estimate of Impact Fee Per Capita			\$1,453

TABLE 6.2: IMPACT FEE PER HOUSEHOLD

	AVERAGE HH SIZE¹	FEES PER HH	EXISTING FEE PER HH	% CHANGE
Single-Family	3.62	\$5,260	\$2,144	145%
Multi-Family	2.65	\$3,850	\$1,796	114%

Single family residential is defined as any single unit detached housing. Multi-family is defined as any residential unit not considered single family.

¹ Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates
Table B25033: Total Population in Occupied Housing Units by Tenure by Units in Structure
Table DP04: Selected Housing Characteristics

Non-Standard Impact Fee

The proposed fees are based on population growth. The Impact Fees Act allows the City to assess an adjusted fee that more closely matches the true impact that the land use will have upon parks and recreation facilities.¹ This adjustment could result in a different impact fee if the City determines that a particular land use may create a different impact than what is standard for its land use. The City may also decrease the impact fee if the developer can provide documentation, evidence, or other credible analysis that the proposed impact will be lower than what is proposed in this analysis. The formula for determining a non-standard impact fee is found below.

FORMULA FOR NON-STANDARD PARKS AND RECREATION IMPACT FEES:

$$\text{Estimated Population per Unit} \times \$1,453 = \text{Impact Fee per Unit}$$

Section 9. Consolidated Fee Schedule:

That any schedule of impact fees previously set out in the City's Consolidated Fees and Fines Schedule is hereby repealed.

Section 10. Adjustment of Impact Fee:

Pursuant to UCA §11-36a-402, the City Manager may adjust the standard impact fee at the time the fee is charged to respond to: (a) unusual circumstances in specific cases, or (b) a request for a prompt and individualized impact fee review for the development activity of the state, a school district, or a charter school and an offset or credit for a public facility for which an impact fee has been or will be

collected; and (c) for the City Manager to ensure that the impact fees are imposed fairly.

The City Manager may adjust the calculation of the amount of the impact fee to be imposed on a particular development based on studies and data submitted by the developer. The City Manager may also contact and seek counsel from the Community Development Director, City Engineer, City Attorney, the professionals who certified the Impact Fee Facilities Plan and the Impact Fee Analysis, and/or the Office of the Property Rights Ombudsman for assistance when adjusting the impact fee.

Any individual, developer, or entity who believes they are entitled to consideration of an Impact Fee adjustment, credit, or reimbursement shall file a written request with the City Manager within 30 (thirty) days of the impact fee being paid. The written request for an Impact Fee adjustment, credit, or reimbursement shall set forth, in detail and specificity, the grounds and asserted facts for which an adjustment, credit, or reimbursement is warranted. Any Impact Fee adjustment, credit, or reimbursement granted by the City Manager shall be memorialized in written form.

Section 11. Impact Fee Credits:

Pursuant to UCA §11-36a-402(2), the City Manager shall ensure that a developer, including a school district or a charter school, shall receive a credit against or proportionate reimbursement of an impact fee if the developer: (a) dedicates land for a System Improvement; (b) builds or dedicates some or all of a System Improvement; or (c) dedicates a public facility that the City and the developer agree will reduce the need for a System Improvement.

Pursuant to UCA §11-36a-402(3), the City Manager shall give a credit against impact fees for any dedication of land for, improvement to, or new construction of, any system improvements provided by the developer if the facilities: (a) are System Improvements; or (b) are dedicated to the public and offsets the need for an identified System Improvement.

Section 12. Impact Fee Exemption and Prohibitions:

The City Manager may exercise an impact fee exemption for development activities attributed to low-income housing, the state, school district, charter school, or a development activity with a broad public purpose, as further described in UCA §11-36a-403.

Pursuant to the process and criteria outlined specifically in West Haven City Ordinance 12-2024 (adopted May 1, 2024, by the City Council), and any applicable Utah Code, the City Manager, or their designee, may grant an exemption or

elimination for the payment of impact fees for newly constructed moderate-income housing units.

Pursuant to the process and criteria outlined specifically in West Haven City Ordinance 11-2024 (adopted May 1, 2024, by the City Council), and any applicable Utah Code, the City Manager or their designee, which includes the Building Official, Community Development Director, and City Engineer shall grant an exemption or elimination for the payment of impact fees for an accessory dwelling unit (ADU), which is a subordinate dwelling, which has its own eating, sleeping, and sanitation facilities either within or attached to a single-family residential building; or within a detached accessory structure associated with a single-family dwelling, as defined in West Haven City Code §157.455.

The Building Official, Community Development Director, City Engineer, or City Manager shall not assess an impact fee on action or development activity that would violate UCA §11-36a-202.

Section 13. Conflicts Between Ordinance & Impact Fee Act:

If any conflict should occur or arise between this Ordinance and the Impact Fees Act, as amended, the Impact Fees Act shall prevail.

Section 14. Use of Impact Fees:

Impact Fees collected by the City shall be used to: (a) Pay for the Public Facilities or System Improvements provided for by this Ordinance and the Impact Fee Facilities Plans and/or Impact Fee Analysis, attached as Exhibits B, C, D, E, and F; (b) Reimburse funds to the City for a Development Activity or New Development's Proportionate Share of Public Facilities or System Improvement already constructed by the City; (c) Reimburse funds or grant Impact Fee credits to individuals or entities who dedicate land, construct and dedicate some or all Public Facilities or System Improvements where those Public Facilities or System Improvements are beyond an individual's or entity's Proportionate Share; and (d) Any other use authorized by the Impact Fees Act or law.

Section 15. Accounting of Impact Fees:

The City shall account for Impact Fees collected in accordance with UCA §11-36a-601, as amended.

Section 16. Expenditure of Impact Fees:

In accordance with UCA §11-36a-602 and as amended, the City may expend Impact Fees for a System Improvement: (a) identified in the Impact Fee Facilities Plan or Impact Fee Analysis, and (b) for the specific Public Facility type for which the fee was collected. The City shall expend or encumber the Impact Fees for a

permissible use within six (6) years of their receipt; except the City may hold the fees for longer than six (6) years if it identifies, in writing: (a) an extraordinary and compelling reason why the fees should be held longer than six (6) years; and (b) an absolute date by which the fees shall be expended.

Section 17. Refund of Impact Fees:

In accordance with UCA §11-36a-603 and as amended, the City Manager shall refund an Impact Fee to the individual or entity listed, as described in UCA §11-36a-603, plus interest earned, as calculated by the post-judgment interest rate for the State of Utah pursuant to UCA §15-1-4 when the following circumstances exist: (1) the Developer does not proceed with the Development Activity and has filed a written request for a refund to the Development Review Committee; (2) the Impact Fee has not been spent or encumbered; and (3) no impact has resulted.

Section 18. Interpretation of Impact Fees:

The City Council hereby designates the City Manager to interpret this Ordinance as necessary for the fair administration of Impact Fees. In interpreting this Ordinance, the City Manager may use the entirety of this Ordinance and the Impact Fee Act. The City Manager may also contact and seek counsel from the City Attorney, the professionals who certified the Impact Fee Facilities Plan and the Impact Fee Analysis, and/or the Office of the Property Rights Ombudsman for assistance in clarifying the methodology and formula used to calculate the Impact Fees.

Section 19. Impact Fee Challenge:

Request for Relevant Information. In accordance with UCA §11-36a-701(2), any individual, developer, or entity who has paid the Impact Fee (i.e., the individual or entity listed on the building permit or other applicable City-issued permit by which the impact fee was assessed and collected) who believes the Impact Fee does not meet the requirements of law may file a written request with the City Manager for relevant information.

Within two (2) weeks of receipt of the request for relevant information, the City Manager shall provide the individual, developer, or entity with the impact fee analysis, the impact fee facilities plan, and any other relevant information relating to the impact fee.

Administrative Appeals Procedure. The City has established this administrative appeal process under UCA §11-36a-703 in good faith to provide an appeals process for challenging the validity of an impact fee.

In accordance with §11-36a-701 and §11-36a-703, after receiving the impact fee analysis, the impact fee facilities plan, and any other relevant information relating

to the impact fee, the individual, developer, or entity required to pay an Impact Fee may file an appeal challenging the legal validity of the City's Impact Fee. The appeal shall be filed with the City Manager, providing detailed and specific grounds for the appeal under the Impact Fee Act and all facts relied upon by the appealing party.

The appeal shall be filed within the time limits outlined in §11-36a-702, depending on what basis the applicant cites to under section of §11-36a-701(3) for the challenge of the impact fee.

Upon the City's receipt of the administrative appeal, the Appeal shall be heard by the City Appeal Hearing Officer. The Appeal Hearing Officer shall be the same individual appointed under West Haven City Code §157.035. The Appeal Hearing Officer shall abide by the following procedures regarding conducting an appeal hearing as outlined in the West Haven City Code: §157.036(A) and (B); §157.037(C), (D), (E), and (F); and any other applicable West Haven City Code sections regarding the authority of the Appeal Hearing Officer.

The City Appeals Hearing Officer shall hold a hearing and shall render its decision on the administrative appeal no later than thirty (30) days after the challenge to the Impact Fee is filed with the City.

District Court Review. After the City Appeals Hearing Officer's final decision, an adversely affected party may petition the Second Judicial District Court in Weber County for review of the decision.

Section 20. Repealer of Conflicting Enactments:

All prior orders, ordinances, and resolutions of the City, or any portions thereof, that conflict with the provisions of this Ordinance as enacted and adopted are hereby repealed to the extent of such conflict. This repeal shall not be interpreted to reinstate any act, order, or resolution, or any part thereof, that has previously been repealed.

Under UCA §11-36a-401, the impact fees outlined in this Ordinance shall not take effect until ninety (90) days after the adoption of this Ordinance. Until the new impact fees are enacted ninety (90) days after the adoption of this Ordinance, the current impact fees outlined in the West Haven City Code shall be valid and applicable. Ninety days after the adoption of this Ordinance, the West Haven City Council repeals the entirety of the "Impact Fees" section of the West Haven City Code, specifically: §§33.020, 33.021, 33.022, 33.023, 33.024, 33.025, 33.026, and 33.027. This Ordinance shall be listed in the West Haven City Code under "TABLE OF SPECIAL ORDINANCES, X. IMPACT FEES".

Section 21. Savings Clause:

If any provision of this Ordinance shall be held or deemed to be or shall, in fact, be invalid, inoperative or unenforceable for any reason, such reason shall not have the effect of rendering any other provision or provisions hereof invalid, inoperative or unenforceable to any extent whatever, this Ordinance and the provisions of this Ordinance being deemed to be the separate independent and severable act of the City Council of West Haven City.

Section 22. Date of Effect:

BE IT FURTHER ORDAINED that this Ordinance shall be approved on the _____ day of _____ 2026, shall be published or posted as required by law, and shall become effective 90 (ninety) days after the approval date in accordance with UCA §11-36a-401(2).

DATED this _____ day of _____ 2026.

WEST HAVEN CITY, a municipal corporation

by: _____
Mayor Rob Vanderwood

Attested and recorded

Emily Green, City Recorder

Mayor Rob Vanderwood	Yes _____	No _____
Councilmember Carrie Call	Yes _____	No _____
Councilmember Kim Dixon	Yes _____	No _____
Councilmember Nina Morse	Yes _____	No _____
Councilmember Ryan Saunders	Yes _____	No _____
Councilmember Ryan Swapp	Yes _____	No _____

RECORDER'S CERTIFICATION

STATE OF UTAH)
: ss.
County of Weber)

I, EMILY GREEN, the City Recorder of West Haven, Utah, in compliance with UCA §10-3-713 and UCA §10-3-714 do hereby certify that the above and foregoing is a full and correct copy of "**AN ORDINANCE OF WEST HAVEN CITY, UTAH, ADOPTING AN IMPACT FEE FOR TRANSPORTATION, STORM WATER, PARKS, RECREATION, OPEN SPACE, AND TRAILS IN CONFORMANCE WITH THE PROVISIONS OF UTAH'S IMPACT FEES ACT, TITLE 11, CHAPTER 36a; ADOPTING THE IMPACT FEE FACILITIES PLANS (IFFP) AND IMPACT FEE ANALYSIS (IFA) FOR THE SAME AND EACH SUMMARY OF THE IFFP AND IFA FOR TRANSPORTATION, STORM WATER, PARKS, RECREATION, OPEN SPACE, AND TRAILS IN CONFORMANCE WITH THE PROVISIONS OF UTAH'S IMPACT FEES ACT, TITLE 11, CHAPTER 36a; AND ESTABLISHING AN EFFECTIVE DATE FOR THESE ACTIONS.**" adopted and passed by the City Council of West Haven, Utah, at a regular meeting thereof on _____, 2026 which appears of record in my office, with the date of posting or publication being _____, 2026.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed the corporate seal of the City this _____ day of _____ 2026.

Emily Green
City Recorder

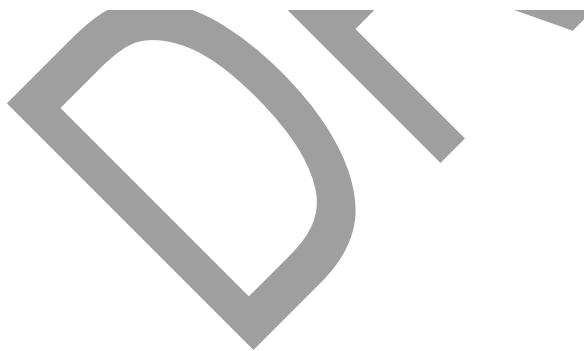
Exhibit A - Notice of Intent to Prepare Road, Storm Water, and Park Impact Fee Facilities Plan and Impact Fee Analysis

PUBLIC NOTICE

Public Body: West Haven City Council

Subject: Notice of Intent of Preparation of Road Impact Fee Facilities Plan and Impact Fee Analysis

Notice Title: Notice of Intent of Preparation


Notice Type: Notice of Intent to Prepare Road Impact Fee Facilities Plan and Impact Fee Analysis

Notice Date: April 7, 2025

Description/Agenda:

West Haven City, Utah, in accordance with the requirements of Utah Code Ann. §§11-36a-501 and 11-36a-503, posts a notice of its intent to prepare a Road Impact Fee Facilities Plan and Impact Fee Analysis for West Haven City. The areas that will be included in the Impact Fee Facilities Plan and Impact Fee Analysis are all areas within the legal West Haven City limits and the declared annexation areas of West Haven City, Utah. For additional information regarding the City's intent to prepare a Road Impact Fee Facilities Plan and Impact Fee Analysis for West Haven City, please contact Shawn Warnke, West Haven City Manager, at shawnw@westhavencity.com

Notice of Special Accommodations: If you need special accommodations to participate in a City Council Meeting, please call the City Recorder, Emily Green, at 801-731-8311. Please provide at least 24 hours notice for adequate arrangements to be made.

PUBLIC NOTICE

Public Body: West Haven City Council

Subject: Notice of Intent of Preparation of Storm Water Impact Fee Facilities Plan and Impact Fee Analysis

Notice Title: Notice of Intent of Preparation

Notice Type: Notice of Intent to Prepare Storm Water Impact Fee Facilities Plan and Impact Fee Analysis

Notice Date: **April 7, 2025**

Description/Agenda:

West Haven City, Utah, in accordance with the requirements of Utah Code Ann. §§11-36a-501 and 11-36a-503, posts a notice of its intent to prepare a Storm Water Impact Fee Facilities Plan and Impact Fee Analysis for West Haven City. The areas that will be included in the Impact Fee Facilities Plan and Impact Fee Analysis are all areas within the legal West Haven City limits and the declared annexation areas of West Haven City, Utah. For additional information regarding the City's intent to prepare a Storm Water Impact Fee Facilities Plan and Impact Fee Analysis for West Haven City, please contact Shawn Warnke, West Haven City Manager, at shawnw@westhavencity.com

Notice of Special Accommodations: If you need special accommodations to participate in a City Council Meeting, please call the City Recorder, Emily Green, at 801-731-8311. Please provide at least 24 hours notice for adequate arrangements to be made.

PUBLIC NOTICE

Public Body: West Haven City Council

Subject: Notice of Intent of Preparation of Park Impact Fee Facilities Plan and Impact Fee Analysis

Notice Title: Notice of Intent of Preparation

Notice Type: Notice of Intent to Prepare Park Impact Fee Facilities Plan and Impact Fee Analysis

Notice Date: April 7, 2025

Description/Agenda:

West Haven City, Utah, in accordance with the requirements of Utah Code Ann. §§11-36a-501 and 11-36a-503, posts a notice of its intent to prepare a Park Impact Fee Facilities Plan and Impact Fee Analysis for West Haven City. The areas that will be included in the Impact Fee Facilities Plan and Impact Fee Analysis are all areas within the legal West Haven City limits and the declared annexation areas of West Haven City, Utah. For additional information regarding the City's intent to prepare a Park Impact Fee Facilities Plan and Impact Fee Analysis for West Haven City, please contact Shawn Warnke, West Haven City Manager, at shawnw@westhavencity.com

Notice of Special Accommodations: If you need special accommodations to participate in a City Council Meeting, please call the City Recorder, Emily Green, at 801-731-8311. Please provide at least 24 hours notice for adequate arrangements to be made.

Exhibit B - Transportation Impact Fee Facilities Plan

DRAFT

West Haven City Transportation Capital Facilities Plan and Impact Fee Facilities Plan

West Haven, Utah

October 2025

A-Trans Engineering
P.O. Box 521651
Salt Lake City, Utah 84152
(801) 949-0348 mobile
atrans@comcast.net

TRAFFIC STUDY

West Haven City Transportation Capital Facilities Plan and Impact Fee Facilities Plan

West Haven City, Utah

October 2025

Prepared by:

A-Trans Engineering, LLC
P.O. Box City, 521651
Salt Lake City, Utah 84152
(801) 949-0348
atrans@comcast.net

Table of Contents

List of Appendices.....	iii
List of Tables	iv
List of Figures.....	iv
List of Acronyms and Definitions.....	v
Executive Summary.....	vi
1. Introduction.....	1
2. Roadway Network.....	1
3. Existing Average Annual Daily Traffic.....	3
4. Existing Intersection Control.....	5
5. Speed Considerations.....	11
6. Existing & Proposed Level of Service (LOS).....	13
7. Roadway Classification	14
8. Existing Capacity	18
9. Future Projected Total AADT	20
10. 2028 and 2030 Analysis.....	25
 A. Future Capacity Needs	25
 B. Recommended Improvements	27
11. Future 2050 Analyses.....	30
 A. Future Capacity Needs	30
 B. 2050 Recommended Improvements	33
12. Unique Design Considerations.....	36
13. Trails Plan.....	38
14. Access Category	40
15. Conclusions.....	44
16. Funding Improvements	47
 A. Impact Fees.....	47
 B. Other Funding Sources.....	48
 C. Recovering the Cost of Excess Capacity in System Improvements	48
17. The Impact Fee Facilities Plan.....	49
18. Impact Fee Facilities Plan Certification.....	49

List of Appendices

Appendix A	Traffic Counts and Projections
Appendix B	Intersection Analyses
Appendix C	Project Cost Estimates

List of Tables

Table 1: Road Network Classification	2
Table 2: Intersection LOS – Delay Relationship	9
Table 3: Classification Summary	15
Table 4: Roadway LOS Thresholds	18
Table 5: Existing and Excess Network Capacity	19
Table 6: West Haven City Projected Total Traffic	21
Table 7: 2028 / 2033 Build Capacity and Excess Capacity	26
Table 8: 2028 / 2033 Recommended Roadway Widening and Sizing Improvements.....	27
Table 9: 2033 Intersection Control and Geometric Improvements.....	28
Table 10: 2050 Build Capacity and Excess Capacity	31
Table 11: Projected Roadway LOS with and without Recommended Improvements.....	32
Table 12: 2050 Recommendations.....	33
Table 13: 2050 Intersection Control Improvements	33
Table 14: Recommended West Haven Spacing Categories.....	40
Table 15: 2028 / 2033 Recommended Roadway Widening and Sizing Improvements.....	45
Table 16: 2033 Intersection Control and Geometric Improvements.....	45
Table 17: 2050 Recommendations.....	46
Table 18 : 2050 Intersection Control Improvements	46

List of Figures

Figure 1: Existing AADT.....	4
Figure 2: Existing Intersection Control.....	6
Figure 3: Existing Geometry.....	7
Figure 4: Existing Turning Movement Counts	8
Figure 5: Existing Intersection Level of Service	10
Figure 6: Posted Speed Limit (MPH)	12
Figure 7: Existing Roadway Classification Map	16
Figure 8: Proposed Roadway Classification Map.....	17
Figure 9: 2028 Average Annual Daily Traffic (Vehicles per Day).....	22
Figure 10: 2033 Average Annual Daily Traffic (Vehicles per Day).....	23
Figure 11: 2050 Average Annual Daily Traffic (Vehicles per Day).....	24
Figure 12: 2028 / 2033 Network Recommendations	29
Figure 13: 2050 Buildout Recommendations	35
Figure 14: Trails Map	39
Figure 15: West Haven Access Categories	42
Figure 16: UDOT Access Categories.....	43

List of Acronyms and Definitions

AADT Annual Average Daily Traffic

FAR Federal Aid Route

ITE Institute of Transportation Engineers

K-factor A percentage rate that is applied to the daily traffic volumes to determine the peak hour volumes.

LOS Level of Service (LOS) is a measure of the delay at the intersection which allows a relative rating of congestion. LOS is a qualitative rating of traveler satisfaction from A to F, with a LOS A corresponding to a roadway that has the greatest amount of excess capacity, and LOS F corresponds to a roadway that has far exceeded its reasonable operating capacity.

OD Origin-Destination

RTP Regional Transportation Plan

SR State Route

WFRC Wasatch Front Regional Council

UDOT Utah Department of Transportation

vpd vehicles per day

vph vehicles per hour

Executive Summary

Infrastructure planning is essential for communities to understand and fiscally plan for both the immediate short-term needs while planning for the future needs. This Capital Facilities Plan (CFP) provides both the recommended transportation short and long-term needs for West Haven City. This traffic analyses include planning-level recommendations and the Impact Fee Facilities Plan (IFFP) concentrates on a 6-10 year outlook. The implementation of impact fees is only applicable to this short-term planning.

The following report provides transportation information to support the economic analysis of the updated transportation impact fee calculations. The following items were requested by the economic analysis consultant:

1. Current level of service (LOS B, C, D, etc.)
2. Capital cost to the City of transportation system improvements over the next 10 years to maintain existing level of service (Coordination with Gardner Engineering)
3. Excess capacity on City owned system roads
4. LOS if no new road construction over the next 10 years
5. Current PM Peak Hour Trips
6. PM Peak Hours Trips attributable to growth over the next 10 years
7. Road capacity (PM Peak Hour Trips) of proposed new system roads to meet new growth over the next 10 years.
8. Road capacity (Daily trips) of proposed new system roads to meet new growth through 2040 (full build-out).

The following resources were utilized in the analysis:

- West Haven Roadway City Street Map 2018
- West Haven Trails Map Overview 2019
- West Haven City General Plan December 2014
- Western Weber Planning Area General Plan 7/22/2022
- Western Weber Future Active Transportation Map 8-16-2022
- UDOT's Traffic on Utah Highways
- WFRC Projections

The analysis considers collector and arterial roadways. PM peak counts were collected at the critical intersections within the City to provide existing AADT (Average Annual Daily Traffic) and determine a K-factor for the other roads in the City. A Synchro model of the City's existing critical intersections was developed in the transportation model.

Analysis of the projected traffic along the major roadways within West Haven City for 2028 shows the recommended improvements. Traffic on the City roadways is derived from three contributors.

1. Traffic already on the roadway from existing development within and without the City,
2. Traffic that will be generated from future development within the City based on land use zoning
3. Background traffic which is trips that are generated from outside the City.

To offset the impact of the increased traffic from within and without West Haven City, the following roadway and signal improvement recommendations are made. The actual need and timing for these improvements will depend on where development occurs and how quickly development happens. The projects are organized into priority groups represented by time frames: current to 2028/2033, 2050.

Summaries of the recommendations are shown in Tables ES-1 through ES-4 and Figure ES-1 and ES-2.

Table ES-1: 2028 / 2033 Recommended Roadway Widening and Sizing Improvements

Project #	Road	From	To	Improvement
6	3600 South	2700 West	Midland Drive	Widen Road from 2 to 5 lanes
7	Connector	3300 South	3600 South	New Road – 5 lanes
4	Connector	1800 South	2100 South	New Road – 5 lanes
TBA	Wilson Lane	2700 West	2400 West	Partial New Road – from 2 to 3 lanes
5	1800 South	2700 West	1950 West	Widen Road from 2 to 5 lanes
UDOT	Midland Drive	Hinckley	3300 South	Widen Road from 3 to 5 lanes – UDOT
UDOT	Midland Drive	3300 South	1900 West	Widen Road from 3 to 5 lanes – UDOT
1	3300 South	4700 West	5100 West	Widen Road from 2 to 3 lanes
TBA	3300 South	3500 West	~3200 West	Widen Road from 2 to 5 lanes
2	5100 West	3300 South	4000 South	Widen Road from 2 to 3 lanes
3	2700 West	2150 South	2550 South	Widen Road from 2 to 3 lanes

Table ES-2: 2028 / 2033 Intersection Control and Geometric Improvements

Project #	Intersection		Improvement
11	1800 South	1900 West	Signal - UDOT
8 / Part of #4	1800 South	Connector Road	Alternative Intersection (Roundabout) ¹
TBA / UDOT	Midland Drive	3300 South	Alternative Intersection (Roundabout) ¹ - UDOT
9	4000 South	5100 West	Signal – UDOT
10	4000 South	4300 West	Signal – UDOT
UDOT	Midland Drive	Hunter	Signal – Development Driven – UDOT
UDOT	4000 South	Hunter (3050 West)	Signal – Development Driven - UDOT
12 / Part of #7	3300 South	Connector Road	Alternative Intersection (Roundabout) ¹
13	2700 West	3600 South	Alternative Intersection (Roundabout) ¹

1 -For more information pertaining to why roundabouts are recommended please see Section 12. Unique Design Considerations.

- TBA – Indicates Master Planned Project not included in this project window for impact fee analysis
- UDOT - Indicates Master Planned Projects on UDOT owned routes

Table ES-3: 2050 Recommendations

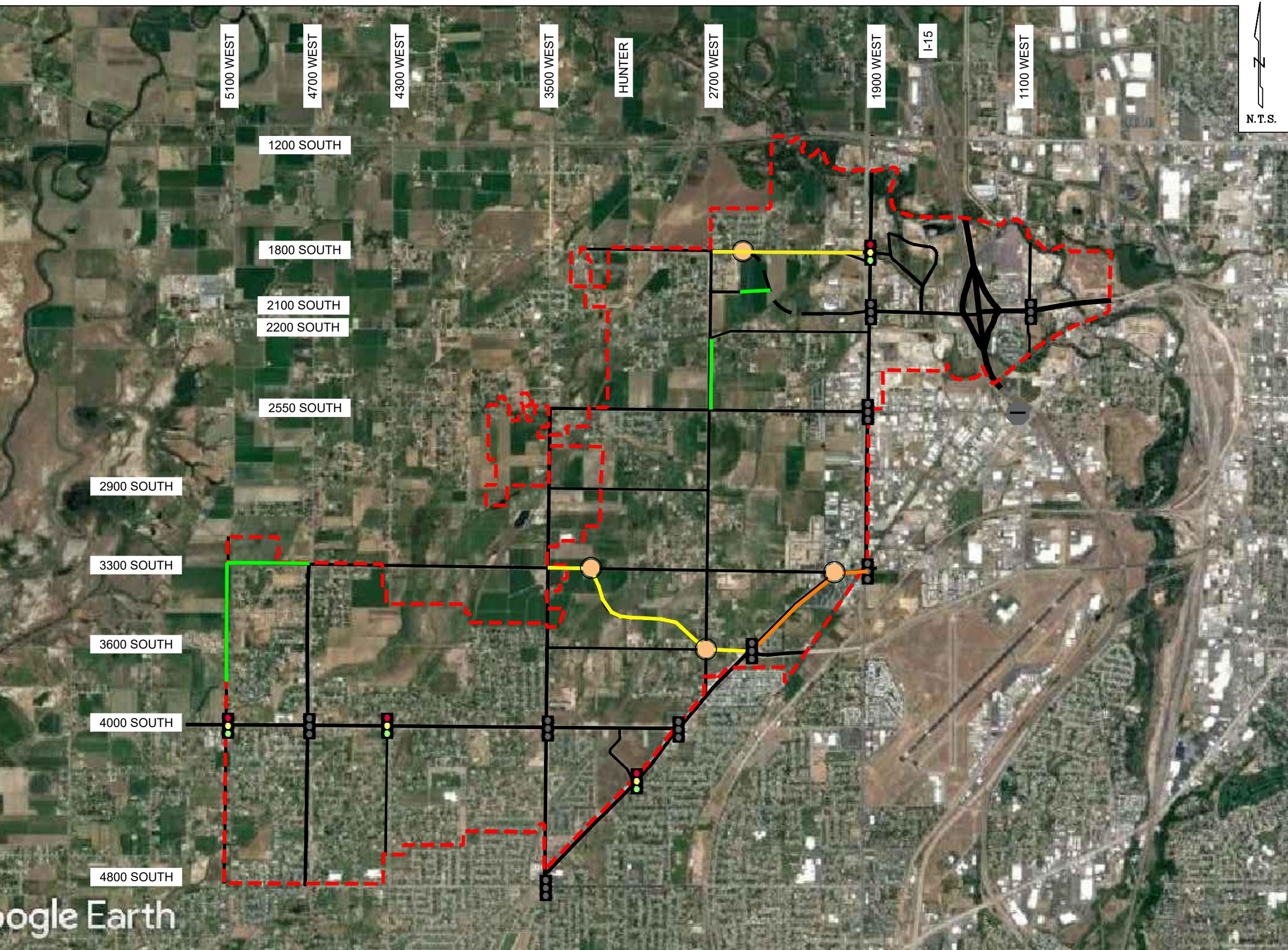
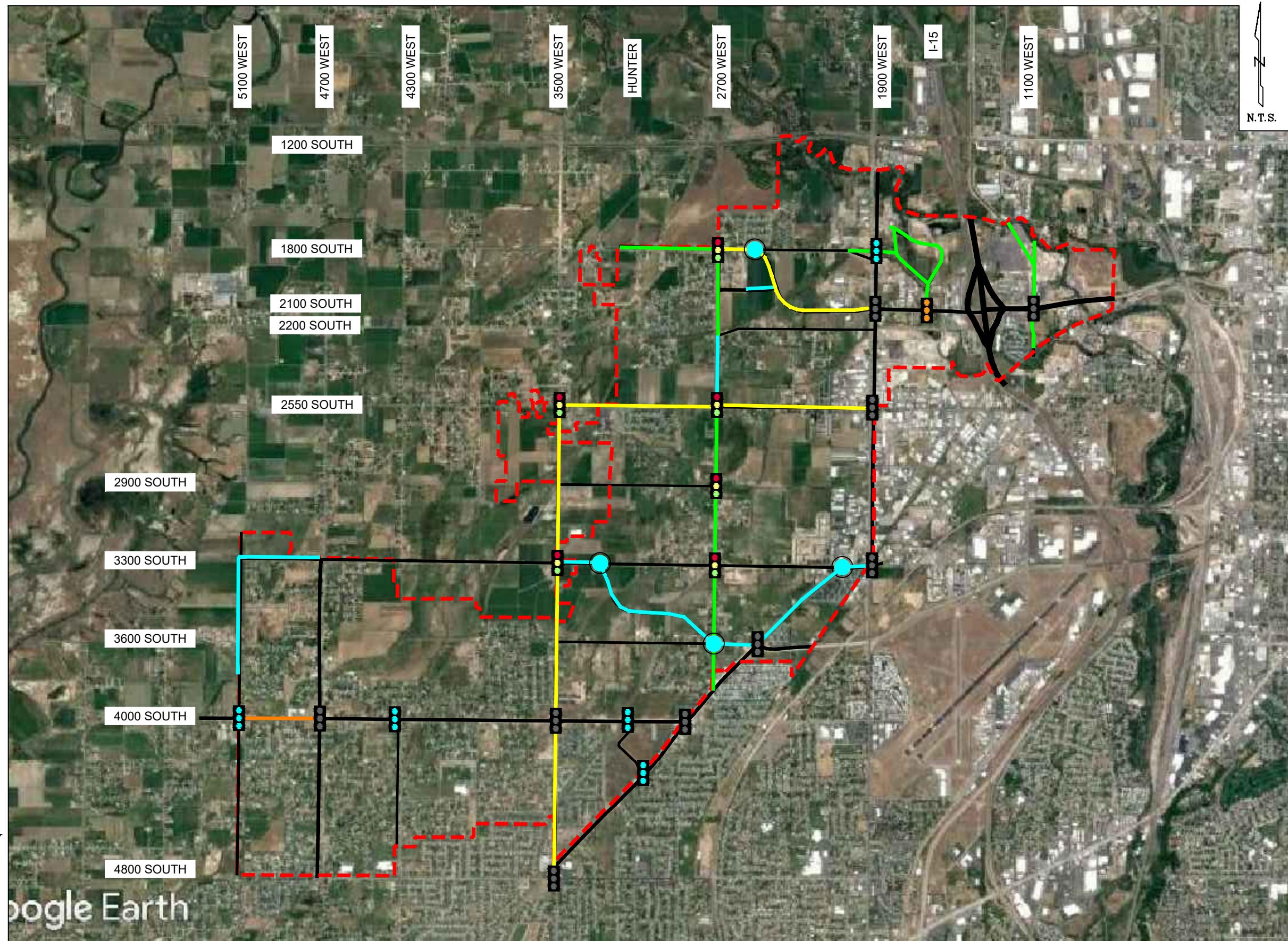
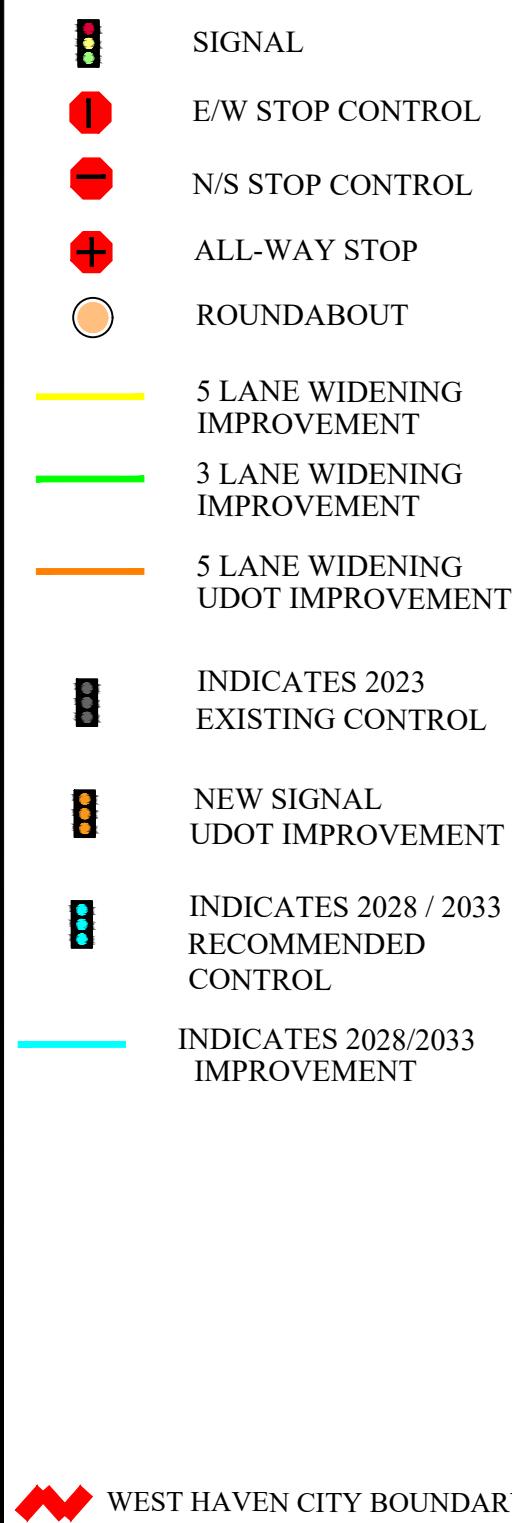

Roadway	From	To	2050 Recommended Improvement
4000 South	5100 West	4700 West	Widen Road from 3 to 5 Lanes – UDOT
2550 South	West Border	1900 West	Widen Road from 3 to 5 Lanes
1800 South	2050 West	1900 West	Realignment and widening from 2 to 3 lanes
1800 South	1900 West	1700 West	New 3 lanes road connecting 1900 West to Retail Loop
1800 South	West Border	2700 West	Widen Road from 2 to 3 Lanes
3500 West	3300 South	4000 South	Widen Road from 3 to 5 Lanes
3500 West	4000 South	4800 South	Widen Road from 3 to 5 Lanes
2700 West	North Border	2175 South	Widen Road from 2 to 3 lanes
2700 West	2550 South	Midland Drive	Widen Road from 2 to 3 Lanes
Canal Crossing	North Border	1100 West	New Road - 3 Lane
Retail Loop	1750 West	1625 West	Complete and Widen the Retail Loop to 3 Lanes (This includes the northern portion of the Loop Road)
1100 West	North Border	South Border	Widen Road from 2 to 3 Lanes

Table ES-4: 2050 Intersection Control Improvements



Intersection		Improvement
1625 West	2100 South	Signal – UDOT
2700 West	1800 South	Signal
2700 West	2550 South	Signal
2700 West	2900 South	Signal
2700 West	3300 South	Signal
3500 West	2550 South	Signal
3500 West	3300 South	Signal

LEGEND

- SIGNAL
- E/W STOP CONTROL
- N/S STOP CONTROL
- ALL-WAY STOP
- ROUNDABOUT
- 5 LANE WIDENING IMPROVEMENT
- 3 LANE WIDENING IMPROVEMENT
- 5 LANE WIDENING UDOT IMPROVEMENT
- INDICATES 2023 EXISTING CONTROL

LEGEND

1. Introduction

The purpose of this report is to provide West Haven City a transportation capital improvements plan and support for the impact fee facilities plan (IFFP) and subsequent impact fee analysis (IFA) which calculates the impact fee amounts. Collector and arterial streets are included in the analysis; local roads are not shown and will be subdivision-specific as they develop. The exact alignment of all new roadways is to be determined. As this is a Planning Level document, design specific or safety related improvements were not considered within this report.

The following transportation analysis identifies the current usage of the city's infrastructure and how future City growth will impact the roadways. This will aid the City in long-term transportation infrastructure planning and budgeting.

This analysis provides West Haven City with the projected volumes along the primary routes and intersections of the City for the future condition of 2028 and 2033. Also included are the 2050 projected volumes on the primary routes. The level of service and capacity that can be expected if improvements are made by the recommended year are provided. Additionally, the No Build analysis assumes that no improvements to the city's infrastructure are made. Using this information and proposed project costs, the City's financial consultant can complete the requirements of UCA 11-36a-304 for an impact fee analysis and calculate the maximum legal transportation impact fees that can be assigned to the new growth.

2. Roadway Network

The primary routes within West Haven City are 1900 West, 3500 West, Midland Drive, Hinckley Drive, 2100 South, 2550 South and 4000 South. Table 1 shows the classification, ownership, number of lanes and speed limit of the major roadways within West Haven City.

Table 1: Road Network Classification

Roadway	From	To	UDOT Route	Speed Limit	Existing Number of Lanes
4800 South	5100 West	4300 West	RT 3308	25	3
4000 South	5100 West	4700 West	SR 37	45	3
4000 South	4700 West	3500 West	SR 37	45	5
4000 South	3500 West	Midland Drive	SR 37	50	5
3600 South	3500 West	2700 West		35	2
3600 South	2700 West	Midland Drive		35	2
Hinckley Drive	Midland Drive	East Border	SR 79	50	5
Connector	3300 South	3600 South		Unbuilt	Unbuilt
3300 South	5100 West	3500 West	RT 3362	40	2
3300 South	3500 West	Midland Drive	RT 3362	40	3
2900 South	West Border	2700 West		30	2
2550 South	West Border	2700 West	RT 3364	40	3
2550 South	2700 West	1900 West	RT 3364	40	3
2200 South	2700 West	1900 West		35	2
Connector	1800 South	2100 South	SR 104	Unbuilt	Unbuilt
2100 South	1900 West	I-15	SR 104	45	5
2100 South	I-15	East Border	SR 104	50	5
Wilson Lane	2700 West	2400 West		25	2 ¹
1800 South	West Border	2700 West	RT 3366	40	2
1800 South	2700 West	1900 West	RT 3366	40	2
5100 West	3300 South	4800 South		40	2
4700 West	4000 South	4800 South	RT 3359	25	3
4700 West	3300 South	4000 South	SR 134	40	2
4300 West	4000 South	4800 South		30	2
3500 West	4000 South	4800 South	RT 3358	35	3
3500 West	3300 South	4000 South	RT 3358	40	3
2700 West	North Border	Midland Drive		35	2
Canal Crossing	North Border	1100 West		Unbuilt	Unbuilt
1900 West	2100 South	Midland Drive	SR 126	55	5
1900 West	North Border	2100 South	SR 126	55	5
Retail Loop	1900 West	1625 West		25	2 ^{1,2}
1100 West	North Border	South Border	RT 3368	25	2
Midland Drive	3500 West	4000 South	SR 108	50	5
Midland Drive	4000 South	Hinckley	SR 108	50	5
Midland Drive	Hinckley	3300 South	SR 108	50	3
Midland Drive	3300 South	1900 West	SR 108	50	3

1. Partially Completed

2. This segment includes both the northern loop and south loop of the retail loop.

3. Existing Average Annual Daily Traffic

A base or existing condition average annual daily traffic (AADT) is determined for each road segment within the study area. This is derived from applying a K-factor to the existing traffic counts collected in connection with this study and UDOT's Traffic on Utah Highways AADT. The K-factor is a percentage rate that is applied to the daily traffic volumes to determine the peak hour volumes.

A K-factor of 11.5% was determined from comparing UDOT's Traffic on Utah Highways AADT and peak hour traffic count volumes at locations where both UDOT and new count data were available. The range of the K-factors was 7% to 16%. To determine the AADT along each road segment, a 11.5% K-factor was applied indicating that the PM peak represents 11.5% of the daily traffic volumes.

For several road segments within the study area, both methods of determining the AADT are available. In this case engineering judgment is utilized to determine the AADT that best represents the road segment and will be utilized within the study. Several factors are considered including reliability of data, length of segment and the exact location of data collection. Based on the 2023 turning movement counts, the corresponding UDOT AADT and the calculated K-factor, a current estimated AADT along each roadway segment was determined. The existing condition AADT is shown in Figure 1.

LEGEND

AADT (XXXX)
2021 DATA FROM UDOT TRAFFIC ON UTAH
HIGHWAYS OR EXISTING TRAFFIC COUNTS
WITH K FACTOR APPLIED

— NUMBER OF LANES

AADT (XXXX) - DAILY TRAFFIC

A-TRANS TRANSPORTATION ENGINEERING
P.O. BOX 521651, SLC, UT 84152
Phone: 801-949-0348 Fax: 801-582-6252

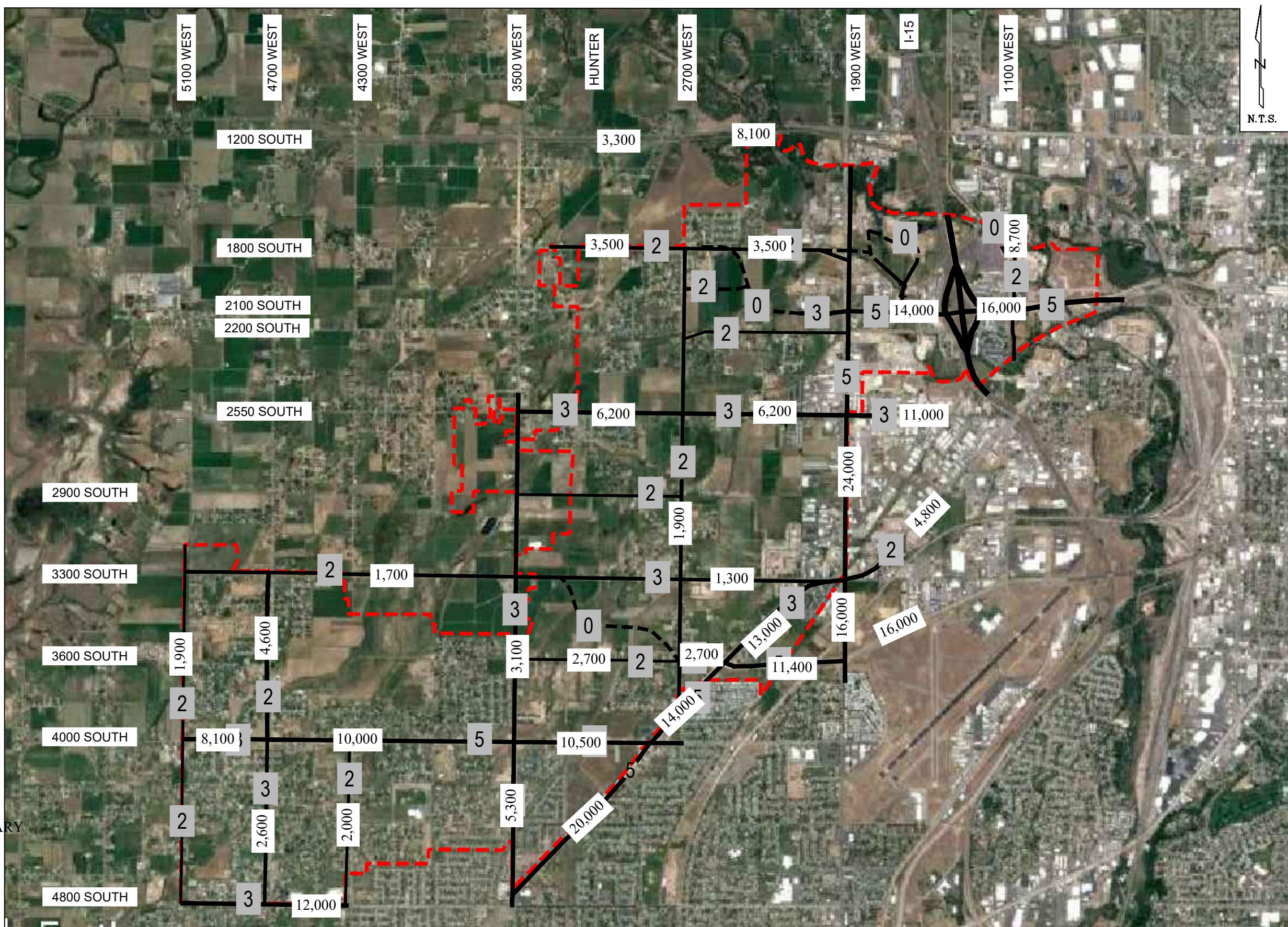


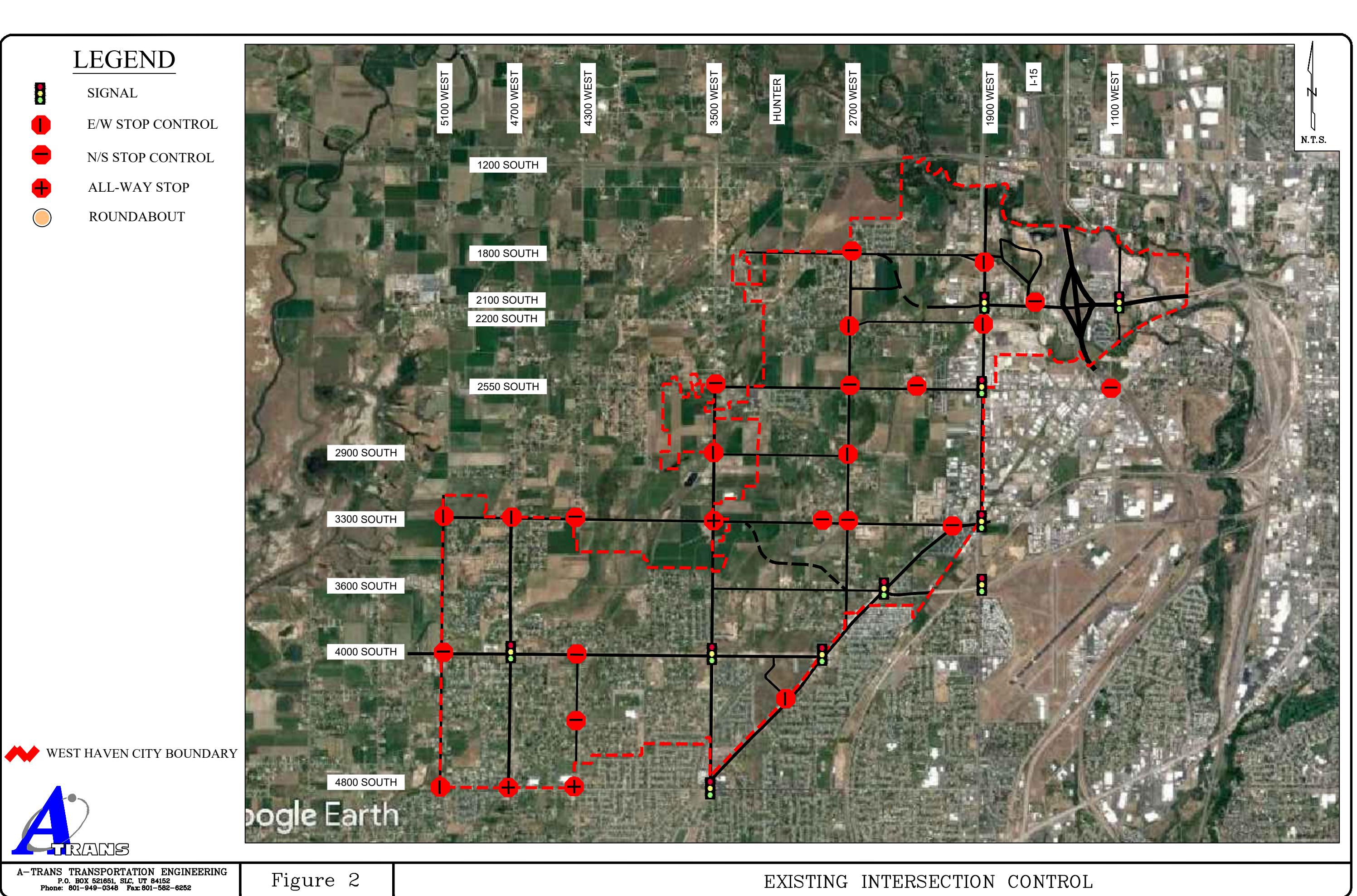
Figure 1

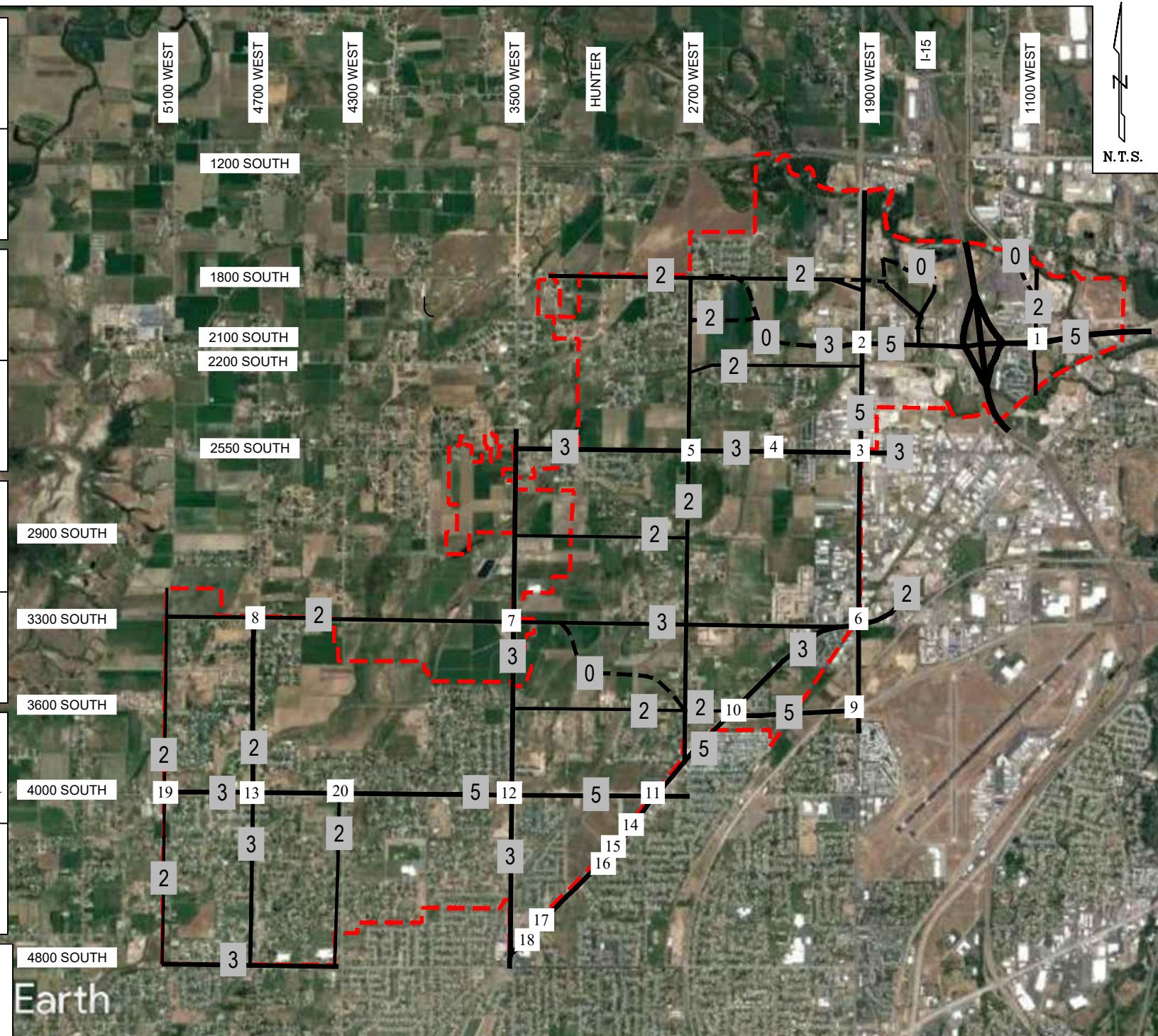
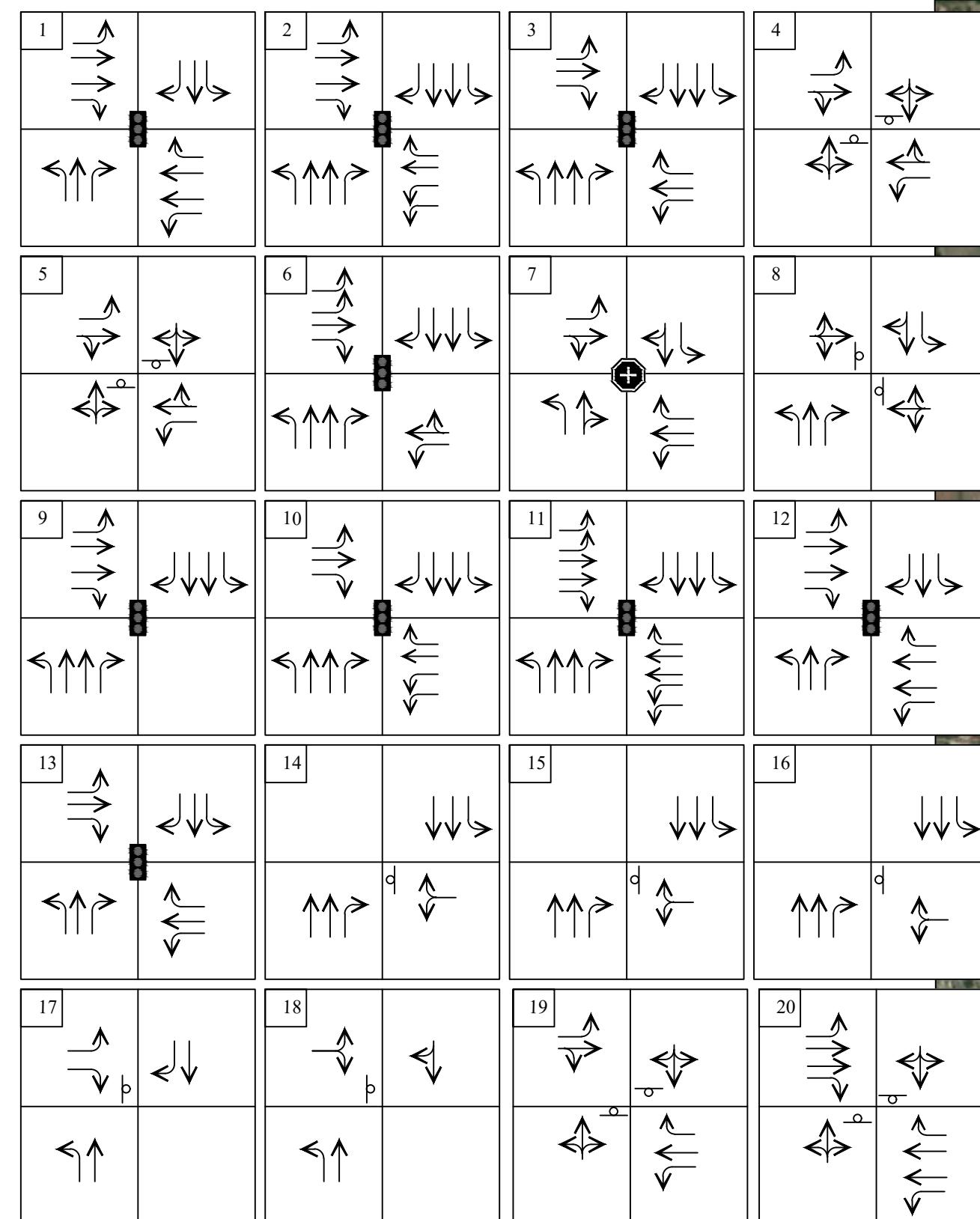
EXISTING AVERAGE ANNUAL DAILY TRAFFIC

4. Existing Intersection Control

An inventory of all intersection controls and major intersections within West Haven City was performed for the existing condition. This inventory is shown in Figure 2.

Existing traffic counts requested by the city were collected in April of 2023 during the PM peak period. Additional intersections were included from data taken from UDOT's Signal Performance Metrics as well as data already possessed by A-Trans Engineering. The following intersections have existing 2023 turning movement counts:


1. 1100 West / 2100 South
2. 1900 West / 2100 South
3. 1900 West / 2550 South
4. 2550 South / 2300 West
5. 2700 West / 2550 South
6. 1900 West / Midland Drive
7. 3500 West / 3300 South
8. 4700 West / 3300 South
9. 1900 West / Hinkley Drive
10. Midland Drive / Hinkley Drive
11. Midland Drive / 4000 South
12. 3500 West / 4000 South
13. 4700 West / 4000 South
14. Midland Drive / 2900 West
15. Midland Drive / 4275 South (Hunter)
16. Midland Drive / 3100 West
17. Midland Drive / 4600 South
18. Midland Drive / Commercial Access
19. 4000 South / 5100 West
20. 4000 South / 4300 West



The existing geometry of these intersections is shown in Figure 3. The existing traffic turning movement counts for the PM peak period are shown in Figure 4.

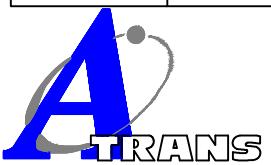
LEGEND

- SIGNAL
- E/W STOP CONTROL
- N/S STOP CONTROL
- ALL-WAY STOP
- ROUNDABOUT

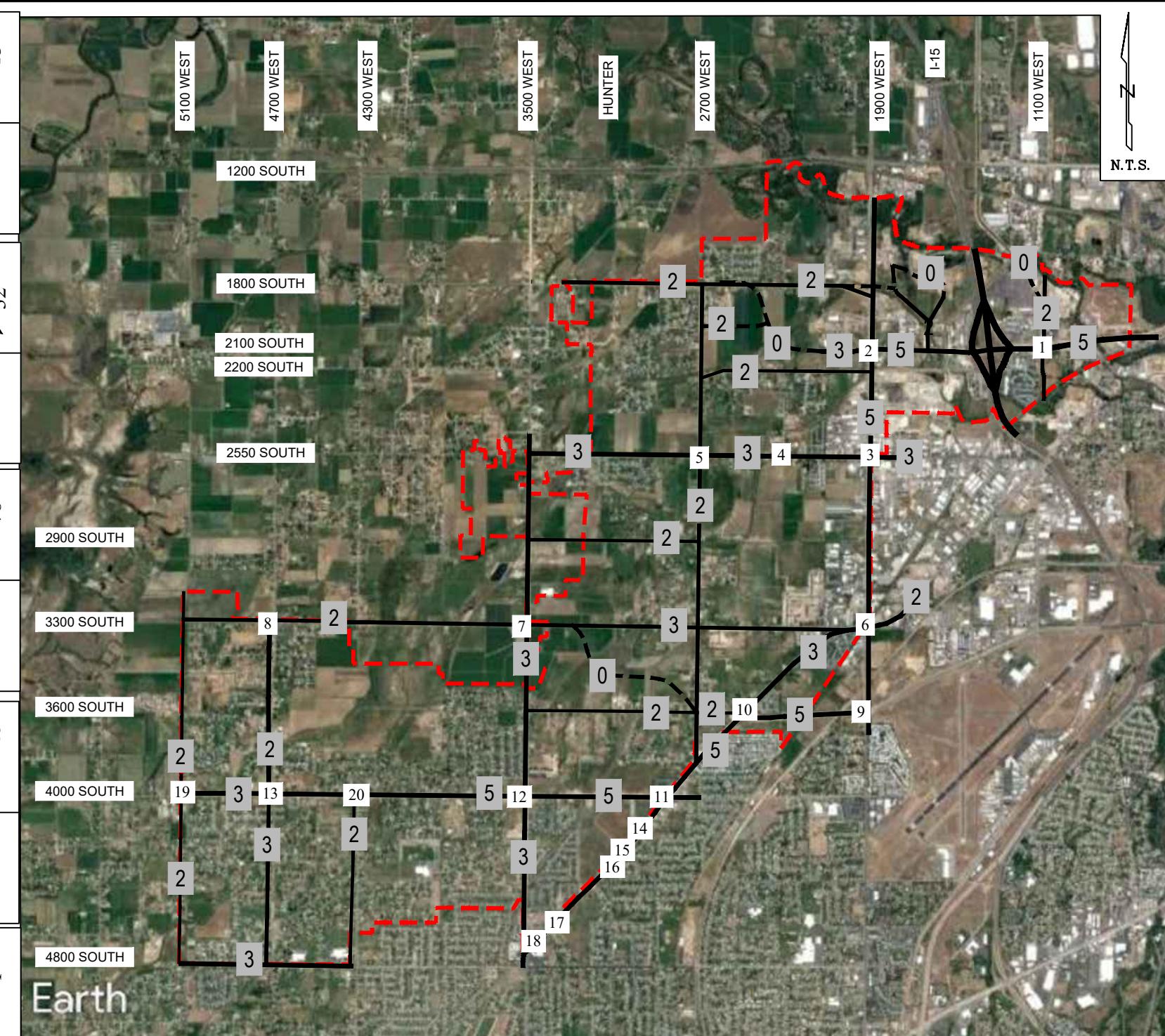
N.T.S.

LEGEND

ALL WAY STOP


SIGNAL

STOP SIGN


—#— NUMBER OF LANES

—#— INTERSECTION NUMBER

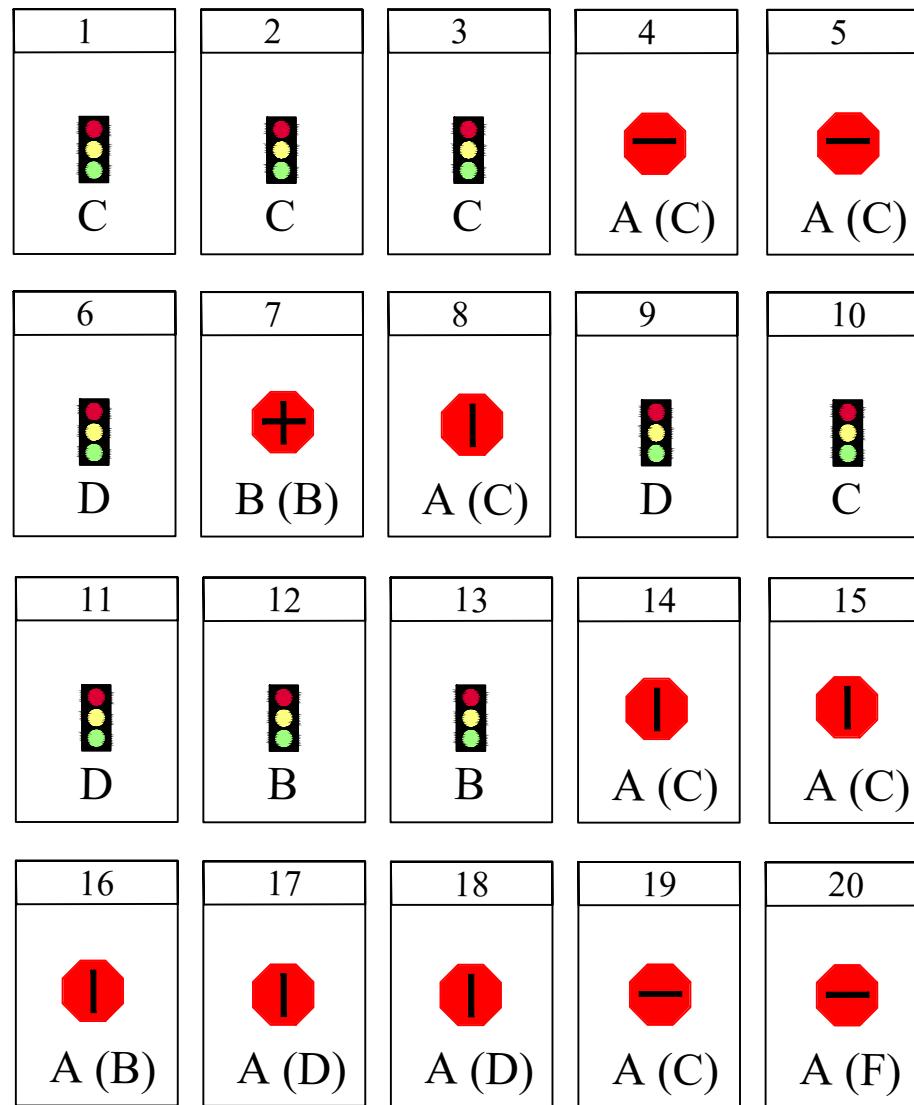
WEST HAVEN CITY BOUNDARY

1	158 361 65	146 31 124 166 24 46
5	12 213 10	20 40 57 13 36 32
9	19 402 17	178 202 429 175 655 308
13	138 221 11	179 175 89 142
17	10 163	78 36 16 794
209 727	→	→
36 667	→	→
18	7 94	16 939
19	23 211 10	19 35 16
20	136 552 60	19 4 1
45	5 59	24 376 104
45	5 59	16 545 52

LEGEND

2023 PM PEAK HOUR VOLUMES

—#— NUMBER OF LANES —#— INTERSECTION NUMBER

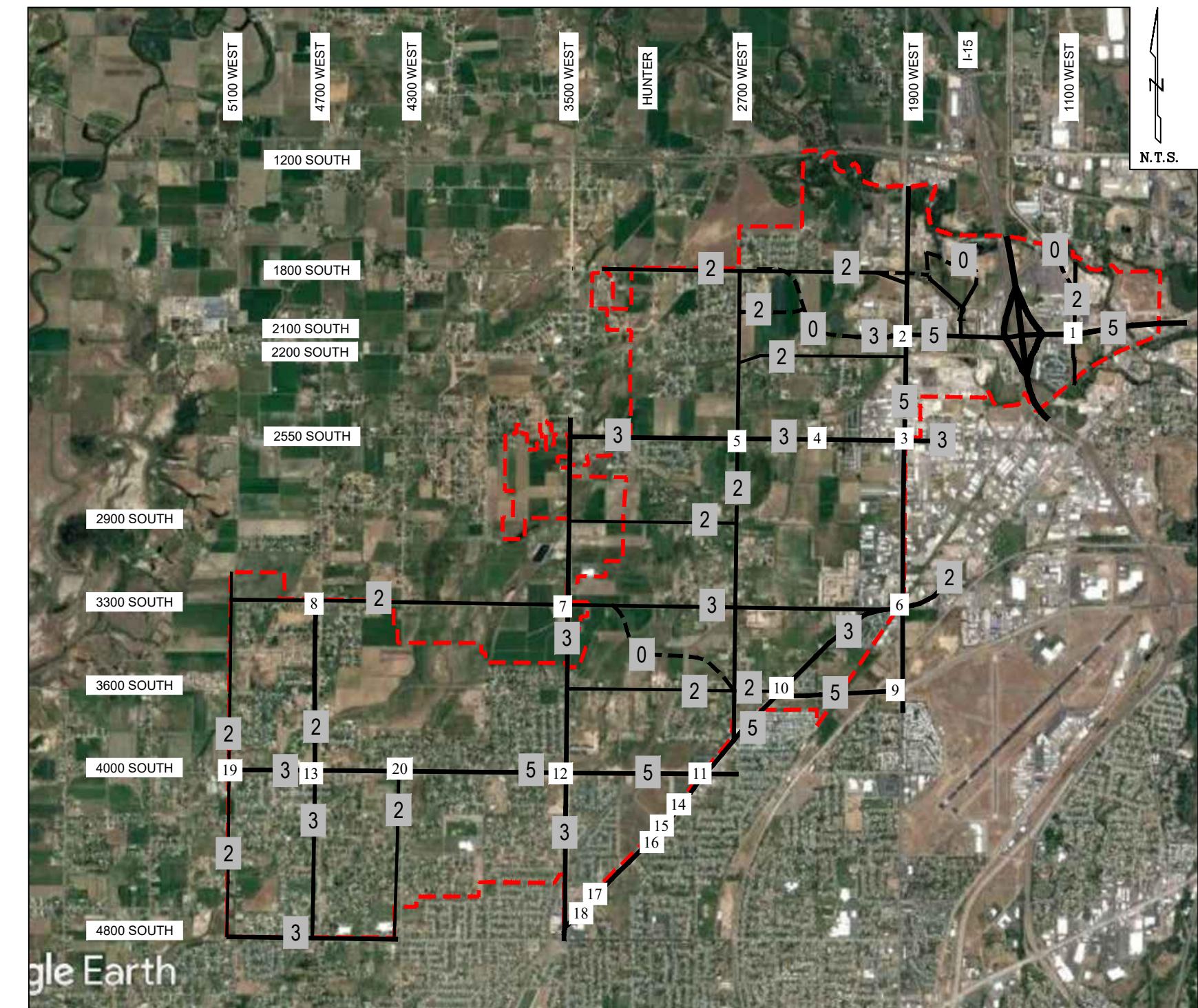

WEST HAVEN CITY BOUNDARY

Existing intersection level of service (LOS) analysis was provided for the PM peak hour for 20 locations within the City. LOS is a measure of the delay at the intersection which allows a relative rating of congestion. This is not the same as the functional classification of the road which indicates the purpose of the road. Functional classification is used to identify whether the road is to primarily serve the neighborhood (local roads), the regional traffic (arterials) or the roads connecting neighborhoods to the regional roads (collectors). These will be discussed further when roadway capacities are discussed.

Table 2 shows the Highway Capacity Manual LOS range by delay for unsignalized and signalized intersections and accesses. Figure 5 shows the existing intersection level of service.

Table 2: Intersection LOS – Delay Relationship

Level of Service	Unsignalized	Signalized
	Total Delay per Vehicle (sec)	Total Delay per Vehicle (sec)
A	≤ 10.0	≤ 10.0
B	> 10.0 and ≤ 15.0	> 10.0 and ≤ 20.0
C	> 15.0 and ≤ 25.0	> 20.0 and ≤ 35.0
D	> 25.0 and ≤ 35.0	> 35.0 and ≤ 55.0
E	> 35.0 and ≤ 50.0	> 55.0 and ≤ 80.0
F	> 50.0	> 80.0



LEGEND

- SIGNAL
- E/W STOP CONTROL
- N/S STOP CONTROL
- ALL WAY STOP CONTROL
- NUMBER OF LANES
- INTERSECTION NUMBER

LOS = LEVEL OF SERVICE

WEST HAVEN CITY BOUNDARY

5. Speed Considerations

The posted speed limit provides an indication of the function of the roadway, meaning is it operating as a local street, collector or arterial. Slower speeds are appropriate for local roads that provide circulation within neighborhoods and faster speeds are appropriate for arterials roads that provide circulation on a regional level. Generally speeds limit ranges for the roadways classifications are as follows:

Functional Classification	Speed Limit Ranges
• Major Arterial (125'-150' ROW) – UDOT	40- 60 mph
• Minor Arterial (100'-110' ROW)	30- 40 mph
• Major Collector (80'-84' ROW)	30- 35 mph
• Minor Collector (66'-70' ROW)	25- 30 mph
• Local Collector (56'- 60' ROW)	20-25 mph

Existing speed limits within the city are shown in Figure 6.

LEGEND

SPEED IN MILES PER HOUR (XX)

WEST HAVEN CITY BOUNDARY

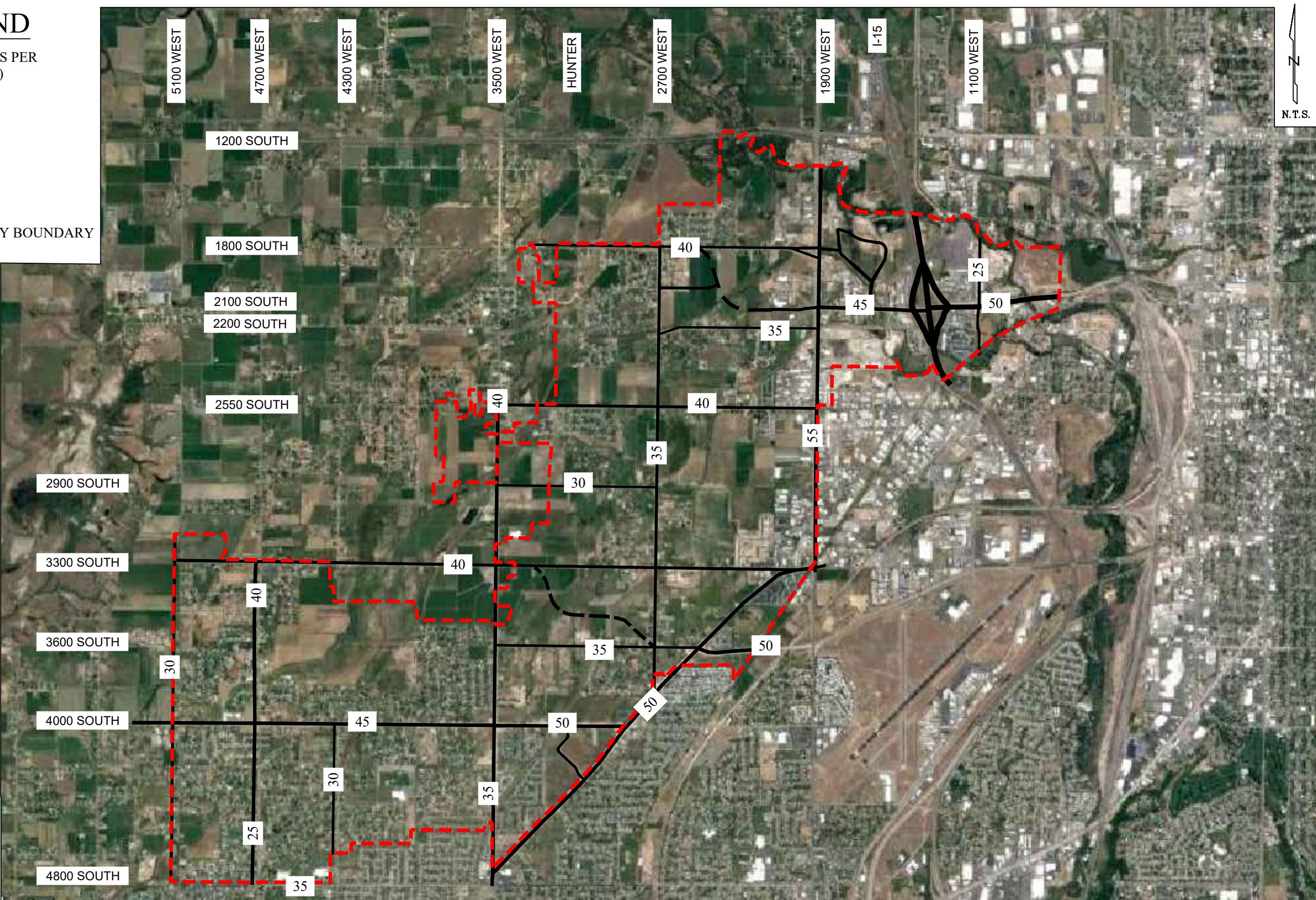
5100 WEST

4700 WEST

4300 WEST

3500 WEST

HUNTER


2700 WEST

1900 WEST

I-15

1100 WEST

N.T.S.

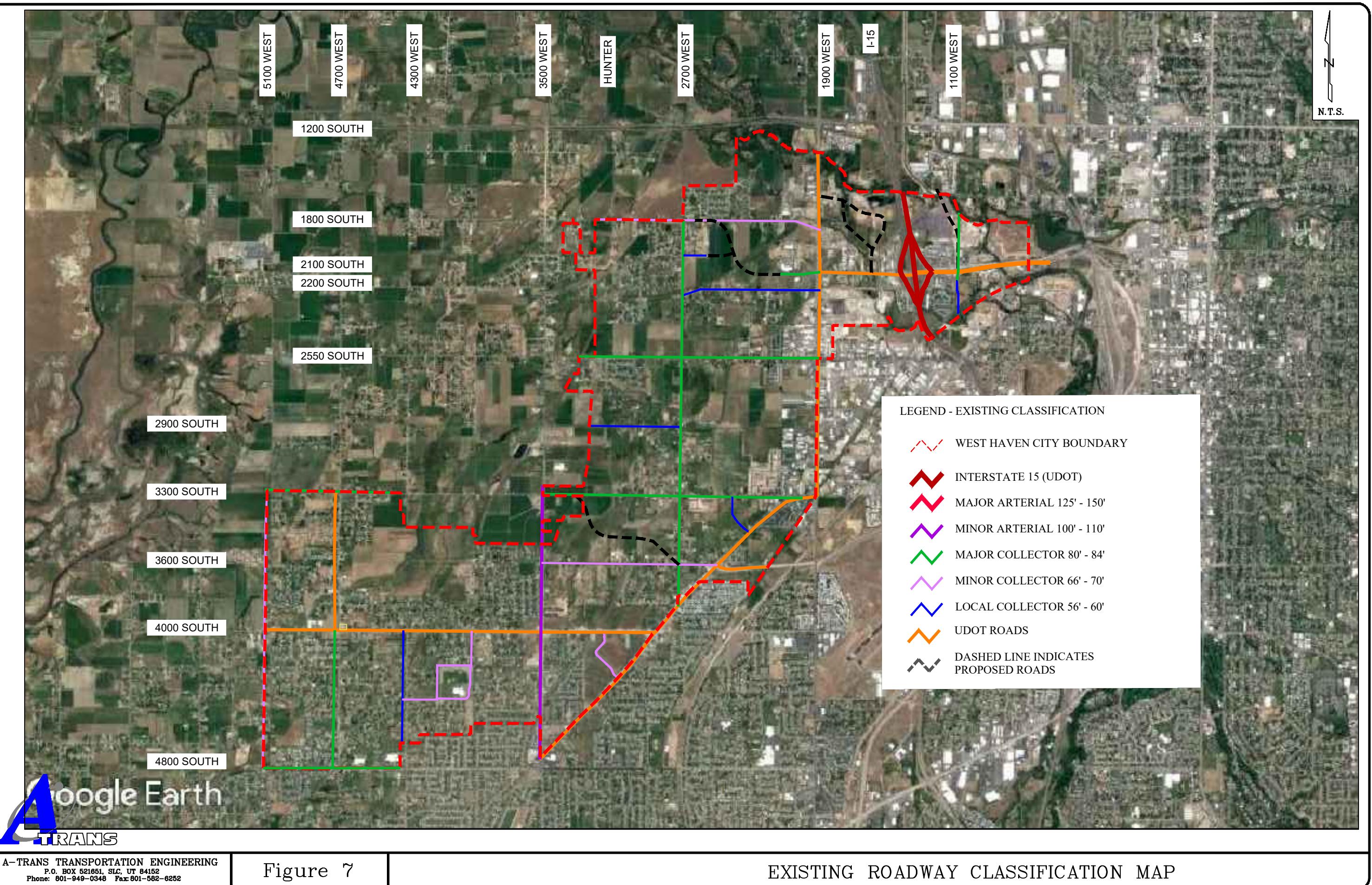
6. Existing & Proposed Level of Service (LOS)

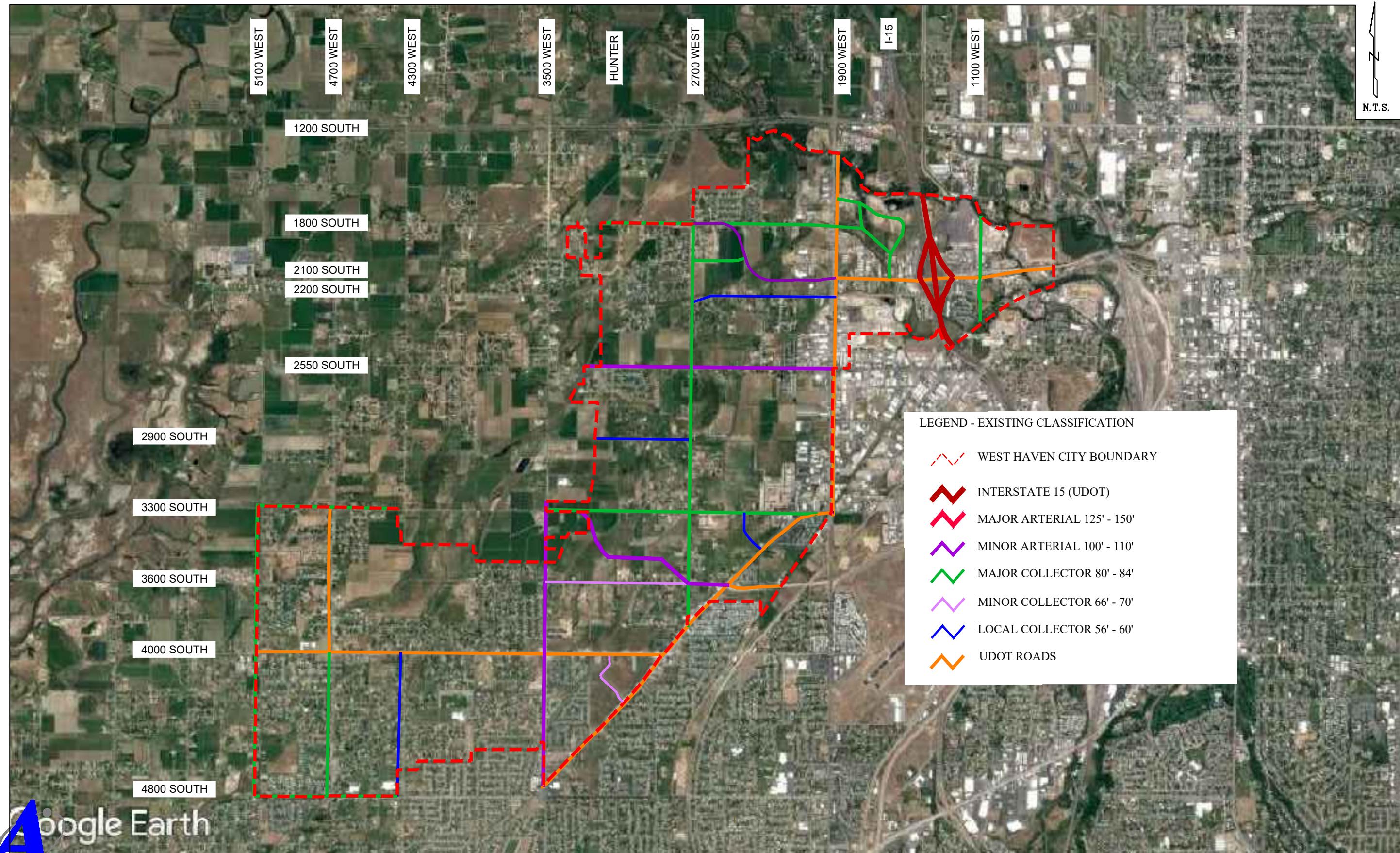
Traffic volumes on the city's roadway network may continue to increase without causing unreasonable delays or inconveniences to drivers already on the road. However, growth will eventually impact the existing roadway network beyond its functional capacity. At that point, or preferably prior to that point in time, the roadway network will need to be expanded or enhanced in order to function without unreasonable delays or impacts to drivers. System improvements such as new roadways, additional travel lanes, additional turn lanes, automated traffic controls, and geometry improvements will be needed.

Levels of service on roadways are classified by their ability to move traffic without unreasonable delays. The Highway Capacity Manual defines the Level of Service (LOS) for both signalized and unsignalized intersections as a range of average delay. LOS is a qualitative rating of traveler satisfaction from A to F. LOS A corresponds to a roadway that has the greatest amount of excess capacity, and LOS F corresponds to a roadway that has far exceeded its reasonable operating capacity. Delay times and inconveniences on roadways gradually increase between these two operating points. When roadways reach their most efficient capacity, they are operating at a LOS D. Generally, up to that point, traffic volumes have not commenced to decrease in spite of increased delays.

For this study, projects have been selected to maintain a LOS D within the roadway network providing for maximum volume while keeping delays and inconveniences within the limits of toleration. This LOS D rating is based on standard and recommended practices by national guidelines. This LOS D threshold would indicate the PM peak traffic hours operating at this level and then all other times are typically operating at a better LOS.

7. Roadway Classification


Functional classification is used to identify whether the road is to primarily serve the neighborhood (local roads), the regional traffic (arterials) or the roads connecting neighborhoods to the regional roads (collectors). The City of West Haven has an existing classification map. This map is shown in Figure 7. Based on the proposed function, speed, access category and future projected volumes, some changes are proposed to the classification map. The proposed classification map is shown in Figure 8 and Table 3 summarizes the roadway classifications and changes to the proposed classification map.


The roadway classification includes the following list within the City although the larger facilities are owned and maintained by UDOT.

- Major Arterial (125'-150' ROW) - UDOT
- Minor Arterial (100'-110' ROW)
- Major Collector (80'-84' ROW)
- Minor Collector (66'-70' ROW)
- Local Collector (56' - 60' ROW)

Table 3: Classification Summary

Roadway	From	To	Current Classification	Proposed Roadway Classification
4800 South	5100 West	4300 West	-----	Major Collector
4000 South	5100 West	4700 West	-----	Minor Arterial
4000 South	4700 West	3500 West	-----	Minor Arterial
4000 South	3500 West	Midland Drive	-----	Minor Arterial
3600 South	3500 West	2700 West	-----	Minor Collector
3600 South	2700 West	Midland Drive	Minor Collector	Minor Arterial
Hinckley Drive	Midland Drive	East Border	-----	Minor Arterial
Connector	3300 South	3600 South	Unbuilt	Minor Arterial
3300 South	5100 West	3500 West	-----	Major Collector
3300 South	3500 West	Connector	Major Collector	Minor Arterial
3300 South	Connector	Midland Drive	-----	Major Collector
2900 South	West Border	2700 West	-----	Local Collector
2550 South	West Border	2700 West	Major Collector	Minor Arterial
2550 South	2700 West	1900 West	Major Collector	Minor Arterial
2200 South	2700 West	1900 West	-----	Local Collector
Connector	1800 South	2100 South	Unbuilt	Minor Arterial
2100 South	1900 West	I-15	-----	Minor Arterial
2100 South	I-15	East Border	-----	Major Arterial
Wilson Lane	2700 West	2400 West	Local Collector	Major Collector
1800 South	West Border	2700 West	Minor Collector	Major Collector
1800 South	2700 West	Connector	Minor Collector	Minor Arterial
1800 South	Connector	1900 West	Minor Collector	Major Collector
5100 West	3300 South	4800 South	Minor Collector	Major Collector
4700 West	4000 South	4800 South	-----	Major Collector
4700 West	3300 South	4000 South	-----	Minor Arterial
4300 West	4000 South	4800 South	-----	Local Collector
3500 West	4000 South	4800 South	-----	Minor Arterial
3500 West	3300 South	4000 South	-----	Minor Arterial
2700 West	North Border	Midland Drive	-----	Major Collector
Canal Crossing	North Border	1100 West	Unbuilt	Major Collector
1900 West	2100 South	Midland Drive	-----	Minor Arterial
1900 West	North Border	2100 South	-----	Minor Arterial
Retail Loop	1900 West	1625 West	-----	Major Collector
1100 West	North Border	South Border	-----	Major Collector
Midland Drive	3500 West	4000 South	-----	Minor Arterial
Midland Drive	4000 South	Hinckley	-----	Minor Arterial
Midland Drive	Hinckley	3300 South	-----	Minor Arterial
Midland Drive	3300 South	1900 West	-----	Minor Arterial

8. Existing Capacity

Roadway capacity is determined using roadway classification, the AADT, and the number of lanes. Table 4 shows the LOS C, LOS D and LOS E thresholds for arterials and collectors for West Haven City. While capacity generally refers to the threshold where the roadway operates at the highest LOS E, for the purposes of this study the maximum allowable traffic volume is at the LOS D level.

Table 4: Roadway LOS Thresholds

Number of Lanes	AADT (vehicles/day)					
	Arterial			Collector		
LOS C	LOS D	LOS E	LOS C	LOS D	LOS E	
2 Lane	10,000	11,500	15,000	9,000	10,500	13,500
3 Lane	11,500	13,000	16,500	10,000	11,500	15,000
4 Lane	25,000	29,000	36,500	19,000	22,500	28,500
5 Lane	26,500	30,500	39,000	21,500	25,000	31,500
7 Lane	40,000	46,000	59,000	-----	-----	-----

Table 5 compares the 2023 AADT to the existing LOS D capacity along each segment and provides the excess capacity on each link. According to existing traffic counts all roadways currently operate at or above LOS D with the exception of 4800 South from 5100 West to 4300 West which is operating 500 vehicles per day above the LOS D capacity threshold.

Table 5: Existing and Excess Network Capacity

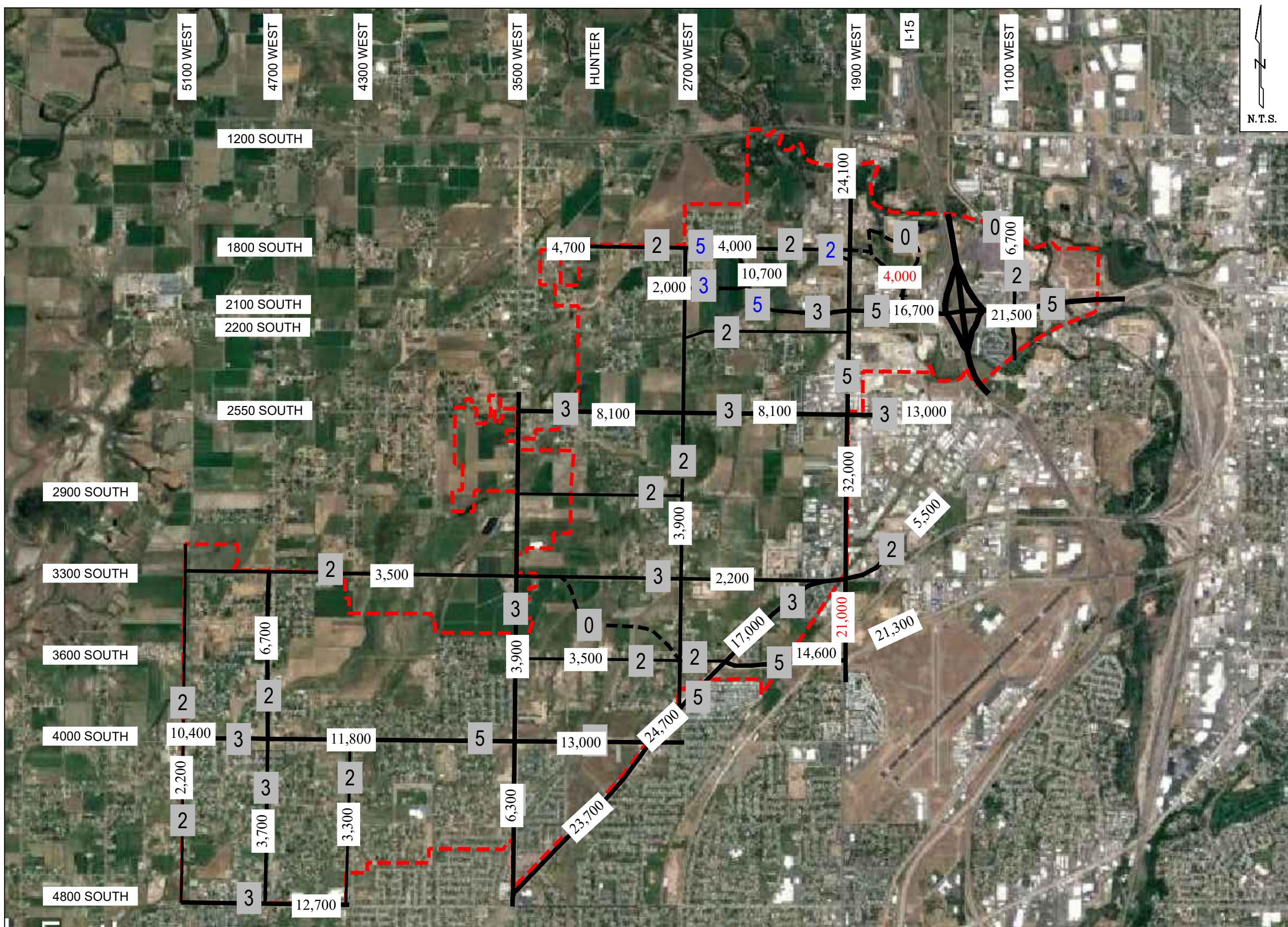
Roadway	From	To	2023 AADT	Existing Number of Lanes	Existing LOS D Capacity (In AADT)	Existing Excess LOS D Capacity (In AADT)	Link Length (feet)
4800 South	5100 West	4300 West	12,000	3	11500	-500	5280
4000 South	5100 West	4700 West	8,100	3	13000	4,900	2700
4000 South	4700 West	3500 West	10,000	5	30500	20,500	7900
4000 South	3500 West	Midland Drive	10,500	5	30500	20,000	4280
3600 South	3500 West	2700 West	2,700	2	10500	7,800	5270
3600 South	2700 West	Midland Drive	2,700	2	10500	7,800	1415
Hinckley Drive	Midland Drive	East Border	11,400	5	30500	19,100	2180
Connector	3300 South	3600 South	-----	Unbuilt	-----	-----	-----
3300 South	5100 West	3500 West	1,700	2	10500	8,800	10550
3300 South	3500 West	Connector	1,300	3	11500	10,200	-----
3300 South	Connector	Midland Drive	1,300	3	11500	10,200	9580
2900 South	West Border	2700 West	-----	2	10500	-----	3450
2550 South	West Border	2700 West	6,200	3	11500	5,300	3450
2550 South	2700 West	1900 West	6,200	3	11500	5,300	5260
2200 South	2700 West	1900 West	-----	2	10500	-----	5250
Connector	1800 South	2100 South	-----	Unbuilt	-----	-----	-----
2100 South	1900 West	I-15	14,000	5	30500	16,500	3025
2100 South	I-15	East Border	16,000	5	30500	14,500	3670
Wilson Lane	2700 West	2400 West	-----	2	10500	-----	-----
1800 South	West Border	2700 West	3,500	2	10500	7,000	-----
1800 South	2700 West	Connector	3,500	2	10500	7,000	-----
1800 South	Connector	1900 West	3,500	2	10500	7,000	5200
5100 West	3300 South	4800 South	1,900	2	10500	8,600	10900
4700 West	4000 South	4800 South	2,600	3	11500	8,900	5300
4700 West	3300 South	4000 South	4,600	2	11500	6,900	5300
4300 West	4000 South	4800 South	2,000	2	10500	8,500	5300
3500 West	4000 South	4800 South	5,300	3	13000	7,700	-----
3500 West	3300 South	4000 South	3,100	3	13000	9,900	5300
2700 West	North Border	Midland Drive	1,900	2	10500	8,600	14740
Canal Crossing	North Border	1100 West	-----	Unbuilt	-----	-----	-----
1900 West	2100 South	Midland Drive	25,000	5	30500	5,500	8480
1900 West	North Border	2100 South	18,600	5	30500	11,900	4680
Retail Loop	1900 West	1625 West	No Data	2	10500	-----	-----
1100 West	North Border	South Border	4,100	2	10500	6,400	3340
Midland Drive	3500 West	4000 South	21,000	5	30500	9,500	6570
Midland Drive	4000 South	Hinckley	21,000	5	30500	9,500	3340
Midland Drive	Hinckley	3300 South	13,000	3	13000	0	3960
Midland Drive	3300 South	1900 West	1,300	3	11500	10,200	1070

*Existing Capacity is the maximum capacity for roadway to operate at LOS D.

9. Future Projected Total AADT

Future projected total AADT is comprised of three variables; existing AADT, future trips generated by West Haven City, and background traffic or pass-by traffic through the city. Due to the location of the city, very little pass by traffic is projected within the city on local roads. The primary routes for traffic passing through the City will be on the major UDOT facilities. Therefore, the future projected total AADT for the city routes is primarily the sum of existing traffic and future West Haven City trips. Table 6 shows the future projected total AADT per route for 2028, 2033, and 2050.

The future projected total AADT for 2028 is shown in Figure 9, the future projected total AADT 2033 is shown in Figure 10. Figure 11 shows the 2050 future projected total AADT.

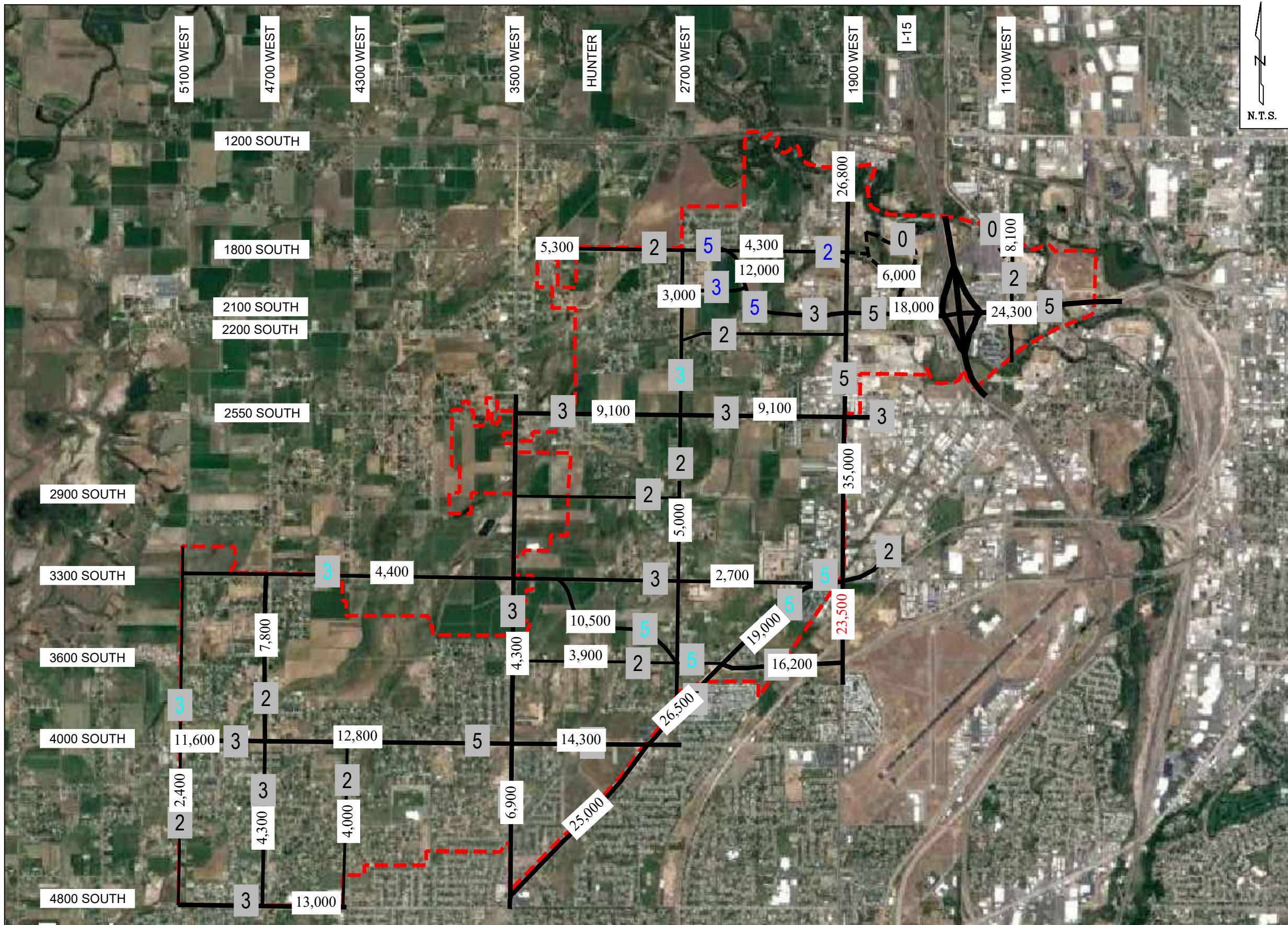

Table 6: West Haven City Projected Total Traffic

Roadway	From	To	2028 AADT	2033 AADT	2050 AADT	Link Length (feet)
4800 South	5100 West	4300 West	12,700	13,000	14,000	5280
4000 South	5100 West	4700 West	10,400	11,600	15,000	2700
4000 South	4700 West	3500 West	11,800	12,800	15,500	7900
4000 South	3500 West	Midland Drive	13,000	14,300	18,000	4280
3600 South	3500 West	2700 West	3,500	3,900	5,000	5270
3600 South	2700 West	Midland Drive	3,500	3,900	5,000	1415
Hinckley Drive	Midland Drive	East Border	14,600	16,200	21,000	2180
Connector	3300 South	3600 South	None	10,500	14,000	-----
3300 South	5100 West	3500 West	3,500	4,400	7,000	10550
3300 South	3500 West	Connector	6,900	9,700	18,000	-----
3300 South	Connector	Midland Drive	2,200	2,700	4,000	9580
2900 South	West Border	2700 West	-----	-----	6,000	3450
2550 South	West Border	2700 West	8,100	9,100	12,000	3450
2550 South	2700 West	1900 West	8,100	9,100	12,000	5260
2200 South	2700 West	1900 West	-----	-----	5,000	5250
Connector	1800 South	2100 South	10,700	12,000	16,000	-----
2100 South	1900 West	I-15	16,700	18,000	22,000	3025
2100 South	I-15	East Border	21,500	24,300	32,500	3670
Wilson Lane	2700 West	2400 West	-----	-----	5,000	-----
1800 South	West Border	2700 West	4,700	5,300	7,000	-----
1800 South	2700 West	Connector	9,400	12,300	21,100	-----
1800 South	Connector	1900 West	4,000	4,300	5,100	5200
5100 West	3300 South	4800 South	2,200	2,400	2,900	10900
4700 West	4000 South	4800 South	3,700	4,300	6,000	5300
4700 West	3300 South	4000 South	6,700	7,800	11,000	5300
4300 West	4000 South	4800 South	3,300	4,000	6,000	5300
3500 West	4000 South	4800 South	6,300	6,900	8,400	-----
3500 West	3300 South	4000 South	3,900	4,300	5,500	5300
2700 West	North Border	Midland Drive	3,900	5,000	8,000	14740
Canal Crossing	North Border	1100 West	None	None	-----	-----
1900 West	2100 South	Midland Drive	32,000	35,500	46,000	8480
1900 West	North Border	2100 South	24,100	26,800	35,000	4680
Retail Loop	1900 West	1625 West	-----	-----	12,000	-----
1100 West	North Border	South Border	6,700	8,100	12,000	3340
Midland Drive	3500 West	4000 South	23,700	25,000	29,000	6570
Midland Drive	4000 South	Hinckley	24,700	26,500	32,000	3340
Midland Drive	Hinckley	3300 South	17,000	19,000	25,000	3960
Midland Drive	3300 South	1900 West	5,500	7,700	14,000	1070

LEGEND

- # EXISTING NUMBER OF LANES
- # 2028 IMPROVEMENT NUMBER OF LANES

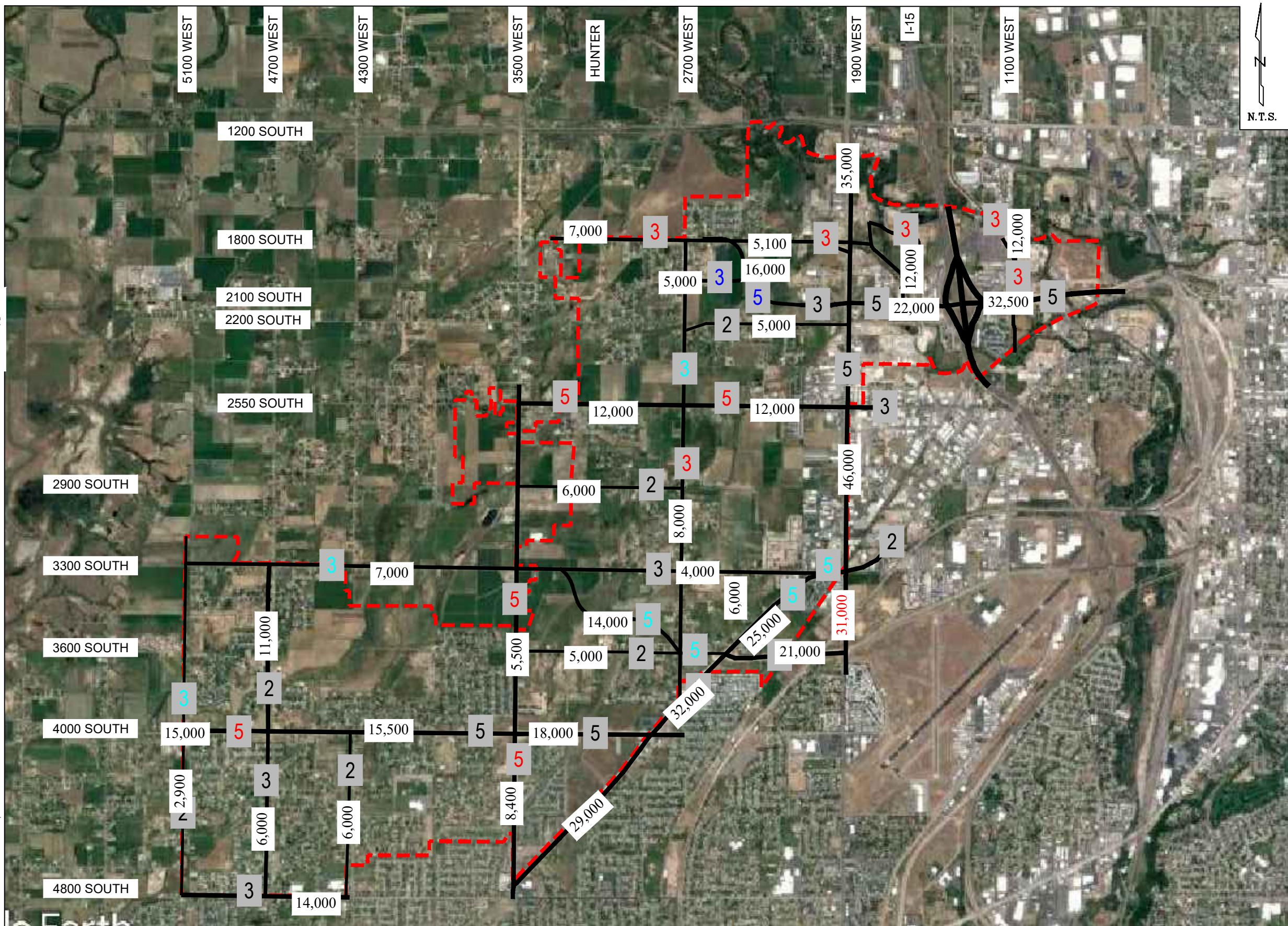
2028 AADT (XXXX) - DAILY TRAFFIC



LEGEND

- # EXISTING NUMBER OF LANES
- # 2028 IMPROVEMENT NUMBER OF LANES
- # 2033 IMPROVEMENT NUMBER OF LANES

2033 AADT (XXXX) - DAILY TRAFFIC


WEST HAVEN CITY BOUNDARY

LEGEND

- # — EXISTING NUMBER OF LANES
- # — 2028 IMPROVEMENT NUMBER OF LANES
- # — 2033 IMPROVEMENT NUMBER OF LANES
- # — 2050 IMPROVEMENT NUMBER OF LANES

2050 AADT (XXXX) - DAILY TRAFFIC

A-TRANS TRANSPORTATION ENGINEERING
P.O. BOX 521651, SLC, UT 84152
Phone: 801-949-0348 Fax 801-582-6252

Figure 11

2050 AVERAGE ANNUAL DAILY TRAFFIC

10. 2028 and 2030 Analysis

A. Future Capacity Needs

The recommended improvements are based on the need for additional capacity to maintain a minimum level of service of D for both roadways and intersections in the future. The following improvements are determined to be the necessary improvements in the 2028/2033 analysis in Table 8 and Table 9.

Table 7 shows the future capacity and excess capacity in AADT that is projected in 2028 and 2033. If a number in Table 7 is shown as a positive there is excess capacity, if a number is shown as negative then the roadway is deficient in capacity and does not meet the City's designated LOS D. It should be noted that for most of the City streets, there is excess capacity and therefore the streets may function at better than LOS D conditions through 2033.

Table 4 identifies that for 2 and 3 lane roadways to operate at a LOS C instead of LOS D, the difference is 1,500 less AADT. For 5-lane facilities, it is 4,000 less AADT to function below the LOS C threshold instead of LOS D threshold for arterial roads and 3,500 for collector roads. Table 7 indicates that with the projected excess capacity of the recommended road realignment and widening projects during 2028/2033 planning horizon, all but one City street and intersection will likely operate at LOS C conditions.

- **Table 7 shows the excess capacity AFTER the recommended improvements are made for the future projected AADT.**

Table 7: 2028 / 2033 Build Capacity and Excess Capacity

Roadway	From	To	2028 Number of Lanes	2028 LOS D Capacity (In AADT)	2028 Excess Capacity (In AADT)	2033 Number of Lanes	2033 LOS D Capacity (In AADT)	2033 Excess Capacity (In AADT)
4800 South	5100 West	4300 West	3	11500	-1,200	3	11500	-1,500
4000 South	5100 West	4700 West	3	13000	2,600	3	13000	1,400
4000 South	4700 West	3500 West	5	30500	18,700	5	30500	17,700
4000 South	3500 West	Midland Drive	5	30500	17,500	5	30500	16,200
3600 South	3500 West	2700 West	2	10500	7,000	2	10500	6,600
3600 South	2700 West	Midland Drive	2	10500	7,000	5	30500	26,600
Hinckley Drive	Midland Drive	East Border	5	30500	15,900	5	30500	14,300
Connector	3300 South	3600 South	Unbuilt			5	30500	20,000
3300 South	5100 West	3500 West	2	10500	7,000	3	11500	7,100
3300 South	3500 West	Connector	3	11500	9,300	5	30500	12,500
3300 South	Connector	Midland Drive	3	11500	9,300	3	11500	8,800
2900 South	West Border	2700 West	2	10500	10,500	2	10500	10,500
2550 South	West Border	2700 West	3	11500	3,400	3	11500	2,400
2550 South	2700 West	1900 West	3	11500	3,400	3	11500	2,400
2200 South	2700 West	1900 West	2	10500	10,500	2	10500	10,500
Connector	1800 South	2100 South	5	30500	19,800	5	30500	18,500
2100 South	1900 West	I-15	5	30500	13,800	5	30500	12,500
2100 South	I-15	East Border	5	30500	9,000	5	30500	6,200
Wilson Lane	2700 West	2400 West	3	11500	11,500	3	11500	11,500
1800 South	West Border	2700 West	2	10500	5,800	2	10500	5,200
1800 South	2700 West	Connector	5	30500	21,100	5	30500	18,200
1800 South	Connector	1900 West	3 ¹	11500	7,500	3	11500	7,200
5100 West	3300 South	4800 South	2	10500	8,300	3	11500	9,100
4700 West	4000 South	4800 South	3	11500	7,800	3	11500	7,200
4700 West	3300 South	4000 South	2	11500	4,800	2	11500	3,700
4300 West	4000 South	4800 South	2	10500	7,200	2	10500	6,500
3500 West	4000 South	4800 South	3	13000	6,700	3	13000	6,100
3500 West	3300 South	4000 South	3	13000	9,100	3	13000	8,700
2700 West	North Border	Midland Drive	2	10500	6,600	3 ²	11500	6,500
Canal Crossing	North Border	1100 West	Unbuilt			Unbuilt		
1900 West	2100 South	Midland Drive	5	30500	-1,500	5	30500	-5,000
1900 West	North Border	2100 South	5	30500	6,400	5	30500	3,700
Retail Loop	1900 West	1625 West	2	10500	10,500	2	10500	10,500
1100 West	North Border	South Border	2	10500	3,800	2	10500	2,400
Midland Drive	3500 West	4000 South	5	30500	6,800	5	30500	5,500
Midland Drive	4000 South	Hinckley	5	30500	5,800	5	30500	4,000
Midland Drive	Hinckley	3300 South	3	13000	-4,000	5	30500	11,500
Midland Drive	3300 South	1900 West	3	13000	7,500	5	30500	22,800

1. Realignment and Widening Project

2. Only the segment from 2175 South to 2550 South is planned in 2033.

B. Recommended Improvements

Recommended improvements are indicated for the city. These improvements include intersection control, intersection geometry and road completion or widening. Road completion and widening improvements are shown in Table 8. Roadway widening projects recommended within this section are contributed directly to LOS, safety and accessibility. These improvements are related to future development.

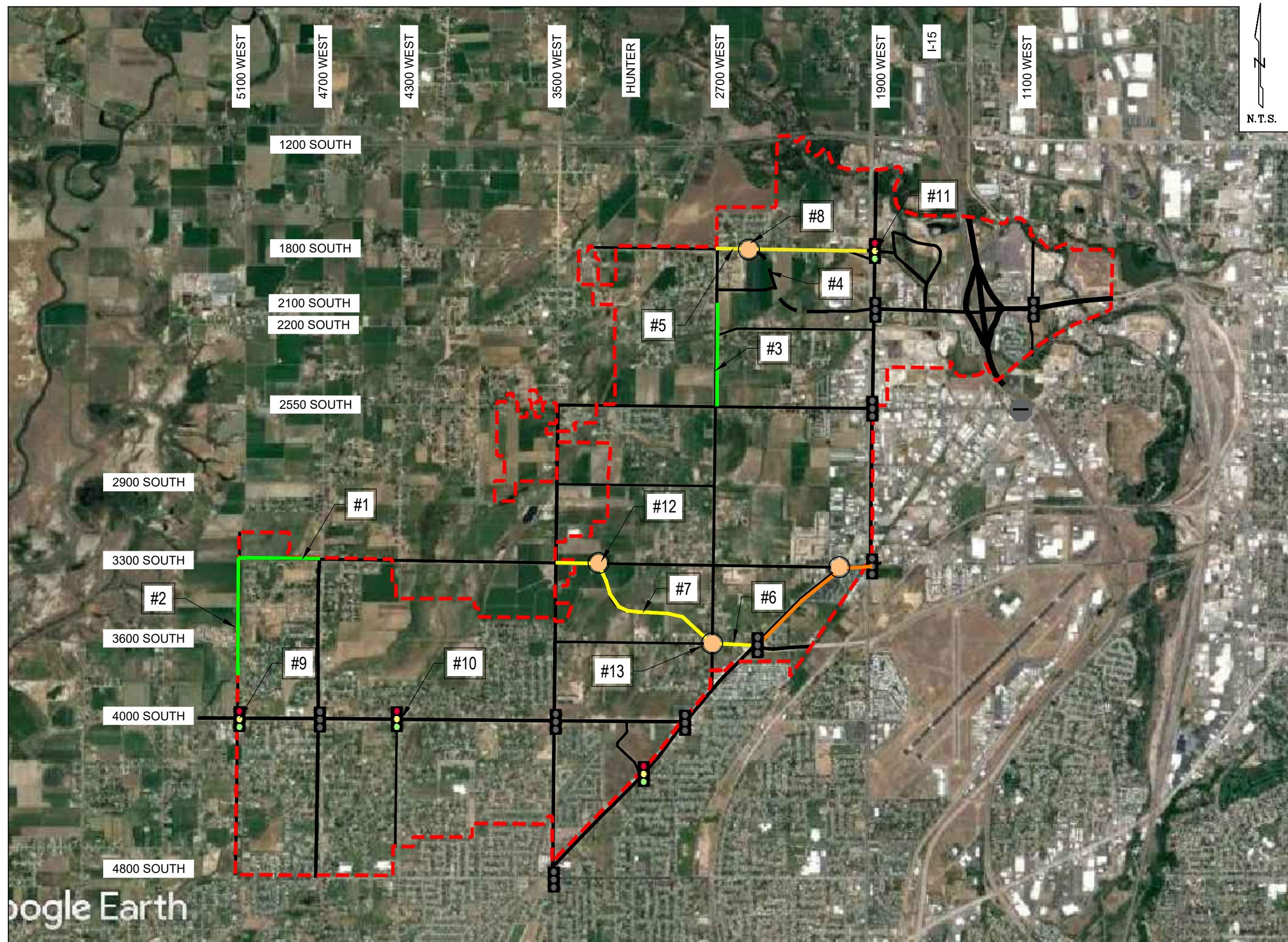
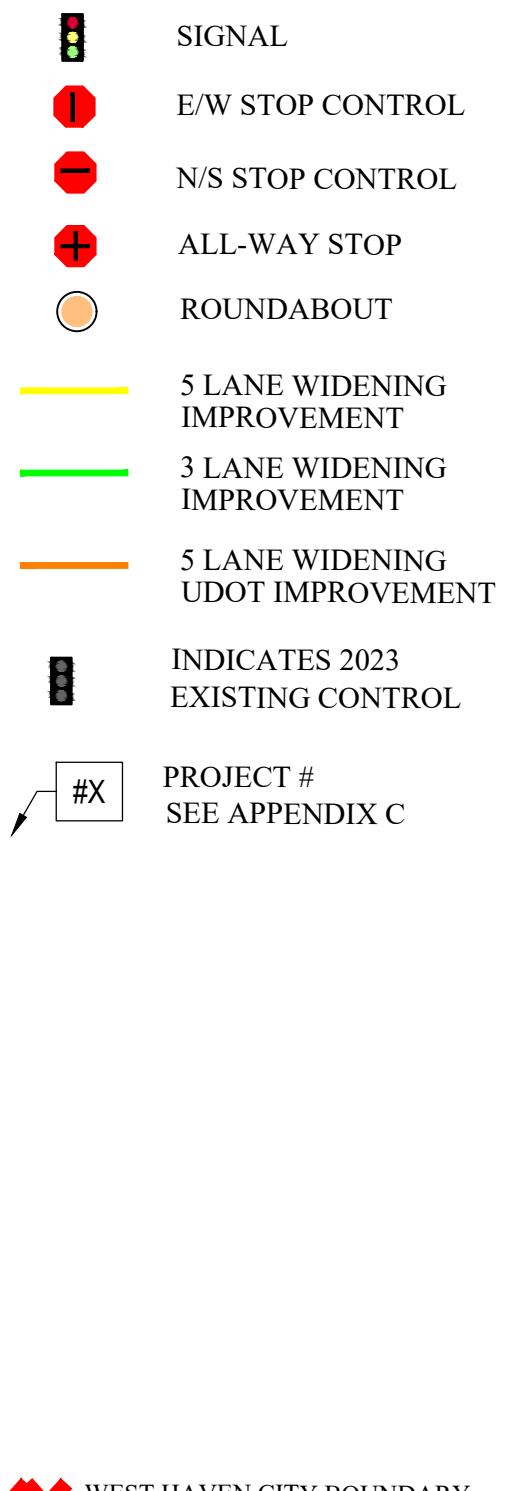
Where commercial is located along a route, it is recommended that a center turn lane be added to improve safety and accessibility to the area, therefore 2 and 4 lane roadways are rarely recommended even if the LOS is within the recommended ranges.

Table 8: 2028 / 2033 Recommended Roadway Widening and Sizing Improvements

Project Number	Road	From	To	Improvement
#6	3600 South	2700 West	Midland Drive	Widen Road from 2 to 5 lanes
#7	Connector	3300 South	3600 South	New Road – 5 lanes
#4	Connector	1800 South	2100 South	New Road – 5 lanes
TBA	Wilson Lane	2700 West	2400 West	Partial New Road – from 2 to 3 lanes
#5	1800 South	2700 West	1950 West	Widen Road from 2 to 5 lanes
UDOT	Midland Drive	Hinckley	3300 South	Widen Road from 3 to 5 lanes – UDOT
UDOT	Midland Drive	3300 South	1900 West	Widen Road from 3 to 5 lanes – UDOT
#1	3300 South	4700 West	5100 West	Widen Road from 2 to 3 lanes
TBA	3300 South	3500 West	~3200 West	Widen Road from 2 to 5 lanes
#2	5100 West	3300 South	4000 South	Widen Road from 2 to 3 lanes
#3	2700 West	2050 South	2550 South	Widen Road from 2 to 3 lanes

- TBA – Indicates Master Planned Project not included in this project window for impact fee analysis
- UDOT - Indicates Master Planned Projects on UDOT owned routes

The intersection and access analysis evaluates the performance of the intersection and access using the measure of performance of delay and level of service (LOS). Table 9 indicates the intersections that are recommended to be improved by the 2033 analysis year. This recommendation assumes that growth will occur at the rate of population growth and will depend on actual development by area within the City. Intersection improvements will be based on meeting the MUTCD warrants.



Table 9: 2033 Intersection Control and Geometric Improvements

Project Number	Intersection		Improvement
11	1800 South	1900 West	Signal – UDOT
8 / Part of Project #4	1800 South	Connector Road	Alternative Intersection (Roundabout) ¹
TBA/UDOT	Midland Drive	3300 South	Alternative Intersection (Roundabout) ¹ - UDOT
9	4000 South	5100 West	Signal – UDOT
10	4000 South	4300 West	Signal – UDOT
UDOT	Midland Drive	Hunter	Signal – Development Driven – UDOT
UDOT	4000 South	3050 West (Hunter)	Signal – Development Driven - UDOT
12 / Part of #7	3300 South	Connector Road	Alternative Intersection (Roundabout) ¹
13	2700 West	3600 South	Alternative Intersection (Roundabout) ¹

1 -For more information pertaining to why roundabouts are recommended please see Section 12. Unique Design Considerations.

The network improvements recommended for 2028 / 2033 is shown in Figure 12.

LEGEND

11. Future 2050 Analyses

A. Future Capacity Needs

The recommended improvements are based on the need for additional capacity to maintain a level of service of D. The following are determined to be the necessary improvements in the 2050 analysis.

2050 Improvements

- 4000 South from 5100 West to 4700 West widen from 3 to 5 lanes (UDOT)
- 1800 South from west border to 1900 West – widen from 2 to 3 lanes (2700 West to 2400 West is a 5 lane segment improved in 2028/2033)
- 3500 West from 3300 South to 4800 South – widen from 3 to 5 lanes
- Canal Crossing constructed as a 3 lane road from 1100 West to termination at city boundary
- Retail loop completed as a 3 lane road. This includes both the north and south connections of the loop.
- 1100 West from north to south bounder widen from 2 to 3 lanes.

Table 10 identifies the 2050 AADT capacity. If a number in Table 10 is shown as a positive there is excess capacity, if a number is shown as negative then the roadway is deficient in capacity and does not meet the City's designated LOS D. A level of service analysis based on the existing capacity for each roadway segment was performed for the 2050 future analysis years. Table 11 shows the LOS in the buildout condition with and without the improvements.

There are several roadways within the network that have a level of service F even after improvements. These are all UDOT roadways and there are no additional improvement projects on the 2050 WFRC Regional Transportation Plan (RTP). Therefore no additional recommendations were made.

Table 10: 2050 Build Capacity and Excess Capacity

Roadway	From	To	2050 AADT	2050 Number of Lanes	2050 LOS D Capacity	2050 Excess Capacity
4800 South	5100 West	4300 West	14,000	3	11500	(2,500)
4000 South	5100 West	4700 West	15,000	5	30500	15,500
4000 South	4700 West	3500 West	15,500	5	30500	15,000
4000 South	3500 West	Midland Drive	18,000	5	30500	12,500
3600 South	3500 West	2700 West	5,000	2	10500	5,500
3600 South	2700 West	Midland Drive	5,000	5	30500	25,500
Hinckley Drive	Midland Drive	East Border	21,000	5	30500	9,500
Connector	3300 South	3600 South	14,000	5	30500	16,500
3300 South	5100 West	3500 West	7,000	3	11500	4,500
3300 South	3500 West	Connector	18,000	5	30500	12,500
3300 South	Connector	Midland Drive	4,000	3	11500	7,500
2900 South	West Border	2700 West	6,000	2	10500	4,500
2550 South	West Border	2700 West	12,000	5	30500	18,500
2550 South	2700 West	1900 West	12,000	5	30500	18,500
2200 South	2700 West	1900 West	5,000	2	10500	5,500
Connector	1800 South	2100 South	16,000	5	30500	14,500
2100 South	1900 West	I-15	22,000	5	30500	8,500
2100 South	I-15	East Border	32,500	5	30500	(2,000)
Wilson Lane	2700 West	2400 West	5,000	3	11500	6,500
1800 South	West Border	2700 West	7,000	3	11500	4,500
1800 South	2700 West	Connector	21,100	5	30500	9,400
1800 South	Connector	1900 West	5,100	3 ²	11500	6,400
5100 West	3300 South	4800 South	2,900	3	11500	8,600
4700 West	4000 South	4800 South	6,000	3	11500	5,500
4700 West	3300 South	4000 South	11,000	2	11500	500
4300 West	4000 South	4800 South	6,000	2	10500	4,500
3500 West	4000 South	4800 South	8,400	5	30500	22,100
3500 West	3300 South	4000 South	5,500	5	30500	25,000
2700 West	North Border	Midland Drive	8,000	3 ¹	11500	3,500
Canal Crossing	North Border	1100 West		3		-
1900 West	2100 South	Midland Drive	46,000	5	30500	(15,500)
1900 West	North Border	2100 South	35,000	5	30500	(4,500)
Retail Loop	1900 West	1625 West	12,000	3	11500	(500)
1100 West	North Border	South Border	12,000	3	11500	(500)
Midland Drive	3500 West	4000 South	29,000	5	30500	1,500
Midland Drive	4000 South	Hinckley	32,000	5	30500	(1,500)
Midland Drive	Hinckley	3300 South	25,000	5	30500	5,500
Midland Drive	3300 South	1900 West	14,000	5	30500	16,500
2028 Improvement		2033 Improvement		2050 Improvement		

1. A portion of this segment from 2050 South to 2550 South was planned in 2033
2. A portion of this segment from 1900 West to realignment tie in was planned in 2033

Table 11: Projected Roadway LOS with and without Recommended Improvements

Roadway	From	To	2050 AADT	LOS without Improvement	LOS With Improvement
4800 South	5100 West	4300 West	14,000	F	F
4000 South	5100 West	4700 West	15,000	F	D
4000 South	4700 West	3500 West	15,500	D	D
4000 South	3500 West	Midland Drive	18,000	D	D
3600 South	3500 West	2700 West	5,000	D	D
3600 South	2700 West	Midland Drive	5,000	D	D
Hinckley Drive	Midland Drive	East Border	21,000	D	D
Connector	3300 South	3600 South	14,000	N/A	D
3300 South	5100 West	3500 West	7,000	D	D
3300 South	3500 West	Connector	18,000	F	D
3300 South	Connector	Midland Drive	4,000	D	D
2900 South	West Border	2700 West	6,000	D	D
2550 South	West Border	2700 West	12,000	F	D
2550 South	2700 West	1900 West	12,000	F	D
2200 South	2700 West	1900 West	5,000	D	D
Connector	1800 South	2100 South	16,000	N/A	D
2100 South	1900 West	I-15	22,000	D	D
2100 South	I-15	East Border	32,500	F	F
Wilson Lane	2700 West	2400 West	5,000	D	D
1800 South	West Border	2700 West	7,000	D	D
1800 South	2700 West	Connector	21,100	F	D
1800 South ²	Connector	1900 West	5,100	D	D
5100 West	3300 South	4800 South	2,900	D	D
4700 West	4000 South	4800 South	6,000	D	D
4700 West	3300 South	4000 South	11,000	D	D
4300 West	4000 South	4800 South	6,000	D	D
3500 West	4000 South	4800 South	8,400	D	D
3500 West	3300 South	4000 South	5,500	D	D
2700 West ¹	North Border	Midland Drive	8,000	D	D
Canal Crossing	North Border	1100 West		D	D
1900 West	2100 South	Midland Drive	46,000	F	F
1900 West	North Border	2100 South	35,000	F	F
Retail Loop	1900 West	1625 West	12,000	F	E
1100 West	North Border	South Border	12,000	F	E
Midland Drive	3500 West	4000 South	29,000	D	D
Midland Drive	4000 South	Hinckley	32,000	F	F
Midland Drive	Hinckley	3300 South	25,000	F	D
Midland Drive	3300 South	1900 West	14,000	F	D
2028 Improvement		2033 Improvement		2050 Improvement	

1. A portion of this segment from 2175 South to 2550 South was planned in 2033
2. A portion of this segment from 1900 West to realignment tie in was planned in 2033

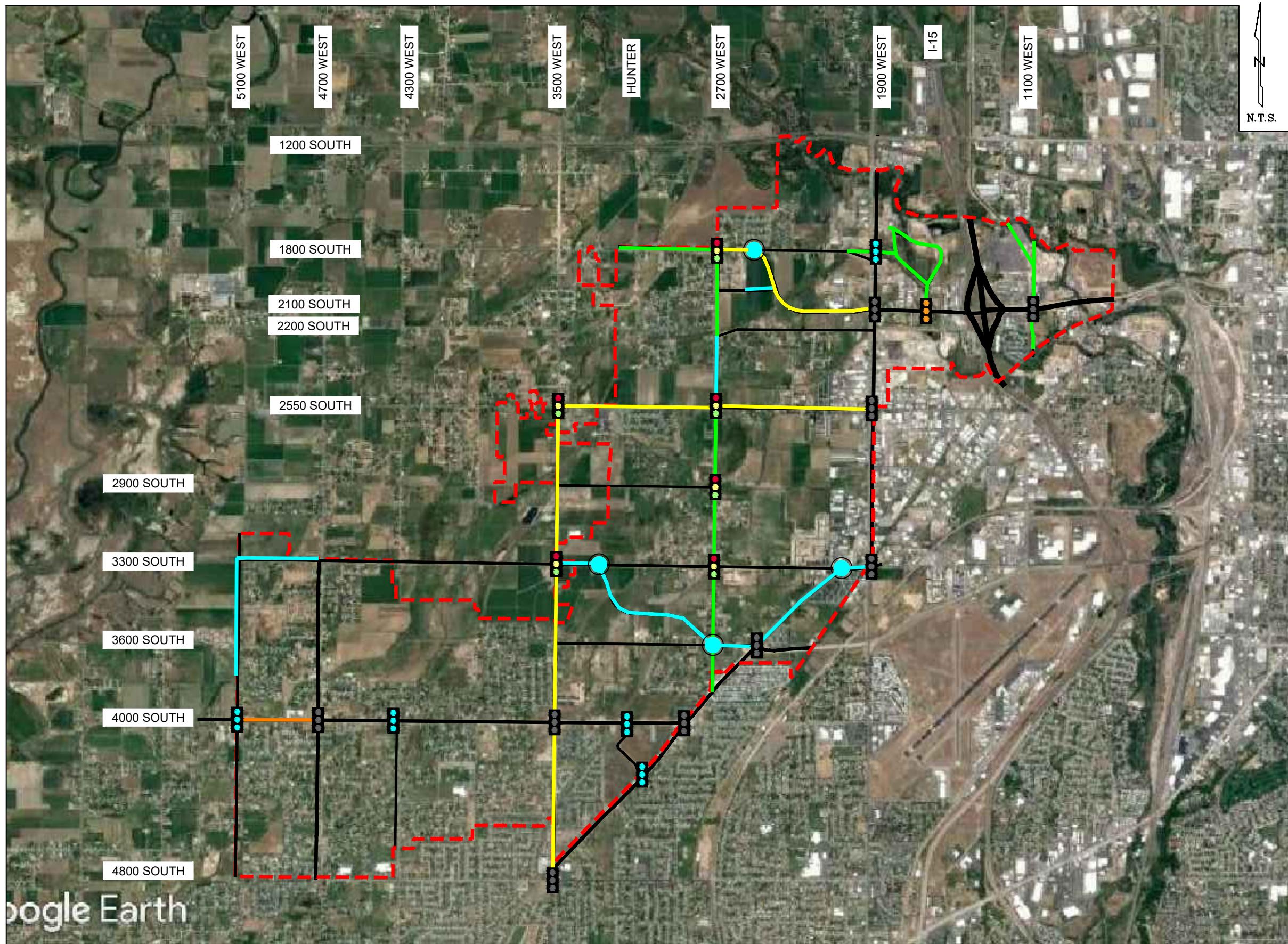
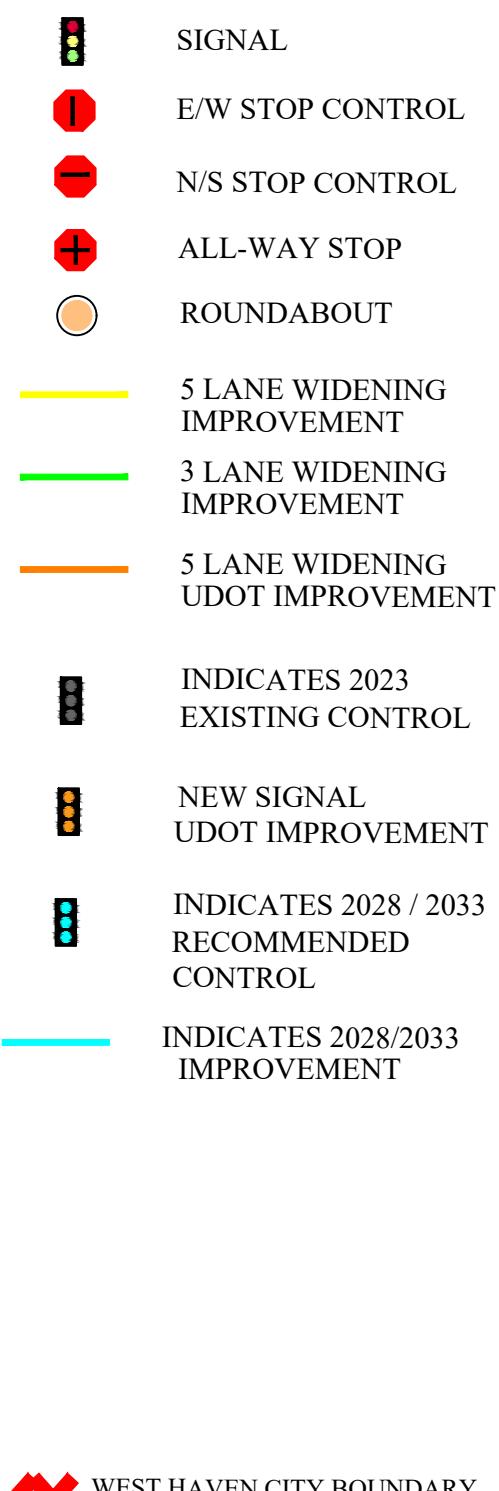
B. 2050 Recommended Improvements

The recommendations are made by road segment for 2050. These recommendations are shown in Table 12 and 13 and graphically shown in Figure 13. There are no project numbers assigned as this project horizon is beyond the project assignment horizon.

Table 12: 2050 Recommendations

Roadway	From	To	2050 Recommended Improvement
4000 South	5100 West	4700 West	Widen Road from 3 to 5 Lanes – UDOT
2550 South	West Border	1900 West	Widen Road from 3 to 5 Lanes
1800 South	West Border	2700 West	Widen Road from 2 to 3 Lanes
1800 South	1900 West	1700 West	New 3 lanes road connecting 1900 West to Retail Loop
3500 West	3300 South	4000 South	Widen Road from 3 to 5 Lanes
3500 West	4000 South	4800 South	Widen Road from 3 to 5 Lanes
2700 West	North Border	2175 South	Widen Road from 2 to 3 lanes
2700 West	2550 South	Midland Drive	Widen Road from 2 to 3 Lanes
Canal Crossing	North Border	1100 West	New Road - 3 Lane
Retail Loop	1750 West	1625 West	Complete and Widen the Retail Loop to 3 Lanes (This includes the northern portion of the Loop Road)
1100 West	North Border	South Border	Widen Road from 2 to 3 Lanes

The following intersections should be considered for improvement:



Table 13: 2050 Intersection Control Improvements

Intersection		Improvement
1625 West	2100 South	Signal – UDOT
2700 West	1800 South	Signal
2700 West	2550 South	Signal
2700 West	2900 South	Signal
2700 West	3300 South	Signal
3500 West	2550 South	Signal
3500 West	3300 South	Signal

These are the intersections that will logically have the greatest impact in each analysis year. Detailed analysis is not provided for these intersections and will need to be evaluated as development occurs in the future but there should be a default assumption that separate left and right turn auxiliary lanes should be planned at each intersection.

Roundabouts were also considered as an intersection option. The ratio of volume to capacity (v/c) provides a quantitative rating of how the roundabout will perform. The lower the v/c, the better the performance. As the v/c nears 1.0, delays and queuing can be expected. When considering a roundabout, items such as topography and right-of-way acquisition should be considered. Only location with acceptable v/c ratios are recommended for roundabout consideration or were unique geometry and skewed approaches may make a traffic signal difficult to provide the same LOS. As each of these intersections approach the need for additional control, then the individual intersection analysis using the FHWA recommended Intersection Control Evaluation (ICE) method should be applied for the final decision.

LEGEND

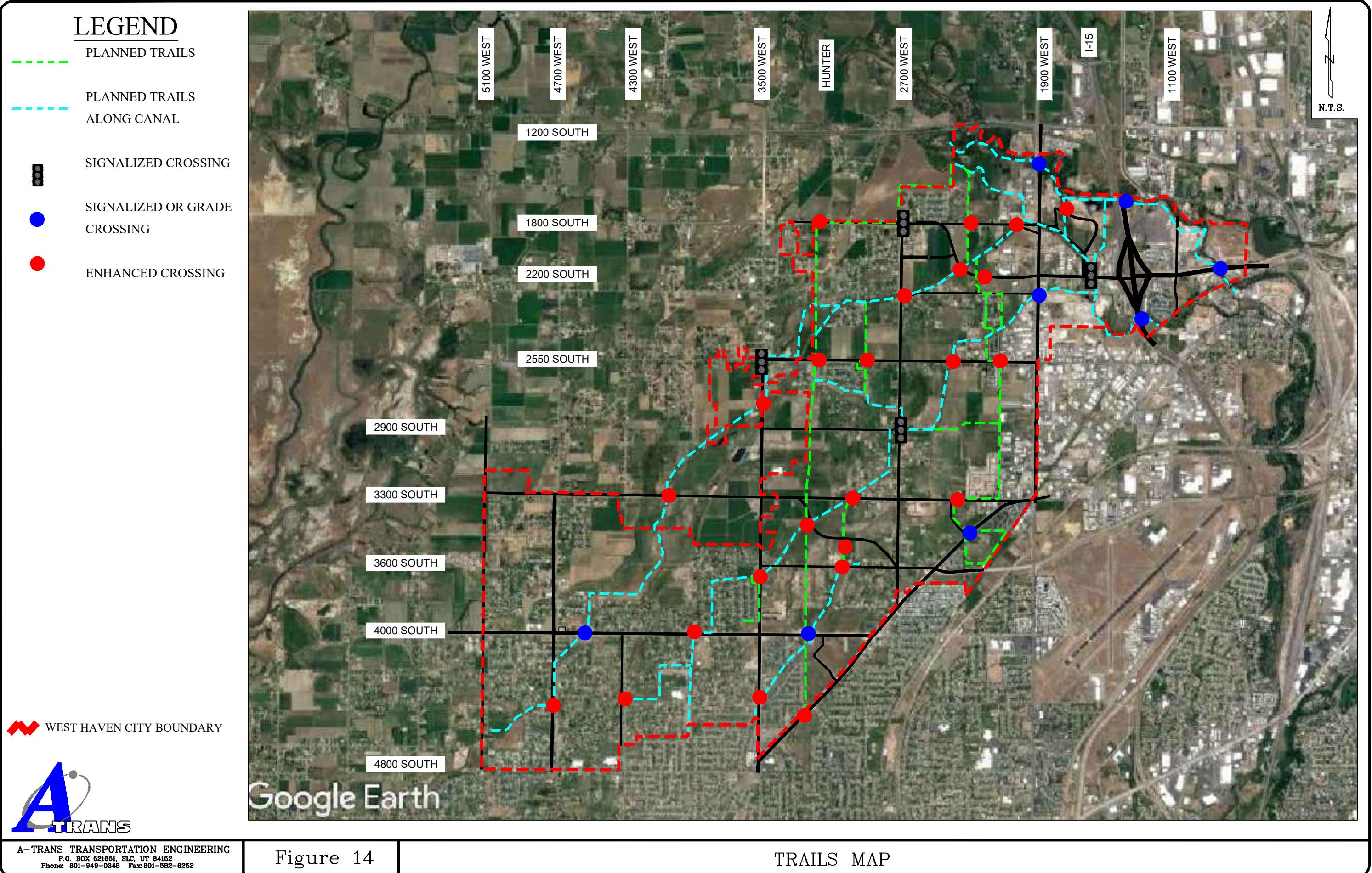
12. Unique Design Considerations

There are several locations within West Haven City where unique situations occur in which alternative design methods should be implemented to optimize right of way, operations, and accessibility. The following summary of these locations and unique situations are provided:

- Connector 1800 South to 2100 South. This road is planned as an S-curve connecting 1800 South to 2100 South from east of 2700 West to 1900 West. The exact location of the road is currently unknown however it is expected to tie in with the completed extension of 2100 South west of 1900 West on the south.
 - In conjunction with the Connector from 1800 South to 2100 South a skewed intersection along 1800 South is anticipated. The exact location of this intersection is currently unknown however it is anticipated that it will not come in at a 90 degree angle and therefore an alternative intersection design is likely to be necessary. Additionally, its proximity to 1800 South / 2700 West makes it an undesirable location for a signal. A roundabout is the most likely solution, roundabouts typically have a lower cost to construct and maintain than signals but have higher costs with the acquisition as property as roundabouts have a larger footprint then a traditional intersection. Depending on the acquisition costs, a roundabout may become financially infeasible. This should be taken into consideration during the planning phase for this intersection.
- Proposed signal at 1800 South / 1900 West. 1800 South currently skews to the south to the west of 1900 West and ties in at an angle. It is proposed that 1800 South be realigned to access 1900 West at a 90 degree angle. Additionally, it is proposed that the access to the retail developments to the east of 1900 West tie into 1900 West as the fourth leg to this intersection.
- 3300 South / Midland Drive Realignment. The 3300 South /Midland Drive is a T-intersection where the 3300 South intersects Midland Drive. There is a WB bypass lane from the Midland Drive / 3300 South intersection. Due to the proximity to the signal at 1900 West / Midland Drive, an innovative design is necessary for the 3300 South / Midland Drive for traffic control at this location. Potential design could include a roundabout or partial signal. The city should investigate different strategies to accommodate the future traffic demand at this location.
- Connector 3300 South to 3600 South. This road is planned as an S-curve connecting 3300 South to 3600 South from east of 3500 West to 2700 West. The exact alignment is unknown but a possible alignment is shown in Appendix C.
 - 3300 South Skewed Intersection. In conjunction with the Connector from 3300 South to 3600 South. A skewed intersection along 3300 South is anticipated. The exact location of this intersection is currently unknown however it is anticipated that it will not come in at a 90 degree angle and therefore an alternative intersection design is likely to be necessary. Additionally, its proximity to 3300 South / 3500 West makes it an undesirable location for a signal. A roundabout is the most likely solution, roundabouts typically have a lower cost to construct and maintain than signals but have higher costs with the acquisition as property as roundabouts have a larger footprint then a traditional

intersection. This should be taken into consideration during the planning phase for this intersection.

- 3600 South 5-legged Intersection. In conjunction with the Connector from 3300 South to 3600 South the connector, depending on the design, may connect in as a 5th leg to the 2700 West / 3600 South intersection. A five leg intersection requires a unique approach to allow for all movements between two arterials and a collector to be accommodated with acceptable LOS. A roundabout is the most likely solution, roundabouts typically have a lower cost to construct and maintain than signals but have higher costs with the acquisition as property as roundabouts have a larger footprint than a traditional intersection. Depending on the acquisition costs, a roundabout may become financially infeasible. This should be taken into consideration during the planning phase for this intersection.


13. Trails Plan

The projected trails map (Figure 14) identifies the type of trails and the crossing locations. The crossing locations are recommended as grade separated or an enhanced crosswalk based on the projected roadway AADTs. Enhanced crosswalks typically include some warning flashers or protected signal indicators. These will likely include but are not limited to:

- Two stage crossing with a pedestrian refuge island
- At a signalized intersection
- An enhanced crossing which may include a RRFB or HAWK

Any proposed trail improvements should include coordination with surrounding municipalities, Weber County, and Wasatch Front Regional Council since these improvements will be part of the entire regional trail network.

14. Access Category

Effective access management is the proactive management of access points to the primary routes within the City. By providing proper access management, the roadways are managed for a more efficient and safer roadway network. The primary goal of an access management plan is to provide recommended Access Spacing requirements along major and minor arterials and collectors to reduce the number of accesses permitted onto City Roadways and ensure safety requirements are met. Secondly, it is to provide requirements for auxiliary lanes including left and right acceleration/deceleration lanes and median treatments in order to reduce the number of conflict points and reduce impact to roadway capacity.

There are several resources both nationally and locally which can be utilized to determine the appropriate access classification for the roadways within the city. These include AASHTO, UDOT, FWHA and other professional publications, all of these resources will be considered in the final classification recommendations for the City. These resources provide insight into a reasonable classification requirement for various roadway types. Within West Haven City, there are State and City roadways. UDOT roadways are classified in a 1 through 10 classifications as defined in UDOT Administrative Rule R930-6 and the UDOT Access Category Manual. For the purposes of providing a unique classification labeling for the City, the City access categories will be designated Category A-D.

Access spacing is typically a function of:

1. the expected land use,
2. the speed of the roadway
3. volume of the roadway (both existing and projected future)
4. the purpose of the road.

A preliminary consideration of existing access spacing within the city as well as UDOT practices allows us to make initial recommendations which include:

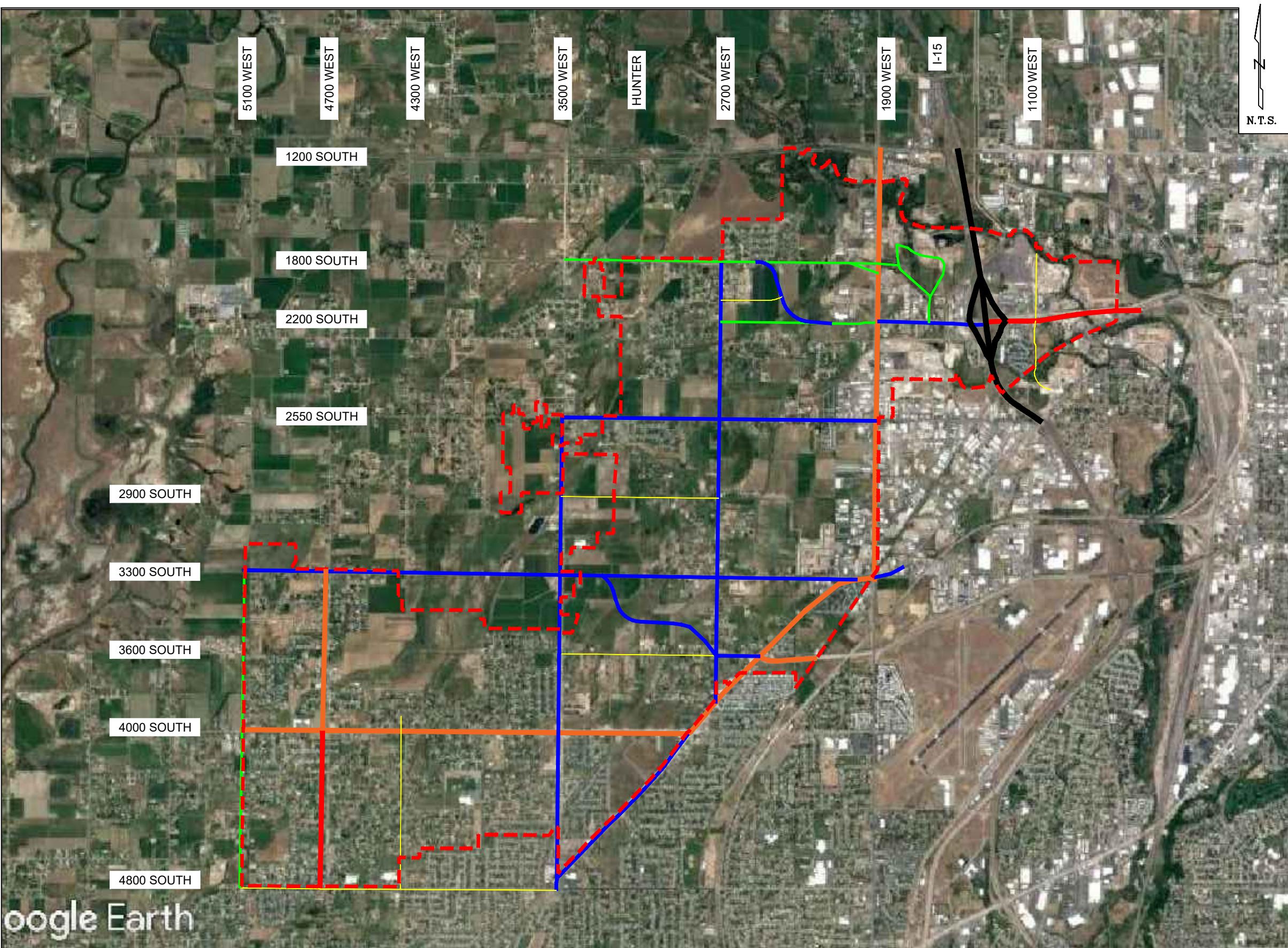
Table 14: Recommended West Haven Spacing Categories

Access Category	Minimum Signal Spacing (feet)	Minimum Street Spacing (feet)	Minimum Driveway Spacing (feet)
A	2,640'	660'	550'
B	2,640'	660'	500'
C	1,320'	440'	350'
D	1,320'	330'	250'

The following is the UDOT Access Categories and associated access spacing from the UDOT Admin Rule R930-6.

TABLE 1 - State Highway Access Management Spacing Standards

Category		Minimum Interchange to Crossroad Access Spacing					
		Minimum Signal Spacing (feet)	Minimum Street Spacing (feet)	Minimum Driveway Spacing (feet)	to 1st Right-in Right-out Driveway (feet)	to 1st Intersection (feet)	from Last Right-in Right-out Driveway (feet)
1	(I)	N/A	N/A	N/A	n-a	n-a	n-a
2	(S-R)	5,280	1,000	1,000	1,320	1,320	1,320
3	(S-U)	2,640	N/A	N/A	1,320	1,320	1,320
4	(R-S)	2,640	660	500	660	1,320	500
5	(R-PU)	2,640	660	350	660	1,320	500
6	(R-U)	1,320	350	200	500	1,320	500
7	(C-R)	1,320	300	150	n-a	n-a	n-a
8	(C-U)	1,320	300	150	n-a	n-a	n-a
9	(O)	1,320	300	150	n-a	n-a	n-a
10	(F-FR)	1,320	660	N/A	n-a	n-a	n-a


"N/A" means not allowed.

"n-a" means not applicable.

LEGEND

- UDOT
- ACCESS CATEGORY A
- ACCESS CATEGORY B
- ACCESS CATEGORY C
- ACCESS CATEGORY D

N.T.S.

WEST HAVEN CITY BOUNDARY

15. Conclusions

A Capital Facilities Plan (CFP) provides both the short- and long-term traffic analyses with planning-level recommendations. The Impact Fee Facilities Plan (IFFP) concentrates on a 6-10 year outlook but there is also a 2050 analysis to allow for long range infrastructure planning.

The transportation modeling provides recommendations for:

- Roadway capacity needs
- Intersection improvements
- Trails and trail crossing needed.

Traffic on the City roadways is derived from three contributors.

- Traffic already on the roadway from existing development within and without the city,
- Traffic that will be generated from future development within the city and
- Background traffic which is trips that are generated from outside the city.

The following resources were utilized in the analysis:

- West Haven Roadway Classification Map
- West Haven Trails Map
- Long Range Transportation Plan for Weber County
- West Haven General Zoning Map
- UDOT's Traffic on Utah Highways

To offset the impact of the increased traffic from within and outside of West Haven City, the following roadway and signal improvement recommendations are made. The actual need for these improvements will depend on where development occurs and how quickly development happens. The projects are organized into priority groups represented by time frames: current to 2028/2033, 2050.

Table 15: 2028 / 2033 Recommended Roadway Widening and Sizing Improvements

Project #	Road	From	To	Improvement
6	3600 South	2700 West	Midland Drive	Widen Road from 2 to 5 lanes
7	Connector	3300 South	3600 South	New Road – 5 lanes
4	Connector	1800 South	2100 South	New Road – 5 lanes
TBA	Wilson Lane	2700 West	2400 West	Partial New Road – from 2 to 3 lanes
5	1800 South	2700 West	1950 West	Widen Road from 2 to 5 lanes
UDOT	Midland Drive	Hinckley	3300 South	Widen Road from 3 to 5 lanes – UDOT
UDOT	Midland Drive	3300 South	1900 West	Widen Road from 3 to 5 lanes – UDOT
1	3300 South	4700 West	5100 West	Widen Road from 2 to 3 lanes
TBA	3300 South	3500 West	~3200 West	Widen Road from 2 to 5 lanes
2	5100 West	3300 South	4000 South	Widen Road from 2 to 3 lanes
3	2700 West	2150 South	2550 South	Widen Road from 2 to 3 lanes

Table 16: 2033 Intersection Control and Geometric Improvements

Project #	Intersection		Improvement
11	1800 South	1900 West	Signal - UDOT
8 / Part of #4	1800 South	Connector Road	Alternative Intersection (Roundabout) ¹
TBA / UDOT	Midland Drive	3300 South	Alternative Intersection (Roundabout) ¹ - UDOT
9	4000 South	5100 West	Signal – UDOT
10	4000 South	4300 West	Signal – UDOT
UDOT	Midland Drive	Hunter	Signal – Development Driven – UDOT
UDOT	4000 South	Hunter (3050 West)	Signal – Development Driven - UDOT
12 / Part of #7	3300 South	Connector Road	Alternative Intersection (Roundabout) ¹
13	2700 West	3600 South	Alternative Intersection (Roundabout) ¹

1 -For more information pertaining to why roundabouts are recommended please see Section 12. Unique Design Considerations.

Table 17: 2050 Recommendations

Roadway	From	To	2050 Recommended Improvement
4000 South	5100 West	4700 West	Widen Road from 3 to 5 Lanes – UDOT
2550 South	West Border	1900 West	Widen Road from 3 to 5 Lanes
1800 South	2050 West	1900 West	Realignment and widening from 2 to 3 lanes
1800 South	1900 West	1700 West	New 3 lanes road connecting 1900 West to Retail Loop
1800 South	West Border	2700 West	Widen Road from 2 to 3 Lanes
3500 West	3300 South	4000 South	Widen Road from 3 to 5 Lanes
3500 West	4000 South	4800 South	Widen Road from 3 to 5 Lanes
2700 West	North Border	2175 South	Widen Road from 2 to 3 lanes
2700 West	2550 South	Midland Drive	Widen Road from 2 to 3 Lanes
Canal Crossing	North Border	1100 West	New Road - 3 Lane
Retail Loop	1750 West	1625 West	Complete and Widen the Retail Loop to 3 Lanes (This includes the northern portion of the Loop Road)
1100 West	North Border	South Border	Widen Road from 2 to 3 Lanes

Table 18 : 2050 Intersection Control Improvements

Intersection		Improvement
1625 West	2100 South	Signal – UDOT
2700 West	1800 South	Signal
2700 West	2550 South	Signal
2700 West	2900 South	Signal
2700 West	3300 South	Signal
3500 West	2550 South	Signal
3500 West	3300 South	Signal

16. Funding Improvements

Entities have various options when it comes to funding roadway improvements. These include but are not limited to: taxes, transportation or road utility fees, impact fees, bonds, and grants and loans from funding agencies and private entities. Rules, regulations, and stipulations generally come with each type of funding source. For example, impact fees may only be applied toward roadway improvement costs directly associated with the impact development has on the roadway system. Further explanation follows.

A. Impact Fees

The Impact Fees Act, Utah Code Section 11-36a, allows a City to impose an impact fee on new development provided that the fee is calculated to reasonably offset the burden of infrastructure costs created by the development. A few simple rules of impact fees are:

1. The fees must be applied toward **system improvements** that benefit the community at large.
 - a. The system improvements may have been previously constructed, or
 - b. The system improvements may be new improvements intended to mitigate the impact new development will impose on an existing system.
2. Impact fees cannot be used to cure system deficiencies.
3. The fees cannot be used to raise the established level of service of a public facility.
4. Impact fees may not be used to pay for **project improvements**, which benefit only a specific development.

Impact fees also need to be applied toward system improvements in a timely manner as specified in Section 11-36a-602 of the Utah Code. Collecting and reserving fees for an extended period of time is not allowed. Consequently, careful planning is required in order to balance revenues with expenditures. As a result, the City may need to consider the likelihood of bonding to pay for system improvement costs, and use impact fees received in the future to help service the debt.

Some expensive projects may be needed well in advance of development and the collection of impact fees. Therefore, the City may be forced to consider the need to pay for these improvements using bonds rather than savings accounts which are established using fees and taxes. These bonds and associated interest payments may then be paid off as fees and taxes are collected. The limitations found in the impact fees act may force cities to accept bonding rather than using a conservative pay-as-you-go approach.

This study has assumed that city revenue sources and grants will be available and sufficient to pay for improvement costs. System improvement costs may need to be raised to account for interest payments and fees if bonding is used. This in turn, would raise the expected impact fee.

When impact fees are applied toward previously constructed projects, they must be based on the cost actually incurred (historical cost) rather than the current value of the public facility itself. For example, the value of right-of-way acquisition cannot be recovered using impact fees if the land was donated. Only

actual expenses can be recovered by impact fees (see Utah Code Section 11-36a-202-1). Moreover, only the portion of those expenses that can be shown to serve future growth can be recovered, not the entire expense (see Utah Code Section 11-36a-304-1).

B. Other Funding Sources

The cost to pay for infrastructure that will serve new growth does not need to come from impact fees alone, or even at all. Other revenue sources, such as utility fees and property taxes, may be used to pay for needed enhancements. Some system improvements may also qualify for low interest rate loans or grants. Occasionally, development may even donate system improvements, and in other cases developers may construct and dedicate system improvements to the City and then be reimbursed by impact fees.

West Haven City falls within the metropolitan planning organizational limits of the Wasatch Front Regional Council (WFRC). WFRC is the regional transportation entity responsible for allocating federal funds for important transportation projects. The WFRC has developed an overall plan called the Regional Transportation Plan (RTP). It identifies short and long range transportation projects needed for the transportation network. In order for projects to receive funds distributed by WFRC, projects need to be identified as a short range (Phase 1) improvement in the RTP. These projects are broken into phases:

- Phase 1 – 2025 to 2035 (short range)
- Phase 2 – 2035 to 2045 (mid range)
- Phase 3 – 2045 to 2055 (long range)
- Unfunded Beyond 2055 (Projects lacking a confirmed funding source) (long range)

Cities may elect to impose a road or transportation utility fee. These fees help fund road maintenance and capital improvement projects.

Possible funding sources from which the City can apply for funding for needed improvements are shown in Appendix C Table 2. Some of these funding options are grants that only require a small local match. Residents, both current and future, will save on fees and taxes if grant money is used to construct these improvements. We recommend that the City utilize grants as much as reasonably possible to fund the major roadway network improvements. Individual project cost estimates are found in Appendix C.

C. Recovering the Cost of Excess Capacity in System Improvements

In many instances, the city has participated in the construction of roadway projects that will benefit expected growth. Impact fees can be used to pay back the city the proportionate share of these system improvements that will serve new growth. The portion of city expenses recovered by impact fees is often directly correlated to the unused capacity of the roadway up to the traffic volume expected to be imposed by new development. It is important to remember that the impact fee analysis only considers actual expenses (historical costs) and not the current value of facilities with excess capacity. This part of the impact fee analysis is often referred to as “buy-in.” Excess traffic capacity has been identified in Tables

5, 7 and 10. The impact fee analysis may consider the historical cost of these facilities and recover the proportionate share of these costs that serve new growth.

17. The Impact Fee Facilities Plan

The purpose of this section of the report is to justify the need to impose an impact fee on new development to pay for needed system improvements. Based on the data presented in this report, it is clear that growth will increase traffic on the city's roadway system. The traffic modeling data indicates that some of the existing system improvements will exceed their design capacity and need to be enhanced in order to maintain the City's existing LOS "D." The City proposes to perpetuate the existing LOS "D" into the future.

As a result, we recommend that a transportation impact fee be implemented, and the City in accordance with 11-36a-302(3) has determined that the City's plan for financing system improvement establishes that impact fees are necessary to maintain the level of service D.

During this impact fee facilities plan (IFFP) planning horizon (6 to 10-year period) the projects listed in Appendix C Table 1 and Appendix C Table 2 are the recommended system improvements for the IFFP, except any UDOT listed projects within these same tables. The costs for impact fee eligible system improvements are shown in the right column.

18. Impact Fee Facilities Plan Certification

The system improvements identified in this report are considered qualified projects meeting the requirements of the impact fees act. They are major roadway improvements that justify the collection of an impact fee on new development in order to mitigate impacts to the roadway system.

"I certify that the attached impact fee facilities plan:

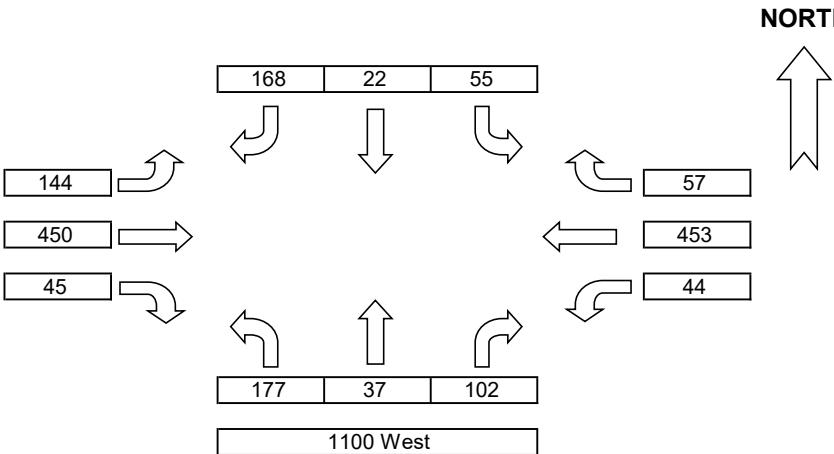
1. Includes only the costs of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. Does not include:
 - a. costs of operation and maintenance of public facilities;
 - b. costs for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by existing residents; or
 - c. an expense for overhead, unless the expense is calculated pursuant to a methodology that is consistent with generally accepted cost accounting practices and the methodological standards set forth by the federal Office of Management and Budget for federal grant reimbursement; and
3. Complies in each and every relevant respect with the Impact Fees Act."

Appendix

- Appendix A Traffic Counts and Projections
- Appendix B Intersection Analyses
- Appendix C Project Cost Estimates

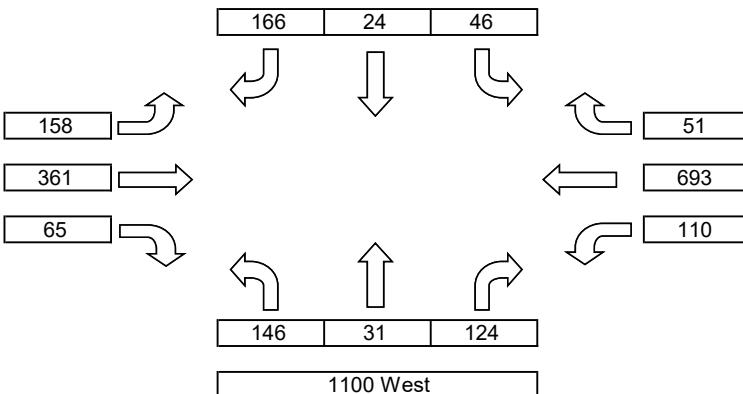
Appendix A Traffic Counts and Projections

Data from UDOT's Signal Performance Metrics


N-S STREET: **1100 West**
E-W STREET: **2100 South**

Date **11-Apr-23**

intersection


5033

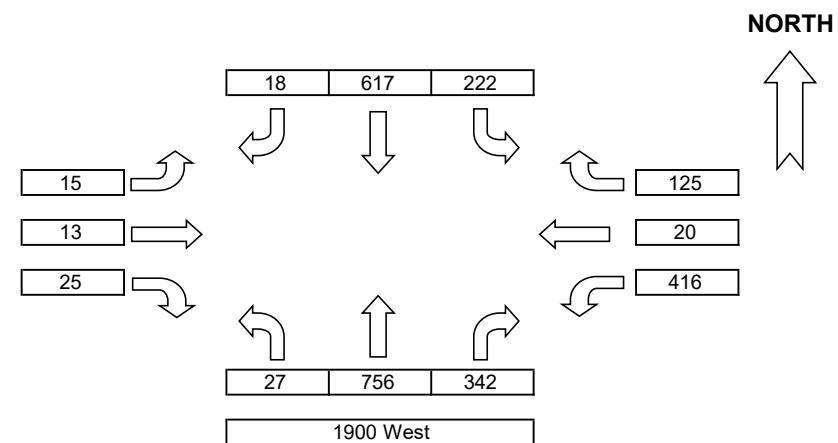
PK HR VOLUME: 1,754
PHF: 0.79

AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	144	450	45	44	453	57	177	37	102	55	22	168
PHF	0.82	0.86	0.8	0.79	0.83	0.75	0.92	0.77	0.85	0.65	0.69	0.78

PK HR VOLUME: 1,975
PHF: 0.84

PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	158	361	65	110	693	51	146	31	124	46	24	166
PHF	0.88	0.83	0.77	0.95	0.9	0.71	0.79	0.86	0.86	0.82	0.86	0.92

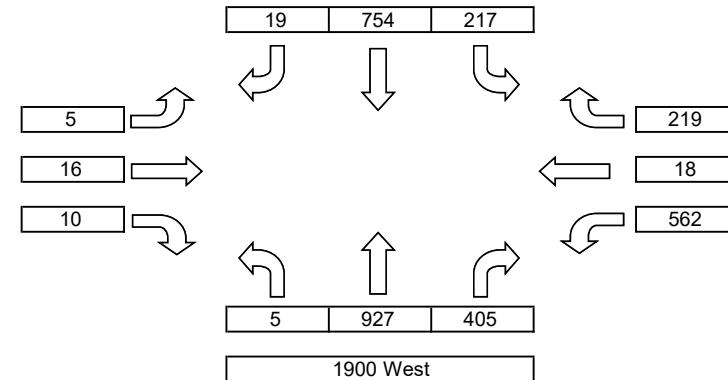
Data from UDOT's Signal Performance Metrics


N-S STREET: **1900 West**
E-W STREET: **2100 South**

Date **11-Apr-23**

Intersection
5130

PK HR VOLUME: 2,596
PHF: 0.78


2100 South

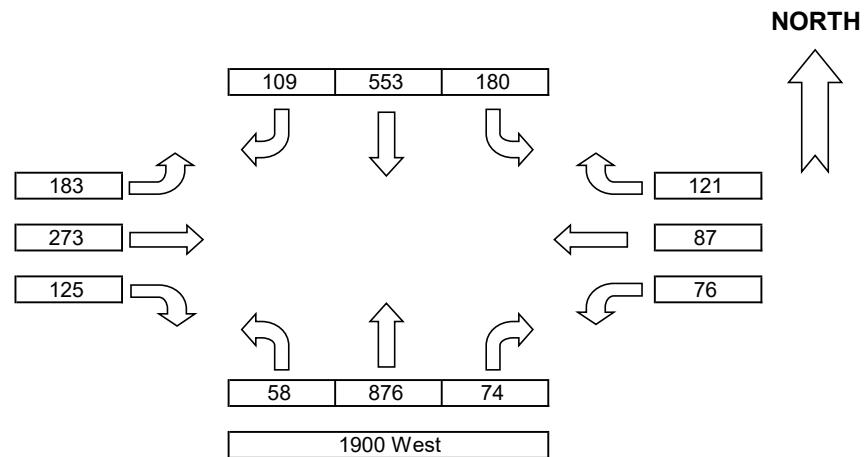
AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	15	13	25	416	20	0.71	125	27	756	342	222	617
PHF	0.75	0.41	0.52	0.95	0.71	0.89	0.84	0.84	0.86	0.81	0.91	0.92

PK HR VOLUME: 3,157
PHF: 0.72

2100 South

PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	5	16	10	562	18	0.5	219	5	927	405	217	754
PHF	0.62	0.57	0.62	0.83	0.5	0.91	0.25	0.25	0.93	0.84	0.92	0.59

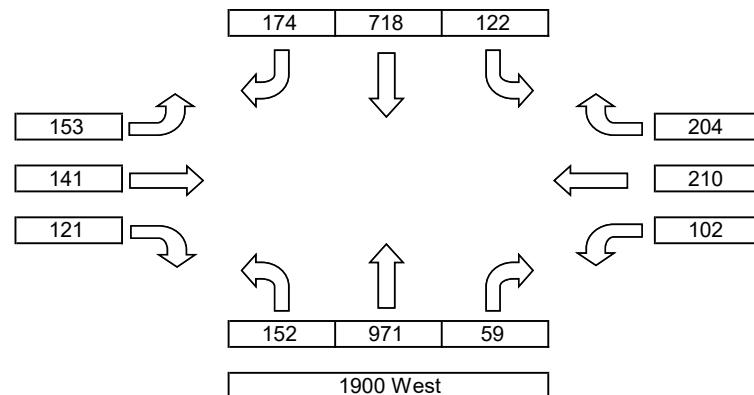
Data from UDOT's Signal Performance Metrics


N-S STREET: **1900 West**
E-W STREET: **2550 South**

Date **11-Apr-23**

Intersection
5098

PK HR VOLUME: 2,715
PHF: 0.84


2550 South

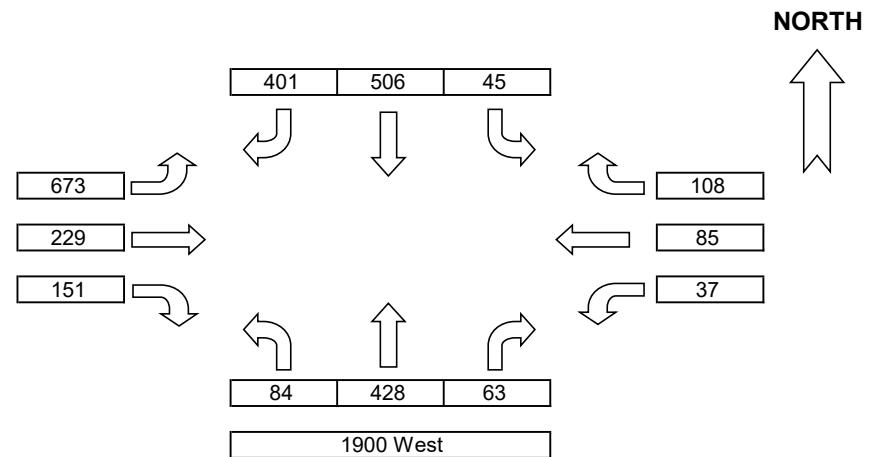
AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	183	273	125	76	87	121	58	876	74	74	180	553
PHF	0.78	0.75	0.89	0.73	0.91	0.86	0.85	0.88	0.77	0.76	0.76	0.93

PK HR VOLUME: 3,127
PHF: 0.81

2550 South

PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	153	141	121	102	210	204	152	971	59	122	718	174
PHF	0.83	0.86	0.72	0.73	0.74	0.91	0.97	0.88	0.67	0.73	0.88	0.95

Data from UDOT's Signal Performance Metrics


N-S STREET: **1900 West**
E-W STREET: **Midland**

Date **11-Apr-23**

Intersection
5097

PK HR VOLUME: 2,810
PHF: 0.83

Midland

AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	673	229	151	37	85	108	84	428	63	45	506	401
PHF	0.91	0.78	0.92	0.58	0.66	0.66	0.91	0.86	0.83	0.94	0.94	0.91

PK HR VOLUME: 3,469
PHF: 0.80

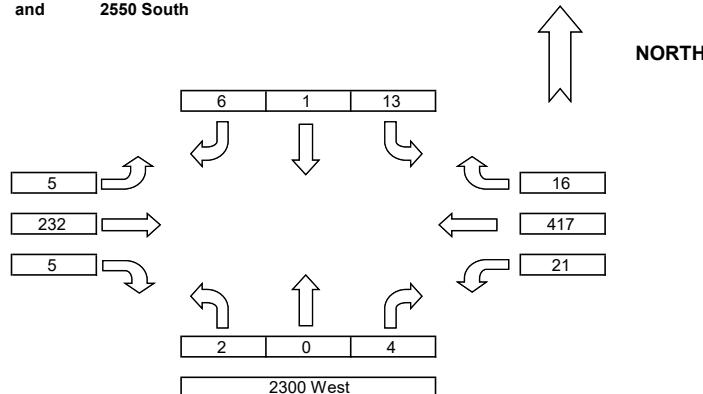
Midland

PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	449	145	123	93	224	141	73	650	24	35	705	807
PHF	0.88	0.88	0.88	0.8	0.89	0.73	0.76	0.89	0.6	0.67	0.87	0.97

PM PEAK HOUR VOLUMES

INTERSECTION: 2300 West and 2550 South

Ped = 0


N-S STREET: 2300 West
E-W STREET: 2550 South

COUNT DATE: April 18, 2023
Day of the Week: Tuesday
NOTES:

COUNT TIME:
FROM: 4:00 PM
TO: 6:00 PM

PK HR VOLUME: 722
PHF: 0.91
PEAK HOUR:
FROM: TO:
4:40 PM 5:40 PM

2550 South

PM Traffic

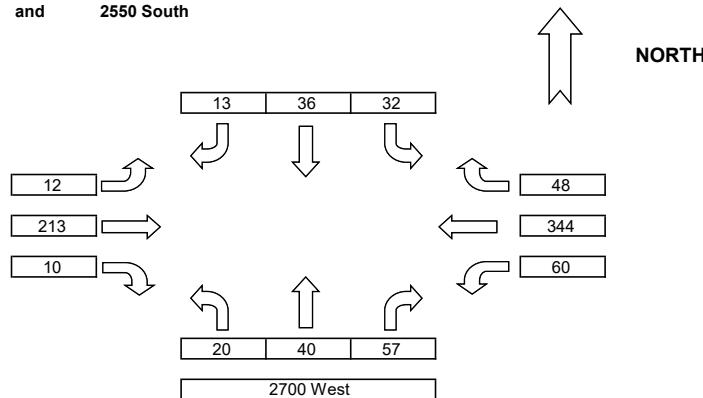
COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN	
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S
	4:00 PM	4:05 PM	0	0	2	0	21	0	3	0	0	1	22	2	51	159	0	0
	4:05 PM	4:10 PM	0	0	1	1	16	0	2	0	0	0	23	2	46	166	0	0
	4:10 PM	4:15 PM	0	0	1	2	21	0	2	0	0	0	34	2	62	169	0	0
	4:15 PM	4:20 PM	0	0	0	2	22	0	1	0	2	1	28	2	58	170	0	0
	4:20 PM	4:25 PM	1	0	0	0	23	0	0	0	0	2	23	0	49	161	0	0
	4:25 PM	4:30 PM	1	1	0	0	21	0	1	0	0	2	35	2	63	177	0	0
	4:30 PM	4:35 PM	0	0	1	1	22	0	1	0	0	0	22	2	49	175	0	0
	4:35 PM	4:40 PM	0	0	1	1	28	1	2	0	1	2	27	2	65	205	0	0
	4:40 PM	4:45 PM	0	0	0	0	20	0	1	0	0	1	37	2	61	198	0	0
	4:45 PM	4:50 PM	0	0	0	2	25	0	3	0	0	2	45	1	79	181	0	0
	4:50 PM	4:55 PM	0	0	0	0	15	0	1	0	0	2	39	1	58	158	0	0
	4:55 PM	5:00 PM	0	0	0	1	13	1	0	0	0	2	25	2	44	152	0	0
	5:00 PM	5:05 PM	0	0	1	0	19	0	3	0	2	1	28	2	56	173	0	0
	5:05 PM	5:10 PM	0	0	0	0	23	0	0	0	2	1	25	1	52	174	0	0
	5:10 PM	5:15 PM	1	0	1	0	19	1	0	0	0	1	39	3	65	180	0	0
	5:15 PM	5:20 PM	0	0	0	1	12	0	3	0	0	2	39	0	57	165	0	0
	5:20 PM	5:25 PM	0	0	0	0	16	1	0	0	0	2	38	1	58	179	0	0
	5:25 PM	5:30 PM	1	0	0	0	21	1	0	0	0	2	25	0	50	192	0	0
	5:30 PM	5:35 PM	0	0	1	1	24	1	0	1	0	3	38	2	71	186	0	0
	5:35 PM	5:40 PM	0	0	1	0	25	0	2	0	0	3	39	1	71	165	0	0
	5:40 PM	5:45 PM	0	0	0	0	11	0	1	1	0	1	29	1	44	136	0	0
	5:45 PM	5:50 PM	0	0	2	1	18	0	2	0	0	3	22	2	50	133	0	0
	5:50 PM	5:55 PM	0	0	1	1	13	0	0	0	0	2	24	1	42	83	0	1
	5:55 PM	6:00 PM	0	0	0	0	13	0	0	0	0	2	24	2	41	41	0	0

PM PEAK HOUR VOLUMES

INTERSECTION: 2700 West and 2550 South

Ped = 3


N-S STREET: 2700 West
E-W STREET: 2550 South

COUNT DATE: April 19, 2023
Day of the Week: Wednesday
NOTES:

COUNT TIME:
FROM: 4:00 PM
TO: 6:00 PM

PK HR VOLUME: 885
PHF: 0.95
PEAK HOUR:
FROM: TO:
4:35 PM 5:35 PM

2550 South

PM Traffic

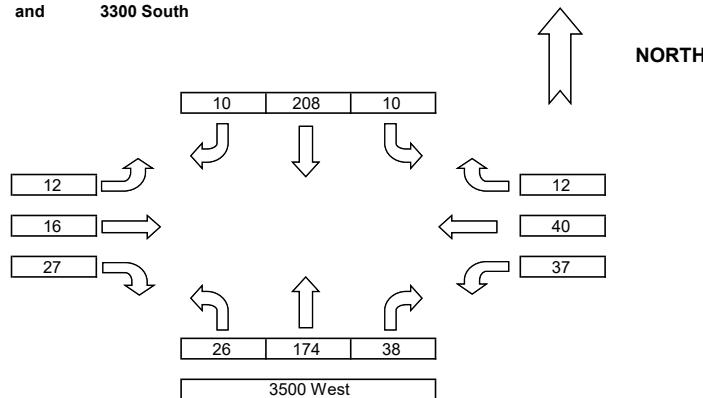
COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN		
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S	
	4:00 PM	4:05 PM	2	15	1	3	1	0	5	25	6	3	0	7	68	198	0	0	
	4:05 PM	4:10 PM	0	14	1	3	4	2	3	11	3	0	4	11	56	197	0	0	
	4:10 PM	4:15 PM	2	1	3	2	18	0	4	3	2	3	30	6	74	207	0	0	
	4:15 PM	4:20 PM	2	5	5	2	20	0	1	1	0	4	25	2	67	191	0	0	
	4:20 PM	4:25 PM	0	2	3	1	16	2	1	2	2	6	27	4	66	186	0	0	
	4:25 PM	4:30 PM	0	3	4	1	18	0	1	1	1	0	24	5	58	201	0	0	
	4:30 PM	4:35 PM	0	2	9	1	13	0	1	0	0	5	28	3	62	212	0	0	
	4:35 PM	4:40 PM	5	1	6	2	31	0	4	2	1	8	17	4	81	229	0	0	
	4:40 PM	4:45 PM	0	2	7	0	19	1	2	2	2	1	5	24	6	69	216	0	0
	4:45 PM	4:50 PM	3	4	6	0	16	0	3	2	0	2	40	3	79	213	0	0	
	4:50 PM	4:55 PM	1	5	2	1	15	2	0	1	3	5	27	6	68	222	0	0	
	4:55 PM	5:00 PM	0	6	3	2	19	1	1	2	0	3	28	1	66	232	0	0	
	5:00 PM	5:05 PM	2	3	9	3	23	0	5	4	1	8	27	3	88	231	2	0	
	5:05 PM	5:10 PM	2	2	5	0	18	1	1	3	1	8	33	4	78	221	0	0	
	5:10 PM	5:15 PM	1	6	5	2	7	1	1	7	0	2	25	8	65	220	0	0	
	5:15 PM	5:20 PM	2	3	3	0	22	1	4	4	1	5	31	2	78	221	0	0	
	5:20 PM	5:25 PM	2	3	3	2	19	1	2	2	2	7	30	4	77	213	0	0	
	5:25 PM	5:30 PM	1	1	5	0	11	0	2	4	2	1	33	6	66	195	0	0	
	5:30 PM	5:35 PM	1	4	3	0	13	2	7	3	1	6	29	1	70	179	1	0	
	5:35 PM	5:40 PM	1	4	7	0	16	0	5	1	1	2	19	3	59	175	0	0	
	5:40 PM	5:45 PM	1	8	7	0	17	0	3	1	0	3	9	1	50	171	0	0	
	5:45 PM	5:50 PM	1	2	6	0	21	0	4	2	1	6	21	2	66	179	0	0	
	5:50 PM	5:55 PM	2	5	7	0	18	0	1	2	1	2	16	1	55	113	0	0	
	5:55 PM	6:00 PM	3	4	8	4	9	2	3	3	0	5	16	1	58	58	0	0	

PM PEAK HOUR VOLUMES

INTERSECTION: 3500 West and 3300 South

Ped = 0


N-S STREET: 3500 West
E-W STREET: 3300 South

COUNT DATE: April 20, 2023
Day of the Week: Thursday
NOTES:

COUNT TIME:
FROM: 4:00 PM
TO: 6:00 PM

PK HR VOLUME: 610
PHF: 0.87
PEAK HOUR:
FROM: TO:
4:10 PM 5:10 PM

3300 South

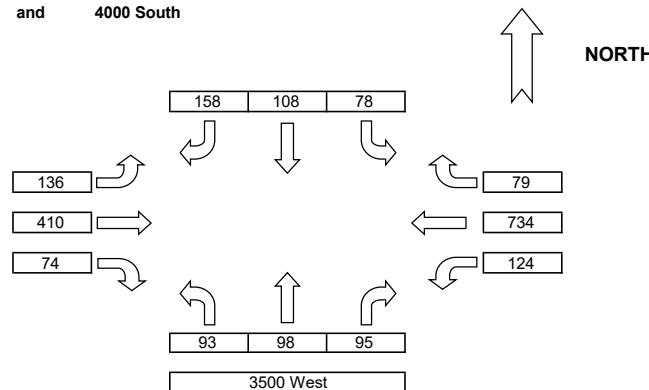
PM Traffic

COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN	
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S
	4:00 PM	4:05 PM	6	12	5	0	2	0	1	10	0	3	2	0	41	155	0	0
	4:05 PM	4:10 PM	1	12	1	2	0	3	1	18	1	6	1	0	46	167	0	0
	4:10 PM	4:15 PM	4	18	2	4	1	2	1	24	2	4	5	1	68	175	0	0
	4:15 PM	4:20 PM	1	15	4	0	1	1	2	20	0	3	5	1	53	151	0	0
	4:20 PM	4:25 PM	3	13	6	2	2	2	1	20	0	1	4	0	54	150	0	0
	4:25 PM	4:30 PM	4	11	1	0	0	0	0	19	0	6	2	1	44	148	0	0
	4:30 PM	4:35 PM	3	21	3	1	1	0	1	14	0	5	2	1	52	140	0	0
	4:35 PM	4:40 PM	2	17	5	0	1	2	1	16	4	2	1	1	52	138	0	0
	4:40 PM	4:45 PM	1	9	1	1	0	2	0	15	2	2	2	1	36	134	0	0
	4:45 PM	4:50 PM	0	12	2	0	3	6	2	16	0	3	5	1	50	143	0	0
	4:50 PM	4:55 PM	4	13	5	0	1	2	1	16	1	1	2	2	48	137	0	0
	4:55 PM	5:00 PM	2	14	4	1	2	1	1	13	1	5	1	0	45	153	0	0
	5:00 PM	5:05 PM	0	11	2	1	2	5	0	17	0	3	1	2	44	169	0	0
	5:05 PM	5:10 PM	2	20	3	2	2	4	0	18	0	2	10	1	64	176	0	0
	5:10 PM	5:15 PM	5	20	1	2	2	2	2	20	1	5	1	0	61	158	0	0
	5:15 PM	5:20 PM	5	10	8	2	1	1	1	17	2	1	3	0	51	147	0	0
	5:20 PM	5:25 PM	1	13	6	0	0	2	0	19	3	1	0	1	46	126	0	0
	5:25 PM	5:30 PM	3	18	5	1	3	2	1	12	1	1	3	0	50	123	0	0
	5:30 PM	5:35 PM	2	7	0	1	0	4	1	8	0	1	4	2	30	126	0	0
	5:35 PM	5:40 PM	3	13	1	1	3	3	1	11	0	3	4	0	43	132	0	0
	5:40 PM	5:45 PM	4	15	2	1	0	2	1	21	1	2	3	1	53	136	0	0
	5:45 PM	5:50 PM	2	13	2	0	2	1	3	8	0	1	4	0	36	111	0	0
	5:50 PM	5:55 PM	0	21	4	0	1	0	0	17	0	1	0	3	47	75	0	1
	5:55 PM	6:00 PM	4	5	0	1	2	1	0	9	2	2	1	1	28	28	0	0

PM PEAK HOUR VOLUMES
 INTERSECTION: 3500 West and 4000 South

Ped =2


N-S STREET: 3500 West
 E-W STREET: 4000 South

COUNT DATE: April 26, 2023
 Day of the Week: Wednesday
 NOTES:

COUNT TIME:
 FROM: 4:00 PM
 TO: 6:00 PM

PK HR VOLUME: 2,187
 PHF: 0.92
 PEAK HOUR:
 FROM: TO:
 4:45 PM 5:45 PM

4000 South

PM Traffic

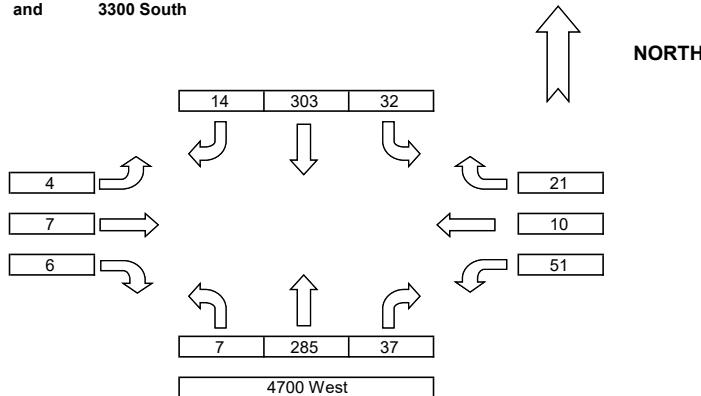
COUNT DATA INPUT:

TIME PERIOD FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN	
		NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S
4:00 PM	4:05 PM	5	12	6	6	27	2	6	5	10	12	55	6	152	471	0	0
4:05 PM	4:10 PM	4	9	7	5	28	2	5	6	14	6	66	4	156	473	0	0
4:10 PM	4:15 PM	8	16	5	15	29	7	6	6	3	12	51	5	163	470	0	0
4:15 PM	4:20 PM	6	2	13	12	40	2	7	5	10	5	47	5	154	477	0	0
4:20 PM	4:25 PM	4	10	7	10	30	6	7	8	9	7	51	4	153	514	0	0
4:25 PM	4:30 PM	10	6	8	9	40	4	5	7	11	12	51	7	170	538	2	2
4:30 PM	4:35 PM	4	8	6	14	38	5	7	9	17	11	68	4	191	533	0	0
4:35 PM	4:40 PM	9	15	13	4	37	2	6	13	7	4	59	8	177	511	0	0
4:40 PM	4:45 PM	8	4	8	5	50	4	3	16	9	3	53	2	165	518	0	0
4:45 PM	4:50 PM	7	5	12	10	39	8	2	5	8	8	58	7	169	507	0	0
4:50 PM	4:55 PM	6	6	10	12	36	6	6	4	11	13	67	7	184	506	0	0
4:55 PM	5:00 PM	8	6	9	8	34	5	3	9	7	7	52	6	154	518	0	0
5:00 PM	5:05 PM	4	10	7	13	30	6	3	8	13	7	58	9	168	546	0	0
5:05 PM	5:10 PM	9	10	8	14	38	3	14	13	17	12	54	4	196	549	0	0
5:10 PM	5:15 PM	10	12	9	17	37	5	8	7	9	6	56	6	182	544	0	1
5:15 PM	5:20 PM	6	4	4	10	30	7	7	10	11	15	64	3	171	565	0	0
5:20 PM	5:25 PM	7	5	7	14	35	11	7	6	28	15	47	9	191	595	0	0
5:25 PM	5:30 PM	12	14	5	7	37	8	13	10	13	6	68	10	203	581	0	0
5:30 PM	5:35 PM	6	8	7	13	34	4	1	12	20	14	73	9	201	569	0	0
5:35 PM	5:40 PM	10	7	9	10	26	7	8	9	11	12	65	3	177	526	0	1
5:40 PM	5:45 PM	8	11	8	8	34	4	6	15	10	9	72	6	191	508	0	0
5:45 PM	5:50 PM	5	3	5	5	40	3	1	11	12	14	50	9	158	458	0	0
5:50 PM	5:55 PM	11	7	6	4	35	1	5	5	7	13	59	6	159	300	0	0
5:55 PM	6:00 PM	10	17	6	2	22	3	4	10	7	11	45	4	141	141	0	1

PM PEAK HOUR VOLUMES

INTERSECTION: 4700 West and 3300 South

Ped = 0


N-S STREET: 4700 West
E-W STREET: 3300 South

COUNT DATE: April 25, 2023
Day of the Week: Tuesday
NOTES:

COUNT TIME:
FROM: 4:00 PM
TO: 6:00 PM

PK HR VOLUME: 777
PHF: 0.82
PEAK HOUR:
FROM: TO:
4:10 PM 5:10 PM

3300 South

PM Traffic

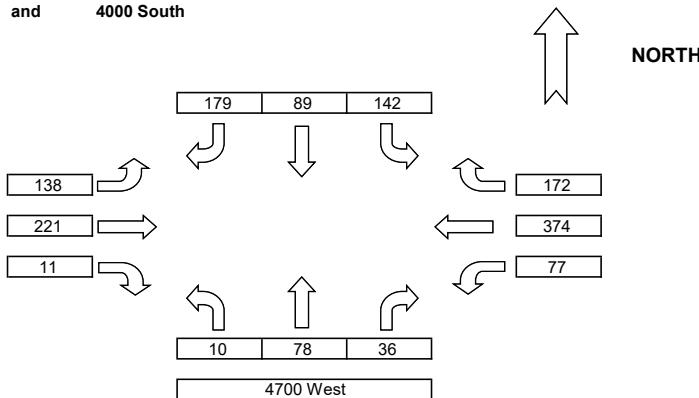
COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN	
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S
	4:00 PM	4:05 PM	1	23	0	1	0	3	2	21	0	2	0	3	56	184	0	0
	4:05 PM	4:10 PM	1	28	5	0	0	0	1	22	0	0	2	3	64	176	0	0
	4:10 PM	4:15 PM	0	23	3	0	0	2	1	28	1	2	0	4	64	180	0	0
	4:15 PM	4:20 PM	0	26	0	0	1	0	0	18	2	1	0	0	48	166	0	0
	4:20 PM	4:25 PM	1	27	2	0	0	1	1	30	1	3	1	1	68	167	0	0
	4:25 PM	4:30 PM	0	25	1	0	0	0	0	23	0	1	0	0	50	180	0	0
	4:30 PM	4:35 PM	1	17	1	0	1	0	2	21	1	1	2	2	49	203	0	0
	4:35 PM	4:40 PM	1	22	3	1	0	0	6	35	3	4	2	4	81	238	0	0
	4:40 PM	4:45 PM	0	32	3	1	1	0	3	26	1	5	1	0	73	238	0	0
	4:45 PM	4:50 PM	1	30	4	1	0	0	4	37	1	3	1	2	84	210	0	0
	4:50 PM	4:55 PM	1	28	5	0	0	0	2	35	1	5	1	3	81	172	0	0
	4:55 PM	5:00 PM	0	23	4	0	1	0	4	7	2	1	2	1	45	179	0	0
	5:00 PM	5:05 PM	1	15	9	0	3	1	7	6	1	2	0	1	46	197	0	0
	5:05 PM	5:10 PM	1	17	2	1	0	2	2	37	0	23	0	3	88	151	0	0
	5:10 PM	5:15 PM	1	26	1	0	0	0	0	31	0	4	0	0	63	63	0	0
	5:15 PM	5:20 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	86	0	0
	5:20 PM	5:25 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	139	0	0
	5:25 PM	5:30 PM	0	25	3	1	1	0	2	45	2	3	2	2	86	186	0	0
	5:30 PM	5:35 PM	0	25	0	0	3	1	1	19	1	3	0	0	53	149	0	0
	5:35 PM	5:40 PM	0	15	0	0	2	0	2	24	0	1	0	3	47	135	0	0
	5:40 PM	5:45 PM	1	17	4	0	0	1	0	20	0	5	0	1	49	149	0	0
	5:45 PM	5:50 PM	0	14	1	0	0	0	0	19	0	1	1	3	39	143	0	0
	5:50 PM	5:55 PM	1	13	2	1	1	0	0	35	0	3	5	0	61	104	0	0
	5:55 PM	6:00 PM	0	12	0	1	0	0	2	22	0	3	2	1	43	43	0	0

PM PEAK HOUR VOLUMES

INTERSECTION: 4700 West and 4000 South

Ped = 0


N-S STREET: 4700 West
E-W STREET: 4000 South

COUNT DATE: April 24, 2023
Day of the Week: Monday
NOTES:

COUNT TIME:
FROM: 4:00 PM
TO: 6:00 PM

PK HR VOLUME: 1,527
PHF: 0.92
PEAK HOUR:
FROM: TO:
4:40 PM 5:40 PM

4000 South

PM Traffic

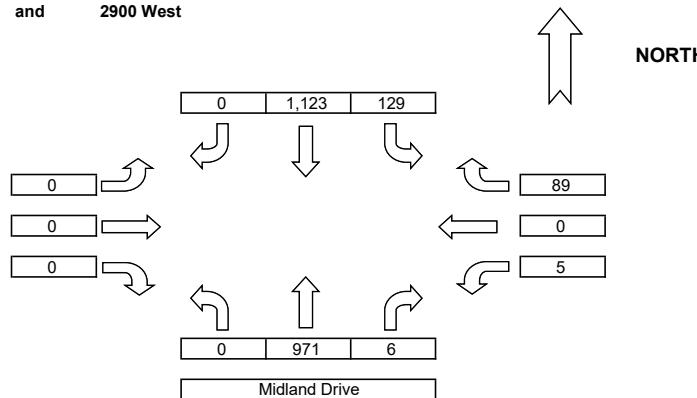
COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN	
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S
	4:00 PM	4:05 PM	3	10	1	12	35	3	5	7	10	6	29	11	132	390	0	0
	4:05 PM	4:10 PM	1	10	2	11	31	1	8	9	16	8	24	12	133	391	0	0
	4:10 PM	4:15 PM	2	10	2	13	17	1	9	9	14	2	32	14	125	368	0	0
	4:15 PM	4:20 PM	0	8	3	9	26	2	15	11	14	3	25	17	133	365	0	0
	4:20 PM	4:25 PM	1	5	6	15	19	0	9	3	11	6	17	18	110	335	0	0
	4:25 PM	4:30 PM	1	6	1	7	21	1	15	5	10	4	32	19	122	323	0	0
	4:30 PM	4:35 PM	1	4	2	12	16	0	5	4	12	7	25	15	103	331	1	1
	4:35 PM	4:40 PM	1	4	2	19	17	0	9	5	13	4	18	6	98	358	0	0
	4:40 PM	4:45 PM	0	6	7	13	21	0	11	12	12	2	28	18	130	395	0	0
	4:45 PM	4:50 PM	1	4	3	15	19	1	14	5	19	7	29	13	130	363	0	0
	4:50 PM	4:55 PM	2	7	0	18	17	1	10	9	17	6	39	9	135	377	0	0
	4:55 PM	5:00 PM	4	4	3	8	15	0	7	5	11	3	28	10	98	371	0	0
	5:00 PM	5:05 PM	1	9	5	15	20	0	19	5	10	11	24	25	144	410	0	0
	5:05 PM	5:10 PM	0	10	2	8	19	1	15	9	16	4	31	14	129	396	0	0
	5:10 PM	5:15 PM	2	4	4	9	12	0	11	6	20	9	38	22	137	414	0	0
	5:15 PM	5:20 PM	0	10	2	11	14	3	13	13	11	7	29	17	130	380	0	0
	5:20 PM	5:25 PM	0	7	3	10	30	3	15	6	17	9	38	9	147	389	0	0
	5:25 PM	5:30 PM	0	4	3	10	13	1	14	9	17	6	22	4	103	347	0	0
	5:30 PM	5:35 PM	0	9	2	14	23	0	8	6	12	6	38	21	139	373	0	0
	5:35 PM	5:40 PM	0	4	2	7	18	1	5	4	17	7	30	10	105	347	0	0
	5:40 PM	5:45 PM	0	3	2	11	23	0	13	7	11	8	33	18	129	355	0	0
	5:45 PM	5:50 PM	0	6	2	8	20	1	4	8	12	7	31	14	113	326	0	0
	5:50 PM	5:55 PM	1	1	4	3	10	0	11	14	20	3	31	15	113	213	0	0
	5:55 PM	6:00 PM	1	6	1	8	15	0	10	8	14	5	19	13	100	100	0	0

PM PEAK HOUR VOLUMES

INTERSECTION: Midland Drive and 2900 West

Ped = 2


N-S STREET: **Midland Drive**
E-W STREET: **2900 West**

COUNT DATE: **April 26, 2023**
Day of the Week: **Wednesday**
NOTES:

COUNT TIME:
FROM: **4:00 PM**
TO: **6:00 PM**

PK HR VOLUME: 2,323
PHF: 0.91
PEAK HOUR:
FROM: TO:
4:45 PM 5:45 PM

2900 West

PM Traffic

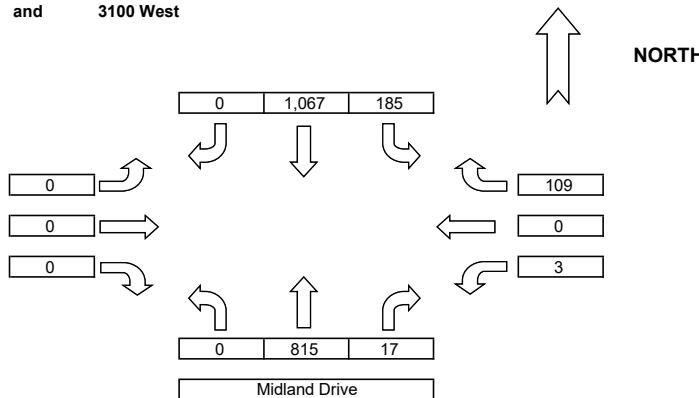
COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN		
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S	
	4:00 PM	4:05 PM	1	66	2	0	0	0	4	60	0	0	0	0	6	139	540	0	0
	4:05 PM	4:10 PM	0	84	0	0	0	0	3	102	0	0	0	0	6	195	584	0	0
	4:10 PM	4:15 PM	0	99	1	0	0	0	11	82	0	0	0	0	13	206	560	0	0
	4:15 PM	4:20 PM	0	60	2	0	0	0	11	101	0	0	0	0	9	183	576	0	0
	4:20 PM	4:25 PM	0	64	0	0	0	0	12	85	0	0	0	0	7	171	581	0	0
	4:25 PM	4:30 PM	0	78	2	0	0	0	14	120	0	0	1	0	7	222	600	0	0
	4:30 PM	4:35 PM	0	82	2	0	0	0	7	89	0	0	0	0	8	188	559	0	1
	4:35 PM	4:40 PM	0	82	4	0	0	0	9	90	0	0	0	0	5	190	580	0	0
	4:40 PM	4:45 PM	0	61	1	0	0	0	9	103	0	0	0	0	7	181	559	0	0
	4:45 PM	4:50 PM	0	90	1	0	0	0	11	88	0	0	0	0	19	209	568	0	0
	4:50 PM	4:55 PM	0	62	0	0	0	0	6	93	0	0	0	0	8	169	533	0	0
	4:55 PM	5:00 PM	0	94	0	0	0	0	8	77	0	0	2	0	9	190	534	0	0
	5:00 PM	5:05 PM	0	79	1	0	0	0	10	76	0	0	0	0	8	174	542	0	0
	5:05 PM	5:10 PM	0	71	1	0	0	0	11	86	0	0	0	0	1	170	548	0	0
	5:10 PM	5:15 PM	0	86	0	0	0	0	13	92	0	0	0	0	7	198	589	0	0
	5:15 PM	5:20 PM	0	75	0	0	0	0	18	81	0	1	0	0	5	180	604	0	0
	5:20 PM	5:25 PM	0	83	0	0	0	0	12	113	0	0	0	0	3	211	638	0	0
	5:25 PM	5:30 PM	0	89	2	0	0	0	10	102	0	0	0	0	10	213	600	0	0
	5:30 PM	5:35 PM	0	78	0	0	0	0	10	119	0	1	0	0	6	214	609	0	0
	5:35 PM	5:40 PM	0	79	0	0	0	0	9	80	0	1	0	0	4	173	567	0	0
	5:40 PM	5:45 PM	0	85	1	0	0	0	11	116	0	0	0	0	9	222	590	0	2
	5:45 PM	5:50 PM	0	71	0	0	0	0	5	88	0	1	0	0	7	172	557	0	0
	5:50 PM	5:55 PM	0	75	0	0	0	0	8	102	0	1	0	0	10	196	385	0	0
	5:55 PM	6:00 PM	0	75	6	0	0	0	9	85	0	0	0	0	14	189	189	0	0

PM PEAK HOUR VOLUMES

INTERSECTION: Midland Drive and 3100 West

Ped = 6


N-S STREET: **Midland Drive**
E-W STREET: **3100 West**

COUNT DATE: **May 1, 2023**
Day of the Week: **Monday**
NOTES:

COUNT TIME:
FROM: **4:00 PM**
TO: **6:00 PM**

PK HR VOLUME: **2,196**
PHF: **0.94**
PEAK HOUR:
FROM: **4:45 PM** TO: **5:45 PM**

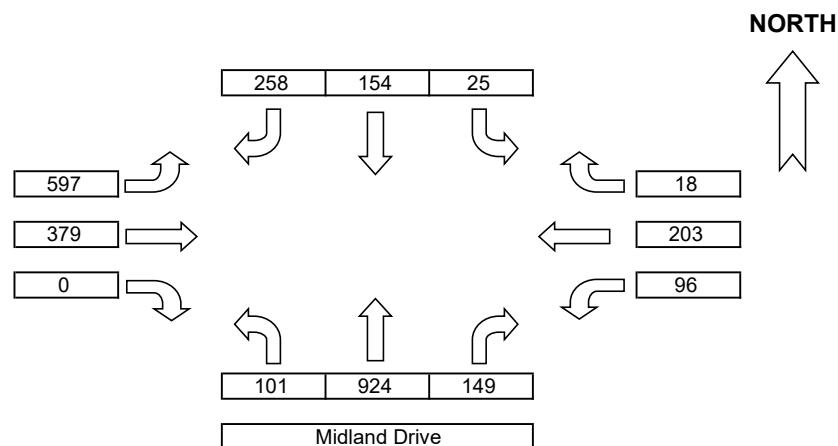
3100 West

PM Traffic

COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN	
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S
	4:00 PM	4:05 PM	0	47	2	0	0	0	17	59	0	0	0	9	134	477	0	0
	4:05 PM	4:10 PM	0	68	3	0	0	0	11	83	0	1	0	9	175	523	0	0
	4:10 PM	4:15 PM	0	58	0	0	0	0	16	82	0	0	0	12	168	505	0	0
	4:15 PM	4:20 PM	0	70	0	0	0	0	16	84	0	0	0	10	180	545	0	1
	4:20 PM	4:25 PM	0	74	1	0	0	0	15	62	0	0	0	5	157	530	0	0
	4:25 PM	4:30 PM	0	72	0	0	0	0	22	99	0	1	0	14	208	579	0	0
	4:30 PM	4:35 PM	0	65	5	0	0	0	15	73	0	1	0	6	165	534	0	0
	4:35 PM	4:40 PM	0	87	4	0	0	0	17	85	0	0	0	13	206	574	0	1
	4:40 PM	4:45 PM	0	62	4	0	0	0	18	64	0	1	0	14	163	551	0	0
	4:45 PM	4:50 PM	0	73	1	0	0	0	19	104	0	0	0	8	205	573	0	0
	4:50 PM	4:55 PM	0	84	0	0	0	0	17	75	0	0	0	7	183	496	0	0
	4:55 PM	5:00 PM	0	65	3	0	0	0	15	98	0	0	0	4	185	485	0	2
	5:00 PM	5:05 PM	0	55	2	0	0	0	7	57	0	1	0	6	128	482	0	1
	5:05 PM	5:10 PM	0	67	1	0	0	0	16	81	0	0	0	7	172	556	0	0
	5:10 PM	5:15 PM	0	63	1	0	0	0	16	92	0	0	0	10	182	554	0	1
	5:15 PM	5:20 PM	0	75	1	0	0	0	22	94	0	0	0	10	202	583	0	0
	5:20 PM	5:25 PM	0	73	1	0	0	0	11	75	0	2	0	8	170	549	0	1
	5:25 PM	5:30 PM	0	69	0	0	0	0	19	113	0	0	0	10	211	573	0	0
	5:30 PM	5:35 PM	0	61	2	0	0	0	17	80	0	0	0	8	168	558	0	0
	5:35 PM	5:40 PM	0	57	2	0	0	0	14	109	0	0	0	12	194	526	0	1
	5:40 PM	5:45 PM	0	73	3	0	0	0	12	89	0	0	0	19	196	514	0	0
	5:45 PM	5:50 PM	0	49	1	0	0	0	10	64	0	0	0	12	136	502	0	0
	5:50 PM	5:55 PM	0	75	4	0	0	0	13	80	0	0	0	10	182	366	0	0
	5:55 PM	6:00 PM	0	80	3	0	0	0	11	78	0	0	0	12	184	184	0	0

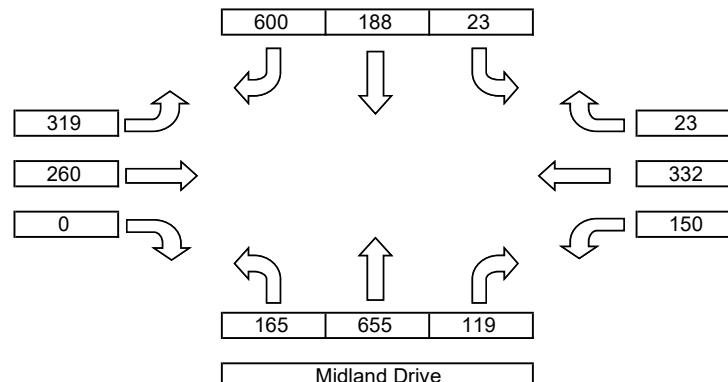
Data from UDOT's Signal Performance Metrics


N-S STREET: **Midland Drive**
E-W STREET: **4000 South**

Date **11-Apr-23**

Intersection
5144

PK HR VOLUME: 2,904
PHF: 0.82


4000 South

AM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	597	379	0	96	203	18	101	924	149	25	0.78	154
PHF	0.86	0.86		0.8	0.82	0.56	0.9	0.93	0.79	0.78	0.86	0.84

PK HR VOLUME: 2,834
PHF: 0.83

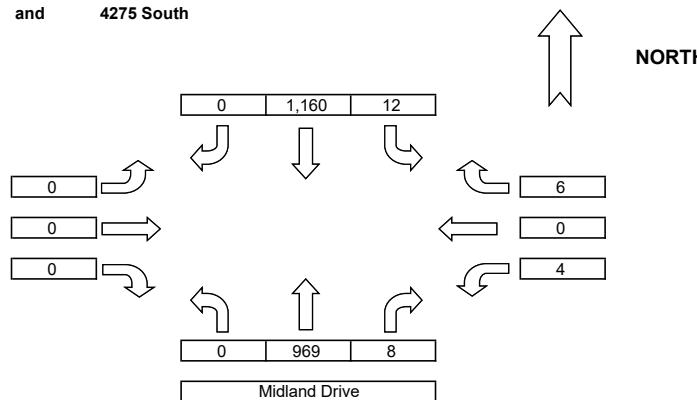
4000 South

PM	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
PHV	319	260	0	150	332	23	165	655	119	23	0.72	188
PHF	0.91	0.87		0.87	0.92	0.48	0.86	0.92	0.83	0.72	0.9	0.88

PM PEAK HOUR VOLUMES

INTERSECTION: Midland Drive and 4275 South

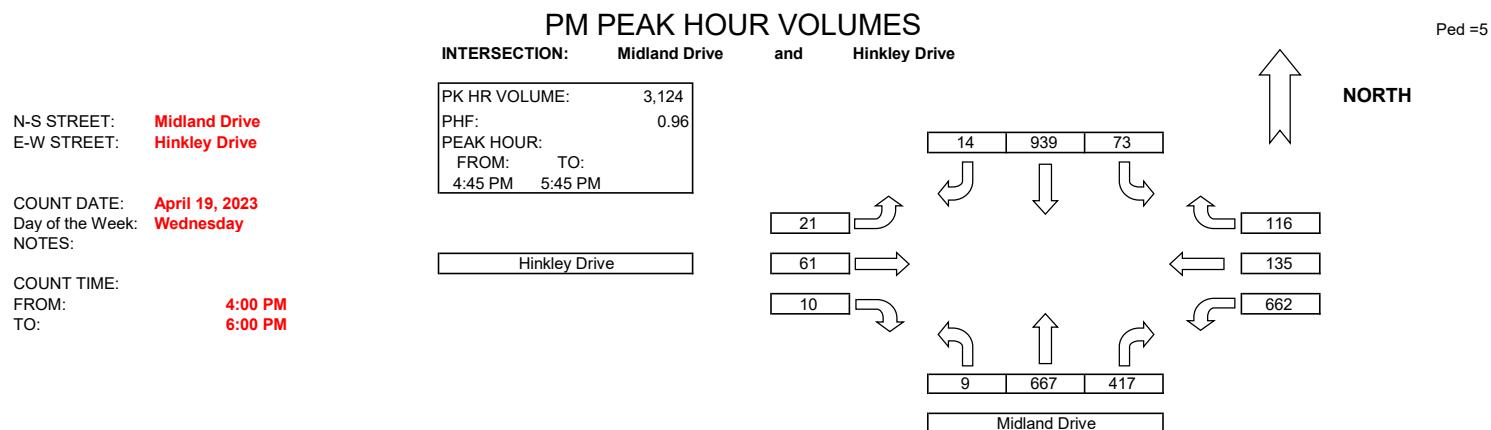
Ped = 2


N-S STREET: **Midland Drive**
E-W STREET: **4275 South**

COUNT DATE: **April 27, 2023**
Day of the Week: **Thursday**
NOTES:

COUNT TIME:
FROM: **4:00 PM**
TO: **6:00 PM**

PK HR VOLUME: 2,159
PHF: 0.90
PEAK HOUR:
FROM: TO:
4:35 PM 5:35 PM


4275 South

PM Traffic

COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN		
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S	
	4:00 PM	4:05 PM	0	58	0	0	0	0	0	80	0	0	0	0	0	138	479	0	1
	4:05 PM	4:10 PM	0	80	0	0	0	0	0	123	0	0	0	0	0	203	524	0	0
	4:10 PM	4:15 PM	0	67	1	0	0	0	1	69	0	0	0	0	0	138	485	0	1
	4:15 PM	4:20 PM	1	73	0	0	0	0	1	108	0	0	0	0	0	183	526	0	0
	4:20 PM	4:25 PM	0	66	1	0	0	0	1	96	0	0	0	0	0	164	474	0	2
	4:25 PM	4:30 PM	0	80	0	0	0	0	1	98	0	0	0	0	0	179	474	0	0
	4:30 PM	4:35 PM	0	67	0	0	0	0	2	61	0	0	0	0	0	131	449	0	0
	4:35 PM	4:40 PM	0	76	0	0	0	0	0	88	0	0	0	0	0	164	500	0	0
	4:40 PM	4:45 PM	0	73	0	0	0	0	0	81	0	0	0	0	0	154	519	0	0
	4:45 PM	4:50 PM	0	72	0	0	0	0	1	109	0	0	0	0	0	182	534	0	0
	4:50 PM	4:55 PM	0	85	0	0	0	0	3	95	0	0	0	0	0	183	507	0	0
	4:55 PM	5:00 PM	0	76	0	0	0	0	1	92	0	0	0	0	0	169	508	0	1
	5:00 PM	5:05 PM	0	70	1	0	0	0	0	84	0	0	0	0	0	155	511	0	0
	5:05 PM	5:10 PM	0	90	1	0	0	0	2	88	0	2	0	1	0	184	555	0	0
	5:10 PM	5:15 PM	0	72	0	0	0	0	3	96	0	1	0	0	0	172	576	0	0
	5:15 PM	5:20 PM	0	94	0	0	0	0	0	105	0	0	0	0	0	199	594	0	1
	5:20 PM	5:25 PM	0	95	3	0	0	0	1	106	0	0	0	0	0	205	597	0	0
	5:25 PM	5:30 PM	0	84	1	0	0	0	1	101	0	1	0	2	0	190	554	0	0
	5:30 PM	5:35 PM	0	82	2	0	0	0	0	115	0	0	0	3	0	202	516	0	0
	5:35 PM	5:40 PM	0	77	0	0	0	0	0	85	0	0	0	0	0	162	485	0	0
	5:40 PM	5:45 PM	0	63	0	0	0	0	0	89	0	0	0	0	0	152	502	0	0
	5:45 PM	5:50 PM	0	94	1	0	0	0	0	73	0	2	0	1	0	171	501	0	0
	5:50 PM	5:55 PM	0	73	0	0	0	0	0	106	0	0	0	0	0	179	330	0	0
	5:55 PM	6:00 PM	0	86	0	0	0	0	0	65	0	0	0	0	0	151	151	0	0

PM Traffic

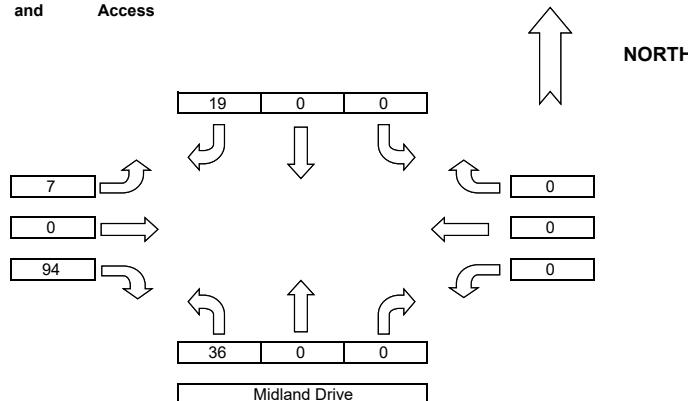
COUNT DATA INPUT:

TIME PERIOD FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN	
		NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S
4:00 PM	4:05 PM	0	47	39	0	0	0	9	64	4	66	14	4	247	671	0	0
4:05 PM	4:10 PM	1	39	25	0	4	0	8	47	0	53	20	6	203	586	0	0
4:10 PM	4:15 PM	0	34	32	0	4	0	4	87	2	44	5	9	221	651	0	0
4:15 PM	4:20 PM	0	48	20	3	8	0	3	24	2	33	16	5	162	685	0	0
4:20 PM	4:25 PM	0	61	32	1	3	1	1	78	0	73	8	10	268	768	0	0
4:25 PM	4:30 PM	1	65	32	0	3	1	8	59	2	60	17	7	255	710	0	0
4:30 PM	4:35 PM	0	44	19	0	3	2	5	84	1	66	9	12	245	681	0	0
4:35 PM	4:40 PM	3	69	21	0	4	1	3	55	3	39	6	6	210	705	0	0
4:40 PM	4:45 PM	0	47	37	2	4	1	5	66	0	51	8	5	226	749	0	0
4:45 PM	4:50 PM	1	60	49	0	5	1	12	75	0	46	7	13	269	772	0	0
4:50 PM	4:55 PM	0	45	31	2	2	0	5	77	3	68	13	8	254	791	0	0
4:55 PM	5:00 PM	0	58	30	4	12	0	4	70	1	53	11	6	249	778	0	0
5:00 PM	5:05 PM	0	80	49	2	7	5	5	86	3	34	6	11	288	800	0	0
5:05 PM	5:10 PM	0	54	30	2	5	0	9	64	1	53	14	9	241	743	0	0
5:10 PM	5:15 PM	0	44	33	1	4	0	5	90	1	76	9	8	271	762	0	0
5:15 PM	5:20 PM	2	43	26	0	8	1	11	83	0	42	9	6	231	787	0	1
5:20 PM	5:25 PM	2	43	31	0	3	1	6	87	1	68	8	10	260	812	1	0
5:25 PM	5:30 PM	1	84	40	2	4	1	3	72	1	62	14	12	296	806	0	0
5:30 PM	5:35 PM	1	53	27	3	3	0	3	89	0	59	7	11	256	765	1	0
5:35 PM	5:40 PM	1	48	37	5	3	1	4	75	1	48	22	9	254	775	0	0
5:40 PM	5:45 PM	1	55	34	0	5	0	6	71	2	53	15	13	255	761	1	1
5:45 PM	5:50 PM	1	73	28	1	10	1	4	90	2	34	5	17	266	748	0	0
5:50 PM	5:55 PM	1	48	21	0	2	0	5	77	1	62	16	7	240	482	0	0
5:55 PM	6:00 PM	0	63	29	0	5	1	4	53	0	66	13	8	242	242	0	0

PM PEAK HOUR VOLUMES

Ped = 0

N-S STREET: **Midland Drive**
E-W STREET: **Access**


COUNT DATE: **November 17, 2023**
Day of the Week: **Thursday**

NOTES

COUNT TIME:
FROM: 4:15 PM
TO: 5:15 PM

INTERSECTION: Midland Drive and Access

PK HR VOLUME:	156
PHF:	0.76
PEAK HOUR:	
FROM:	TO:
4:15 PM	5:15 PM

PM Traffic

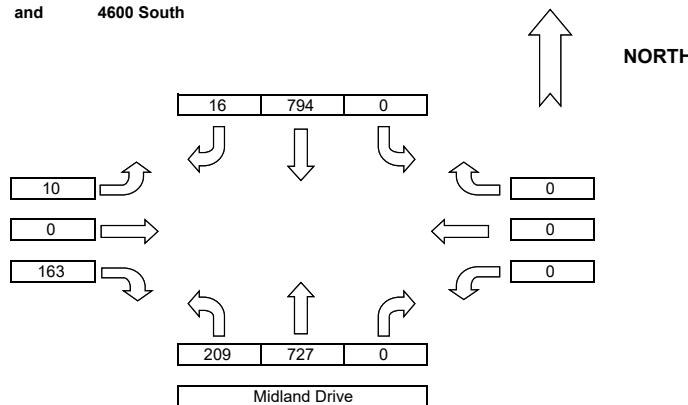
COUNT DATA INPUT

PM PEAK HOUR VOLUMES

Ped = 0

INTERSECTION: Midland Drive and 4600 South

N-S STREET: **Midland Drive**
E-W STREET: **4600 South**


COUNT DATE: **November 15, 2023**
Day of the Week: **Wednesday**

NOTES:

COUNT TIME:
FROM: **4:00 PM**
TO: **6:00 PM**

PK HR VOLUME: 1,919
PHF: 0.96
PEAK HOUR:
FROM: TO:
4:05 PM 5:05 PM

4600 South

PM Traffic

COUNT DATA INPUT:

TIME PERIOD	FROM:	TO:	NORTHBOUND			EASTBOUND			SOUTHBOUND			WESTBOUND			TOTAL 5' VOLUMES	TOTAL 15' VOLUMES	PEDESTRIAN		
			NBL	NBT	NBR	EBL	EBT	EBR	SBL	SBT	SBR	WBL	WBT	WBR			E/W	N/S	
4:00 PM	4:05 PM		17	55	0	0	0	14	0	61	0	0	0	0	0	147	445	0	0
4:05 PM	4:10 PM		13	53	0	0	0	23	0	50	0	0	0	0	0	139	462	0	0
4:10 PM	4:15 PM		16	61	0	0	0	0	13	0	68	1	0	0	0	159	485	0	0
4:15 PM	4:20 PM		21	60	0	0	0	6	0	74	3	0	0	0	0	164	482	0	0
4:20 PM	4:25 PM		21	59	0	2	0	9	0	69	2	0	0	0	0	162	481	0	0
4:25 PM	4:30 PM		19	53	0	0	0	19	0	63	2	0	0	0	0	156	483	0	0
4:30 PM	4:35 PM		17	59	0	1	0	10	0	76	0	0	0	0	0	163	495	0	0
4:35 PM	4:40 PM		18	63	0	1	0	18	0	63	1	0	0	0	0	164	502	0	0
4:40 PM	4:45 PM		18	75	0	0	0	8	0	67	0	0	0	0	0	168	499	0	0
4:45 PM	4:50 PM		27	62	0	3	0	15	0	61	2	0	0	0	0	170	483	0	0
4:50 PM	4:55 PM		9	67	0	1	0	14	0	68	2	0	0	0	0	161	474	0	0
4:55 PM	5:00 PM		15	60	0	0	0	11	0	64	2	0	0	0	0	152	451	0	0
5:00 PM	5:05 PM		15	55	0	2	0	17	0	71	1	0	0	0	0	161	445	0	0
5:05 PM	5:10 PM		18	46	0	1	0	14	0	58	1	0	0	0	0	138	431	0	0
5:10 PM	5:15 PM		14	67	0	0	0	17	0	48	0	0	0	0	0	146	459	0	0
5:15 PM	5:20 PM		18	53	0	0	0	6	0	70	0	0	0	0	0	147	460	0	0
5:20 PM	5:25 PM		20	48	0	1	0	14	0	80	3	0	0	0	0	166	453	0	0
5:25 PM	5:30 PM		9	67	0	0	0	11	0	59	1	0	0	0	0	147	438	0	0
5:30 PM	5:35 PM		10	55	0	0	0	10	0	65	0	0	0	0	0	140	436	0	0
5:35 PM	5:40 PM		18	53	0	1	0	16	0	62	1	0	0	0	0	151	465	0	0
5:40 PM	5:45 PM		17	45	0	0	0	20	0	61	2	0	0	0	0	145	489	0	0
5:45 PM	5:50 PM		17	57	0	0	0	10	0	84	1	0	0	0	0	169	492	0	0
5:50 PM	5:55 PM		25	61	0	5	0	15	0	68	1	0	0	0	0	175	323	0	0
5:55 PM	6:00 PM		11	57	0	1	0	7	0	67	5	0	0	0	0	148	148	0	0

Appendix B Intersection Analyses

Lanes, Volumes, Timings

101: 1100 West & 2100 South/2100 South

12/18/2023

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑	↑	↑	↑↑	↑	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	158	361	65	110	693	51	146	31	124	46	24	166
Future Volume (vph)	158	361	65	110	693	51	146	31	124	46	24	166
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	300		0	250		250	100		100	100		100
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.124			0.517			0.677			0.735		
Satd. Flow (perm)	231	3539	1583	963	3539	1583	1261	1863	1583	1369	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			126			164			135			169
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1051			1951			963			975	
Travel Time (s)		23.9			44.3			21.9			22.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	172	392	71	120	753	55	159	34	135	50	26	180
Shared Lane Traffic (%)												
Lane Group Flow (vph)	172	392	71	120	753	55	159	34	135	50	26	180
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type	Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex		
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pt+ov
Protected Phases	7	4		3	8		5	2		1	6	7
Permitted Phases	4		4	8		8	2		2	6		

Lanes, Volumes, Timings

101: 1100 West & 2100 South/2100 South

12/18/2023

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	67
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	25.0	65.0	65.0	14.0	54.0	54.0	21.0	40.0	40.0	11.0	30.0	
Total Split (%)	19.2%	50.0%	50.0%	10.8%	41.5%	41.5%	16.2%	30.8%	30.8%	8.5%	23.1%	
Maximum Green (s)	20.5	60.5	60.5	9.5	49.5	49.5	16.5	35.5	35.5	6.5	25.5	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes									
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max							
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	
Act Effect Green (s)	55.6	42.4	42.4	45.0	35.8	35.8	64.7	54.9	54.9	55.7	48.1	68.4
Actuated g/C Ratio	0.43	0.33	0.33	0.35	0.28	0.28	0.50	0.42	0.42	0.43	0.37	0.53
v/c Ratio	0.60	0.34	0.12	0.31	0.77	0.10	0.24	0.04	0.18	0.08	0.04	0.20
Control Delay	32.1	32.9	0.5	23.5	48.8	0.4	21.3	28.8	5.8	21.2	33.3	4.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.1	32.9	0.5	23.5	48.8	0.4	21.3	28.8	5.8	21.2	33.3	4.3
LOS	C	C	A	C	D	A	C	C	A	C	C	A
Approach Delay		29.0			42.7			15.7			10.5	
Approach LOS		C			D			B			B	

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

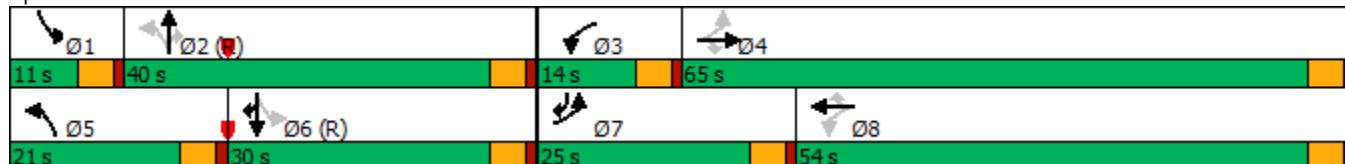
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 30.7


Intersection LOS: C

Intersection Capacity Utilization 53.9%

ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 101: 1100 West & 2100 South/2100 South

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	16	10	562	18	219	5	927	405	217	754	19
Traffic Volume (vph)	5	16	10	562	18	219	5	927	405	217	754	19
Future Volume (vph)	5	16	10	562	18	219	5	927	405	217	754	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	125		125	275		275	350		250	350		350
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fr _t				0.850			0.850			0.850		0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	3433	1863	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.744			0.950			0.295			0.187		
Satd. Flow (perm)	1386	3539	1583	3433	1863	1583	550	3539	1583	348	3539	1583
Right Turn on Red				Yes			Yes			Yes		Yes
Satd. Flow (RTOR)				142			238			349		109
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1539			1539			3258			8394	
Travel Time (s)		35.0			35.0			74.0			190.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	17	11	611	20	238	5	1008	440	236	820	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	17	11	611	20	238	5	1008	440	236	820	21
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type	Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex		
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	D.P+P	NA	Perm	Prot	NA	Perm	D.P+P	NA	Perm	D.P+P	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	8		4			8	6		2	2		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	9.5	22.5	22.5	39.0	52.0	52.0	9.5	60.5	60.5	28.0	79.0	79.0
Total Split (%)	6.3%	15.0%	15.0%	26.0%	34.7%	34.7%	6.3%	40.3%	40.3%	18.7%	52.7%	52.7%
Maximum Green (s)	5.0	18.0	18.0	34.5	47.5	47.5	5.0	56.0	56.0	23.5	74.5	74.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	0
Act Effect Green (s)	36.8	6.2	6.2	31.0	35.8	35.8	102.4	80.1	80.1	98.8	101.2	101.2
Actuated g/C Ratio	0.25	0.04	0.04	0.21	0.24	0.24	0.68	0.53	0.53	0.66	0.67	0.67
v/c Ratio	0.01	0.12	0.05	0.86	0.05	0.43	0.01	0.53	0.44	0.58	0.34	0.02
Control Delay	36.8	70.6	0.5	70.3	41.5	7.4	14.0	41.1	20.7	16.4	12.3	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	36.8	70.6	0.5	70.3	41.5	7.4	14.0	41.1	20.7	16.4	12.3	0.1
LOS	D	E	A	E	D	A	B	D	C	B	B	A
Approach Delay		42.1			52.4			34.8			13.0	
Approach LOS		D			D			C			B	

Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

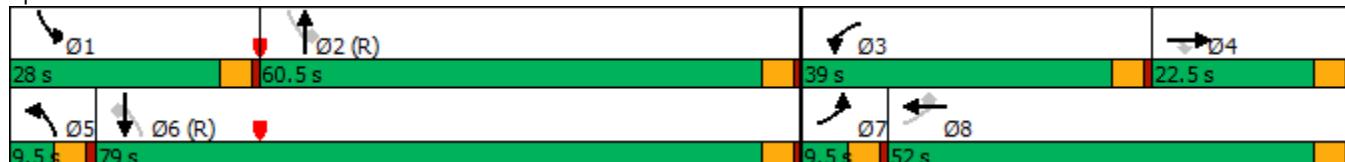
Offset: 0 (0%), Referenced to phase 2:NBSB and 6:NBSB, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 32.5


Intersection LOS: C

Intersection Capacity Utilization 71.6%

ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 102: 1900 West & 2100 South

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	153	141	121	102	210	204	152	971	59	122	1218	174
Future Volume (vph)	153	141	121	102	210	204	152	971	59	122	1218	174
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	250		150	150		150	375		375	350		300
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fr _t			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.247			0.511			0.109			0.194		
Satd. Flow (perm)	460	1863	1583	952	1863	1583	203	3539	1583	361	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			132			202			109			162
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2628			2249			5138			3258	
Travel Time (s)		59.7			51.1			116.8			74.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	166	153	132	111	228	222	165	1055	64	133	1324	189
Shared Lane Traffic (%)												
Lane Group Flow (vph)	166	153	132	111	228	222	165	1055	64	133	1324	189
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes										
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	D.P+P	NA	Perm									
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	8		4	4		8	6		2	2		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	19.0	40.0	40.0	12.0	33.0	33.0	22.0	81.7	81.7	16.3	76.0	76.0
Total Split (%)	12.7%	26.7%	26.7%	8.0%	22.0%	22.0%	14.7%	54.5%	54.5%	10.9%	50.7%	50.7%
Maximum Green (s)	14.5	35.5	35.5	7.5	28.5	28.5	17.5	77.2	77.2	11.8	71.5	71.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	0
Act Effect Green (s)	37.1	29.6	29.6	37.1	23.2	23.2	94.9	85.3	85.3	94.9	81.8	81.8
Actuated g/C Ratio	0.25	0.20	0.20	0.25	0.15	0.15	0.63	0.57	0.57	0.63	0.55	0.55
v/c Ratio	0.71	0.42	0.32	0.40	0.79	0.53	0.62	0.52	0.07	0.42	0.69	0.20
Control Delay	59.3	55.0	9.1	45.7	80.3	14.1	27.0	13.6	2.1	11.2	20.8	1.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	59.3	55.0	9.1	45.7	80.3	14.1	27.0	13.6	2.1	11.2	20.8	1.2
LOS	E	E	A	D	F	B	C	B	A	B	C	A
Approach Delay		43.2			47.2				14.8		17.8	
Approach LOS		D			D			B			B	

Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

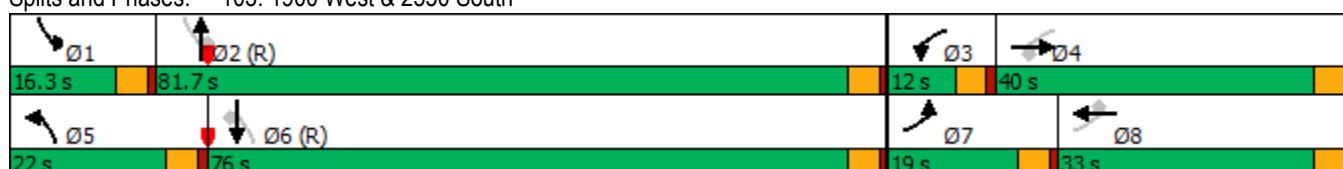
Offset: 0 (0%), Referenced to phase 2:NBSB and 6:NBSB, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 23.9


Intersection LOS: C

Intersection Capacity Utilization 76.6%

ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 103: 1900 West & 2550 South

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑			↔			↔	
Traffic Volume (vph)	5	345	5	21	472	16	2	0	4	13	1	6
Future Volume (vph)	5	345	5	21	472	16	2	0	4	13	1	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		0	0		0	0	0	0
Storage Lanes	1		0	1		0	0		0	0	0	0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t		0.998			0.995			0.910			0.957	
Flt Protected	0.950			0.950				0.984			0.969	
Satd. Flow (prot)	1770	1859	0	1770	1853	0	0	1668	0	0	1727	0
Flt Permitted	0.950			0.950				0.984			0.969	
Satd. Flow (perm)	1770	1859	0	1770	1853	0	0	1668	0	0	1727	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2588			2628			466			1804	
Travel Time (s)		58.8			59.7			10.6			41.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	375	5	23	513	17	2	0	4	14	1	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	380	0	23	530	0	0	6	0	0	22	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 35.8%

ICU Level of Service A

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↖	↗		↖	↗		↖	↗		↖	↗	
Traffic Vol, veh/h	5	345	5	21	472	16	2	0	4	13	1	6
Future Vol, veh/h	5	345	5	21	472	16	2	0	4	13	1	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	375	5	23	513	17	2	0	4	14	1	7
Major/Minor	Major1		Major2		Minor1		Minor2					
Conflicting Flow All	530	0	0	380	0	0	960	964	378	958	958	522
Stage 1	-	-	-	-	-	-	388	388	-	568	568	-
Stage 2	-	-	-	-	-	-	572	576	-	390	390	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1037	-	-	1178	-	-	236	255	669	237	257	555
Stage 1	-	-	-	-	-	-	636	609	-	508	506	-
Stage 2	-	-	-	-	-	-	505	502	-	634	608	-
Platoon blocked, %	-	-	-	-	-	-						
Mov Cap-1 Maneuver	1037	-	-	1178	-	-	228	249	669	231	251	555
Mov Cap-2 Maneuver	-	-	-	-	-	-	228	249	-	231	251	-
Stage 1	-	-	-	-	-	-	633	606	-	505	496	-
Stage 2	-	-	-	-	-	-	488	492	-	627	605	-
Approach	EB		WB		NB		SB					
HCM Control Delay, s	0.1		0.3		14		18.9					
HCM LOS					B		C					
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)	407	1037	-	-	1178	-	-	281				
HCM Lane V/C Ratio	0.016	0.005	-	-	0.019	-	-	0.077				
HCM Control Delay (s)	14	8.5	-	-	8.1	-	-	18.9				
HCM Lane LOS	B	A	-	-	A	-	-	C				
HCM 95th %tile Q(veh)	0	0	-	-	0.1	-	-	0.2				

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑			↔			↔	
Traffic Volume (vph)	12	213	10	60	344	48	20	40	57	32	36	13
Future Volume (vph)	12	213	10	60	344	48	20	40	57	32	36	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		0	0		0	0	0	0
Storage Lanes	1		0	1		0	0		0	0	0	0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t		0.993			0.982			0.934			0.979	
Flt Protected	0.950			0.950				0.991			0.981	
Satd. Flow (prot)	1770	1850	0	1770	1829	0	0	1724	0	0	1789	0
Flt Permitted	0.950			0.950				0.991			0.981	
Satd. Flow (perm)	1770	1850	0	1770	1829	0	0	1724	0	0	1789	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1305			2588			2103			1422	
Travel Time (s)		29.7			58.8			47.8			32.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	13	232	11	65	374	52	22	43	62	35	39	14
Shared Lane Traffic (%)												
Lane Group Flow (vph)	13	243	0	65	426	0	0	127	0	0	88	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 43.3%

ICU Level of Service A

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	5.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↖	↗		↖	↗		↖	↗		↖	↗	
Traffic Vol, veh/h	12	213	10	60	344	48	20	40	57	32	36	13
Future Vol, veh/h	12	213	10	60	344	48	20	40	57	32	36	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	13	232	11	65	374	52	22	43	62	35	39	14
Major/Minor	Major1		Major2		Minor1		Minor2					
Conflicting Flow All	426	0	0	243	0	0	821	820	238	846	799	400
Stage 1	-	-	-	-	-	-	264	264	-	530	530	-
Stage 2	-	-	-	-	-	-	557	556	-	316	269	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1133	-	-	1323	-	-	293	310	801	282	319	650
Stage 1	-	-	-	-	-	-	741	690	-	533	527	-
Stage 2	-	-	-	-	-	-	515	513	-	695	687	-
Platoon blocked, %	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-1 Maneuver	1133	-	-	1323	-	-	246	292	801	220	300	650
Mov Cap-2 Maneuver	-	-	-	-	-	-	246	292	-	220	300	-
Stage 1	-	-	-	-	-	-	733	682	-	527	501	-
Stage 2	-	-	-	-	-	-	442	488	-	593	679	-
Approach	EB		WB		NB		SB					
HCM Control Delay, s	0.4		1		18		23.3					
HCM LOS					C		C					
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)	404	1133	-	-	1323	-	-	284				
HCM Lane V/C Ratio	0.315	0.012	-	-	0.049	-	-	0.31				
HCM Control Delay (s)	18	8.2	-	-	7.9	-	-	23.3				
HCM Lane LOS	C	A	-	-	A	-	-	C				
HCM 95th %tile Q(veh)	1.3	0	-	-	0.2	-	-	1.3				

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑↑	↑	↑	↑	↑↑		↑↑	↑↑	↑	↑↑	↑↑	↑↑
Traffic Volume (vph)	449	145	123	93	224	141	73	650	24	35	705	807
Future Volume (vph)	449	145	123	93	224	141	73	650	24	35	705	807
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	250		250	125		125	375		125	375		375
Storage Lanes	2		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fr _t			0.850		0.942				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	3433	1863	1583	1770	1755	0	1770	3539	1583	1770	3539	1583
Flt Permitted	0.950			0.599			0.254			0.287		
Satd. Flow (perm)	3433	1863	1583	1116	1755	0	473	3539	1583	535	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			134		20				109			588
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1016			669			2602			5138	
Travel Time (s)		23.1			15.2			59.1			116.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	488	158	134	101	243	153	79	707	26	38	766	877
Shared Lane Traffic (%)												
Lane Group Flow (vph)	488	158	134	101	396	0	79	707	26	38	766	877
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	D.P+P	NA		D.P+P	NA	Perm	D.P+P	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	4			6		2	2		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4	4	3	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5		9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	30.2	62.2	62.2	10.4	42.4		9.8	67.8	67.8	9.6	67.6	67.6
Total Split (%)	20.1%	41.5%	41.5%	6.9%	28.3%		6.5%	45.2%	45.2%	6.4%	45.1%	45.1%
Maximum Green (s)	25.7	57.7	57.7	5.9	37.9		5.3	63.3	63.3	5.1	63.1	63.1
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0			7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0			11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0			0	0		0	0	0
Act Effect Green (s)	24.5	54.0	54.0	59.9	35.4		72.1	68.7	68.7	73.0	66.1	66.1
Actuated g/C Ratio	0.16	0.36	0.36	0.40	0.24		0.48	0.46	0.46	0.49	0.44	0.44
v/c Ratio	0.87	0.24	0.20	0.21	0.92		0.28	0.44	0.03	0.12	0.49	0.85
Control Delay	77.9	33.7	5.3	26.5	80.6		30.6	33.0	2.0	9.9	25.2	32.6
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	77.9	33.7	5.3	26.5	80.6		30.6	33.0	2.0	9.9	25.2	32.6
LOS	E	C	A	C	F		C	C	A	A	C	C
Approach Delay		56.5			69.6			31.8			28.7	
Approach LOS		E			E			C			C	

Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

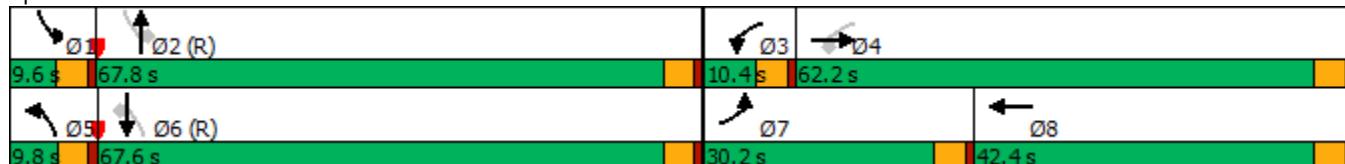
Offset: 0 (0%), Referenced to phase 2:NBSB and 6:NBSB, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 40.5


Intersection LOS: D

Intersection Capacity Utilization 85.8%

ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 106: 1900 West & Midland Drive

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑	↑	↑	↑		↑	↑	
Traffic Volume (vph)	12	16	27	37	40	12	26	174	38	10	208	10
Future Volume (vph)	12	16	27	37	40	12	26	174	38	10	208	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		100	100		0	100		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t		0.905				0.850		0.973			0.993	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1686	0	1770	1863	1583	1770	1812	0	1770	1850	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1686	0	1770	1863	1583	1770	1812	0	1770	1850	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		7799			2596			5296			1227	
Travel Time (s)		177.3			59.0			120.4			27.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	13	17	29	40	43	13	28	189	41	11	226	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	13	46	0	40	43	13	28	230	0	11	237	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop		Stop		
Intersection Summary												
Area Type:	Other											
Control Type:	Unsignalized											
Intersection Capacity Utilization	33.6%				ICU Level of Service A							
Analysis Period (min)	15											

Intersection

Intersection Delay, s/veh 10.8

Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↓		↑	↑	↑	↑	↓		↑	↓	
Traffic Vol, veh/h	12	16	27	37	40	12	26	174	38	10	208	10
Future Vol, veh/h	12	16	27	37	40	12	26	174	38	10	208	10
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	13	17	29	40	43	13	28	189	41	11	226	11
Number of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Approach	EB		WB			NB			SB			
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			2		
HCM Control Delay	9.3			9.6			11			11.5		
HCM LOS	A			A			B			B		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2
Vol Left, %	100%	0%	100%	0%	100%	0%	0%	100%	0%
Vol Thru, %	0%	82%	0%	37%	0%	100%	0%	0%	95%
Vol Right, %	0%	18%	0%	63%	0%	0%	100%	0%	5%
Sign Control	Stop								
Traffic Vol by Lane	26	212	12	43	37	40	12	10	218
LT Vol	26	0	12	0	37	0	0	10	0
Through Vol	0	174	0	16	0	40	0	0	208
RT Vol	0	38	0	27	0	0	12	0	10
Lane Flow Rate	28	230	13	47	40	43	13	11	237
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.048	0.348	0.025	0.077	0.075	0.075	0.02	0.019	0.371
Departure Headway (Hd)	6.173	5.544	6.865	5.912	6.746	6.24	5.532	6.174	5.64
Convergence, Y/N	Yes								
Cap	584	652	523	608	532	576	649	583	642
Service Time	3.873	3.244	4.583	3.63	4.466	3.96	3.252	3.874	3.34
HCM Lane V/C Ratio	0.048	0.353	0.025	0.077	0.075	0.075	0.02	0.019	0.369
HCM Control Delay	9.2	11.2	9.8	9.1	10	9.5	8.4	9	11.6
HCM Lane LOS	A	B	A	A	A	A	A	A	B
HCM 95th-tile Q	0.2	1.6	0.1	0.2	0.2	0.2	0.1	0.1	1.7

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Traffic Volume (vph)	4	7	6	51	10	21	7	285	37	32	303	14
Future Volume (vph)	4	7	6	51	10	21	7	285	37	32	303	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	0	0	0	0	100	0	100	100	100	0
Storage Lanes	0	0	0	0	0	0	1	0	1	1	1	0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t		0.950			0.965				0.850		0.993	
Flt Protected		0.990			0.970		0.950			0.950		
Satd. Flow (prot)	0	1752	0	0	1744	0	1770	1863	1583	1770	1850	0
Flt Permitted		0.990			0.970		0.950			0.950		
Satd. Flow (perm)	0	1752	0	0	1744	0	1770	1863	1583	1770	1850	0
Link Speed (mph)		30			30		30			30		
Link Distance (ft)		1249			7799		5337			1260		
Travel Time (s)		28.4			177.3		121.3			28.6		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	4	8	7	55	11	23	8	310	40	35	329	15
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	19	0	0	89	0	8	310	40	35	344	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 40.7%

ICU Level of Service A

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↔			↔			↑	↑	↑	↑	↑	↓
Traffic Vol, veh/h	4	7	6	51	10	21	7	285	37	32	303	14
Future Vol, veh/h	4	7	6	51	10	21	7	285	37	32	303	14
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	100	-	100	100	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	8	7	55	11	23	8	310	40	35	329	15
Major/Minor	Minor2	Minor1			Major1			Major2				
Conflicting Flow All	770	773	337	740	740	310	344	0	0	350	0	0
Stage 1	407	407	-	326	326	-	-	-	-	-	-	-
Stage 2	363	366	-	414	414	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	318	330	705	333	345	730	1215	-	-	1209	-	-
Stage 1	621	597	-	687	648	-	-	-	-	-	-	-
Stage 2	656	623	-	616	593	-	-	-	-	-	-	-
Platoon blocked, %								-	-	-	-	-
Mov Cap-1 Maneuver	292	318	705	315	333	730	1215	-	-	1209	-	-
Mov Cap-2 Maneuver	292	318	-	315	333	-	-	-	-	-	-	-
Stage 1	617	580	-	682	643	-	-	-	-	-	-	-
Stage 2	621	619	-	585	576	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	14.8			17.7			0.2			0.7		
HCM LOS	B			C								
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR				
Capacity (veh/h)	1215	-	-	384	372	1209	-	-				
HCM Lane V/C Ratio	0.006	-	-	0.048	0.24	0.029	-	-				
HCM Control Delay (s)	8	-	-	14.8	17.7	8.1	-	-				
HCM Lane LOS	A	-	-	B	C	A	-	-				
HCM 95th %tile Q(veh)	0	-	-	0.2	0.9	0.1	-	-				

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	2	1	1	2	1	1	2	1	1	2	1
Traffic Volume (vph)	19	402	17	308	655	175	178	402	429	253	637	36
Future Volume (vph)	19	402	17	308	655	175	178	402	429	253	637	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	400		400	450		350	500		200	500		300
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fr _t			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.218			0.228			0.286			0.428		
Satd. Flow (perm)	406	3539	1583	425	3539	1583	533	3539	1583	797	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			142			190			466			109
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		3906			1649			5295			2602	
Travel Time (s)		88.8			37.5			120.3			59.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	437	18	335	712	190	193	437	466	275	692	39
Shared Lane Traffic (%)												
Lane Group Flow (vph)	21	437	18	335	712	190	193	437	466	275	692	39
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type	Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex		
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	D.P+P	NA	Perm									
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	8		4	4		8	6		2	2		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	9.6	32.0	32.0	40.0	62.4	62.4	23.0	50.0	50.0	28.0	55.0	55.0
Total Split (%)	6.4%	21.3%	21.3%	26.7%	41.6%	41.6%	15.3%	33.3%	33.3%	18.7%	36.7%	36.7%
Maximum Green (s)	5.1	27.5	27.5	35.5	57.9	57.9	18.5	45.5	45.5	23.5	50.5	50.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effect Green (s)	53.5	23.5	23.5	51.7	50.5	50.5	80.3	62.7	62.7	80.3	66.6	66.6
Actuated g/C Ratio	0.36	0.16	0.16	0.34	0.34	0.34	0.54	0.42	0.42	0.54	0.44	0.44
v/c Ratio	0.11	0.79	0.05	0.84	0.60	0.29	0.49	0.30	0.50	0.51	0.44	0.05
Control Delay	27.3	71.3	0.2	55.9	43.3	5.1	22.1	32.2	5.1	43.0	58.7	10.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.3	71.3	0.2	55.9	43.3	5.1	22.1	32.2	5.1	43.0	58.7	10.6
LOS	C	E	A	E	D	A	C	C	A	D	E	B
Approach Delay		66.7			40.8				18.9		52.6	
Approach LOS		E			D				B		D	

Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

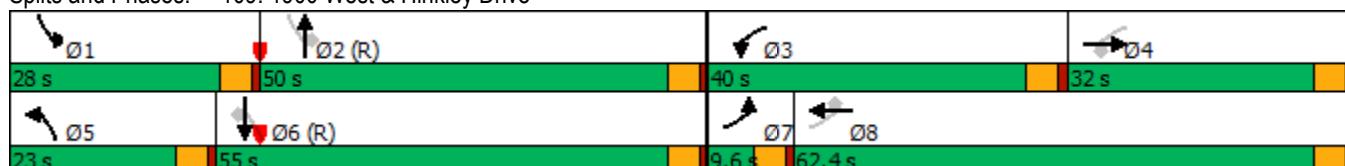
Offset: 0 (0%), Referenced to phase 2:NBSB and 6:NBSB, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 40.8


Intersection LOS: D

Intersection Capacity Utilization 70.6%

ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 109: 1900 West & Hinkley Drive

	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	↑	↑	↑	↑↑	↑	↑	↑	↑↑	↑	↑	↑↑	↑
Traffic Volume (vph)	21	61	10	662	135	116	9	667	417	73	939	14
Future Volume (vph)	21	61	10	662	135	116	9	667	417	73	939	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		100	400		200	500		350	450		250
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fr _t				0.850			0.850			0.850		0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	3433	1863	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.604			0.950			0.207			0.322		
Satd. Flow (perm)	1125	1863	1583	3433	1863	1583	386	3539	1583	600	3539	1583
Right Turn on Red				Yes			Yes			Yes		Yes
Satd. Flow (RTOR)				50			126			453		88
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1374			3906			3350			874	
Travel Time (s)		31.2			88.8			76.1			19.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	23	66	11	720	147	126	10	725	453	79	1021	15
Shared Lane Traffic (%)												
Lane Group Flow (vph)	23	66	11	720	147	126	10	725	453	79	1021	15
Enter Blocked Intersection	No											
Lane Alignment	Left	L NA	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	D.P+P	NA	Perm	Prot	NA	Perm	Perm	NA	Free	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	8		4			8	2		Free	6		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Detector Phase	7	4	4	3	8	8	2	2		6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	22.5	22.5		22.5	22.5	22.5
Total Split (s)	9.5	23.0	23.0	45.0	58.5	58.5	62.0	62.0		62.0	62.0	62.0
Total Split (%)	7.3%	17.7%	17.7%	34.6%	45.0%	45.0%	47.7%	47.7%		47.7%	47.7%	47.7%
Maximum Green (s)	5.0	18.5	18.5	40.5	54.0	54.0	57.5	57.5		57.5	57.5	57.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lead/Lag	Lead	Lead	Lead	Lag	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		C-Max	C-Max	C-Max
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0		0	0	0
Act Effect Green (s)	42.7	10.0	10.0	33.0	39.7	39.7	75.6	75.6	130.0	75.6	75.6	75.6
Actuated g/C Ratio	0.33	0.08	0.08	0.25	0.31	0.31	0.58	0.58	1.00	0.58	0.58	0.58
v/c Ratio	0.06	0.46	0.07	0.83	0.26	0.22	0.04	0.35	0.29	0.23	0.50	0.02
Control Delay	23.6	67.2	0.8	54.2	33.8	5.6	8.0	7.3	0.4	18.6	18.8	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.6	67.2	0.8	54.2	33.8	5.6	8.0	7.3	0.4	18.6	18.8	0.0
LOS	C	E	A	D	C	A	A	A	A	B	B	A
Approach Delay		49.8			45.0			4.7		18.6		
Approach LOS		D			D			A		B		

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

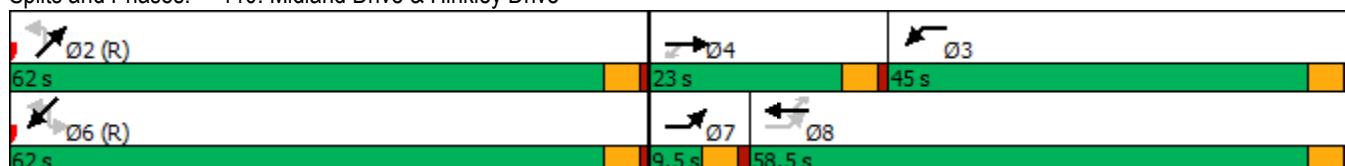
Offset: 72 (55%), Referenced to phase 2:NETL and 6:SWTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 22.3


Intersection LOS: C

Intersection Capacity Utilization 66.9%

ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 110: Midland Drive & Hinkley Drive

	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	↑↑	↑↑	↑	↑↑	↑	↑	↑	↑↑	↑	↑	↑↑	↑
Traffic Volume (vph)	319	260	97	150	332	23	165	655	119	23	1188	188
Future Volume (vph)	319	260	97	150	332	23	165	655	119	23	1188	188
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350		250	200		200	300		400	300		400
Storage Lanes	2		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.97	0.95	1.00	0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fr _t			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	3433	3539	1583	3433	1863	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.950			0.950			0.070			0.309		
Satd. Flow (perm)	3433	3539	1583	3433	1863	1583	130	3539	1583	576	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			126			126			129			204
Link Speed (mph)	30			30			30			30		
Link Distance (ft)	4277			3475			1476			3350		
Travel Time (s)	97.2			79.0			33.5			76.1		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	347	283	105	163	361	25	179	712	129	25	1291	204
Shared Lane Traffic (%)												
Lane Group Flow (vph)	347	283	105	163	361	25	179	712	129	25	1291	204
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)	24			24			12			12		
Link Offset(ft)	0			0			0			0		
Crosswalk Width(ft)	16			16			16			16		
Two way Left Turn Lane							Yes					
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	D.P+P	NA	Perm	D.P+P	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8	6		2	2		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	20.0	38.3	38.3	15.7	34.0	34.0	16.0	66.5	66.5	9.5	60.0	60.0
Total Split (%)	15.4%	29.5%	29.5%	12.1%	26.2%	26.2%	12.3%	51.2%	51.2%	7.3%	46.2%	46.2%
Maximum Green (s)	15.5	33.8	33.8	11.2	29.5	29.5	11.5	62.0	62.0	5.0	55.5	55.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max						
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	7.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	0
Act Effect Green (s)	15.6	33.0	33.0	10.4	27.8	27.8	68.6	67.4	67.4	70.4	57.5	57.5
Actuated g/C Ratio	0.12	0.25	0.25	0.08	0.21	0.21	0.53	0.52	0.52	0.54	0.44	0.44
v/c Ratio	0.84	0.32	0.21	0.59	0.91	0.06	0.86	0.39	0.15	0.07	0.83	0.25
Control Delay	74.9	40.2	4.8	66.9	76.6	0.3	65.1	20.7	3.5	8.0	35.1	5.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	74.9	40.2	4.8	66.9	76.6	0.3	65.1	20.7	3.5	8.0	35.1	5.8
LOS	E	D	A	E	E	A	E	C	A	A	D	A
Approach Delay		51.5			70.2			26.3			30.7	
Approach LOS		D			E			C			C	

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

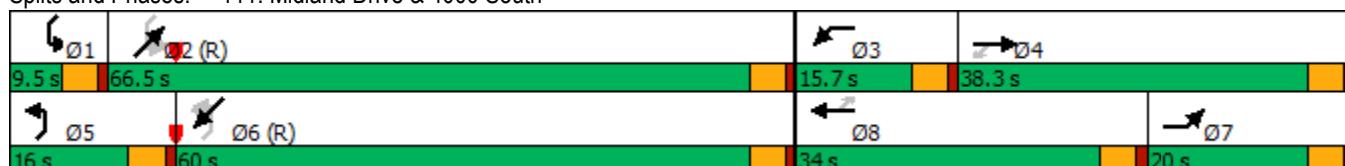
Offset: 8 (6%), Referenced to phase 2:NESW and 6:NESW, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.91

Intersection Signal Delay: 39.2


Intersection LOS: D

Intersection Capacity Utilization 83.6%

ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 111: Midland Drive & 4000 South

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑	↑	↑	↑↑	↑	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	136	410	74	124	734	79	93	98	95	78	108	158
Future Volume (vph)	136	410	74	124	734	79	93	98	95	78	108	158
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	300		300	350		350	100		100	150		150
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.276			0.494			0.682			0.688		
Satd. Flow (perm)	514	3539	1583	920	3539	1583	1270	1863	1583	1282	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			80			86			103			147
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2654			4277			1308			5296	
Travel Time (s)		60.3			97.2			29.7			120.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	148	446	80	135	798	86	101	107	103	85	117	172
Shared Lane Traffic (%)												
Lane Group Flow (vph)	148	446	80	135	798	86	101	107	103	85	117	172
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes										
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm									
Protected Phases		4		8		8	2		2	6		6
Permitted Phases	4		4	8		8	2		2	6		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4	8	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	36.0	36.0	36.0	36.0	36.0	36.0	24.0	24.0	24.0	24.0	24.0	24.0
Total Split (%)	60.0%	60.0%	60.0%	60.0%	60.0%	60.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%
Maximum Green (s)	31.5	31.5	31.5	31.5	31.5	31.5	19.5	19.5	19.5	19.5	19.5	19.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Act Effect Green (s)	20.2	20.2	20.2	20.2	20.2	20.2	19.9	19.9	19.9	19.9	19.9	19.9
Actuated g/C Ratio	0.41	0.41	0.41	0.41	0.41	0.41	0.40	0.40	0.40	0.40	0.40	0.40
v/c Ratio	0.70	0.31	0.11	0.36	0.55	0.12	0.20	0.14	0.15	0.16	0.16	0.24
Control Delay	30.8	9.8	2.6	12.2	12.1	2.6	13.5	12.5	4.3	13.2	12.6	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	30.8	9.8	2.6	12.2	12.1	2.6	13.5	12.5	4.3	13.2	12.6	5.0
LOS	C	A	A	B	B	A	B	B	A	B	B	A
Approach Delay		13.5			11.3				10.1			9.3
Approach LOS		B			B			B				A

Intersection Summary

Area Type: Other

Cycle Length: 60

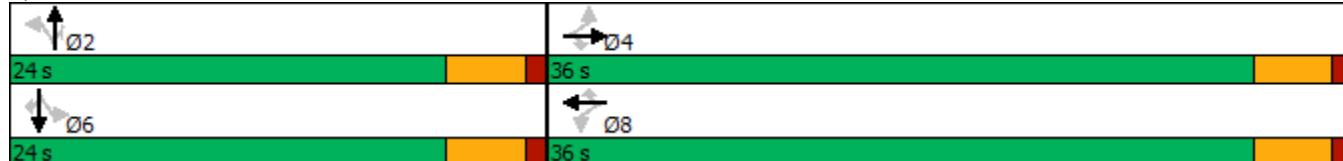
Actuated Cycle Length: 49.2

Natural Cycle: 55

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 11.5


Intersection LOS: B

Intersection Capacity Utilization 50.9%

ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 112: 3500 West & 4000 South

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	138	221	11	77	374	172	10	78	36	142	89	179
Future Volume (vph)	138	221	11	77	374	172	10	78	36	142	89	179
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	325		325	350		0	100		100	225		225
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.377			0.595			0.694			0.702		
Satd. Flow (perm)	702	1863	1583	1108	1863	1583	1293	1863	1583	1308	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			27			187			39			195
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2650			5143			2144			5337	
Travel Time (s)		60.2			116.9			48.7			121.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	150	240	12	84	407	187	11	85	39	154	97	195
Shared Lane Traffic (%)												
Lane Group Flow (vph)	150	240	12	84	407	187	11	85	39	154	97	195
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	Yes			Yes								
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl+Ex											
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type	Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex		
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm									
Protected Phases		4		8		8	2		2	6		6
Permitted Phases	4		4	8		8	2		2	6		6

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4	8	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	33.0	33.0	33.0	33.0	33.0	33.0	27.0	27.0	27.0	27.0	27.0	27.0
Total Split (%)	55.0%	55.0%	55.0%	55.0%	55.0%	55.0%	45.0%	45.0%	45.0%	45.0%	45.0%	45.0%
Maximum Green (s)	28.5	28.5	28.5	28.5	28.5	28.5	22.5	22.5	22.5	22.5	22.5	22.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Act Effect Green (s)	17.3	17.3	17.3	17.3	17.3	17.3	22.9	22.9	22.9	22.9	22.9	22.9
Actuated g/C Ratio	0.35	0.35	0.35	0.35	0.35	0.35	0.46	0.46	0.46	0.46	0.46	0.46
v/c Ratio	0.61	0.37	0.02	0.22	0.62	0.28	0.02	0.10	0.05	0.25	0.11	0.23
Control Delay	24.1	12.9	2.0	11.8	17.3	3.1	10.2	10.1	4.6	11.7	10.1	3.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.1	12.9	2.0	11.8	17.3	3.1	10.2	10.1	4.6	11.7	10.1	3.1
LOS	C	B	A	B	B	A	B	B	A	B	B	A
Approach Delay												
Approach LOS												

Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 49.3

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 12.0


Intersection LOS: B

Intersection Capacity Utilization 53.1%

ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 113: 4700 West & 4000 South

Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	Y		↑↑	Y	Y	↑↑
Traffic Volume (vph)	5	89	971	6	129	1123
Future Volume (vph)	5	89	971	6	129	1123
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		50	50	
Storage Lanes	1	0		1	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Fr _t	0.872			0.850		
Flt Protected	0.998				0.950	
Satd. Flow (prot)	1621	0	3539	1583	1770	3539
Flt Permitted	0.998				0.950	
Satd. Flow (perm)	1621	0	3539	1583	1770	3539
Link Speed (mph)	30		30			30
Link Distance (ft)	807		765			1476
Travel Time (s)	18.3		17.4			33.5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	97	1055	7	140	1221
Shared Lane Traffic (%)						
Lane Group Flow (vph)	102	0	1055	7	140	1221
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane			Yes			Yes
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 49.8%

ICU Level of Service A

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	1.3					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	W		↑↑	↑	↑	↑↑
Traffic Vol, veh/h	5	89	971	6	129	1123
Future Vol, veh/h	5	89	971	6	129	1123
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	50	50	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	97	1055	7	140	1221
Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	1946	528	0	0	1062	0
Stage 1	1055	-	-	-	-	-
Stage 2	891	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	57	495	-	-	652	-
Stage 1	296	-	-	-	-	-
Stage 2	361	-	-	-	-	-
Platoon blocked, %	-	-	-	-	-	-
Mov Cap-1 Maneuver	45	495	-	-	652	-
Mov Cap-2 Maneuver	153	-	-	-	-	-
Stage 1	296	-	-	-	-	-
Stage 2	283	-	-	-	-	-
Approach	NW	NE		SW		
HCM Control Delay, s	15.6	0		1.2		
HCM LOS	C					
Minor Lane/Major Mvmt	NET	NER	NWL	Ln1	SWL	SWT
Capacity (veh/h)	-	-	442	652	-	-
HCM Lane V/C Ratio	-	-	0.231	0.215	-	-
HCM Control Delay (s)	-	-	15.6	12	-	-
HCM Lane LOS	-	-	C	B	-	-
HCM 95th %tile Q(veh)	-	-	0.9	0.8	-	-

Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	↑	↑	↑↑	↑	↑	↑↑
Traffic Volume (vph)	4	6	969	8	12	1160
Future Volume (vph)	4	6	969	8	12	1160
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	50	0		50	50	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25			25		
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Fr _t		0.850		0.850		
Flt Protected	0.950			0.950		
Satd. Flow (prot)	1770	1583	3539	1583	1770	3539
Flt Permitted	0.950			0.950		
Satd. Flow (perm)	1770	1583	3539	1583	1770	3539
Link Speed (mph)	30		30		30	
Link Distance (ft)	704		447		765	
Travel Time (s)	16.0		10.2		17.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	4	7	1053	9	13	1261
Shared Lane Traffic (%)						
Lane Group Flow (vph)	4	7	1053	9	13	1261
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		12		12	
Link Offset(ft)	0		0		0	
Crosswalk Width(ft)	16		16		16	
Two way Left Turn Lane			Yes		Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free		Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 42.1%

ICU Level of Service A

Analysis Period (min) 15

Intersection

Int Delay, s/veh 0.1

Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	↑	↑	↑↑	↑	↑	↑↑
Traffic Vol, veh/h	4	6	969	8	12	1160
Future Vol, veh/h	4	6	969	8	12	1160
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	50	0	-	50	50	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	7	1053	9	13	1261

Major/Minor	Minor1	Major1	Major2	
Conflicting Flow All	1710	527	0	0 1062 0
Stage 1	1053	-	-	- - -
Stage 2	657	-	-	- - -
Critical Hdwy	6.84	6.94	-	- 4.14 -
Critical Hdwy Stg 1	5.84	-	-	- - -
Critical Hdwy Stg 2	5.84	-	-	- - -
Follow-up Hdwy	3.52	3.32	-	- 2.22 -
Pot Cap-1 Maneuver	82	496	-	- 652 -
Stage 1	297	-	-	- - -
Stage 2	477	-	-	- - -
Platoon blocked, %	-	-	-	- - -
Mov Cap-1 Maneuver	80	496	-	- 652 -
Mov Cap-2 Maneuver	200	-	-	- - -
Stage 1	297	-	-	- - -
Stage 2	467	-	-	- - -

Approach	NW	NE	SW
HCM Control Delay, s	16.8	0	0.1
HCM LOS	C		

Minor Lane/Major Mvmt	NET	NER	NWL	LN1	NWLn2	SWL	SWT
Capacity (veh/h)	-	-	200	496	652	-	-
HCM Lane V/C Ratio	-	-	0.022	0.013	0.02	-	-
HCM Control Delay (s)	-	-	23.4	12.4	10.6	-	-
HCM Lane LOS	-	-	C	B	B	-	-
HCM 95th %tile Q(veh)	-	-	0.1	0	0.1	-	-

Lane Group	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	Y		↑↑	Y	Y	↑↑
Traffic Volume (vph)	3	109	815	17	185	1067
Future Volume (vph)	3	109	815	17	185	1067
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0		50	50	
Storage Lanes	1	0		1	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95
Fr _t	0.868			0.850		
Flt Protected	0.999				0.950	
Satd. Flow (prot)	1615	0	3539	1583	1770	3539
Flt Permitted	0.999				0.950	
Satd. Flow (perm)	1615	0	3539	1583	1770	3539
Link Speed (mph)	30		30			30
Link Distance (ft)	1335		511			447
Travel Time (s)	30.3		11.6			10.2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	118	886	18	201	1160
Shared Lane Traffic (%)						
Lane Group Flow (vph)	121	0	886	18	201	1160
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane			Yes			Yes
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 49.7%

ICU Level of Service A

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	1.7					
Movement	NBL	NBR	NET	NER	SWL	SWT
Lane Configurations	W		↑↑	↑	↑	↑↑
Traffic Vol, veh/h	3	109	815	17	185	1067
Future Vol, veh/h	3	109	815	17	185	1067
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	50	50	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	118	886	18	201	1160
Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	1868	443	0	0	904	0
Stage 1	886	-	-	-	-	-
Stage 2	982	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	64	562	-	-	748	-
Stage 1	363	-	-	-	-	-
Stage 2	323	-	-	-	-	-
Platoon blocked, %	-	-	-	-	-	-
Mov Cap-1 Maneuver	47	562	-	-	748	-
Mov Cap-2 Maneuver	151	-	-	-	-	-
Stage 1	363	-	-	-	-	-
Stage 2	236	-	-	-	-	-
Approach	NB	NE	SW			
HCM Control Delay, s	13.9	0	1.7			
HCM LOS	B					
Minor Lane/Major Mvmt	NET	NER	NBLn1	SWL	SWT	
Capacity (veh/h)	-	-	524	748	-	
HCM Lane V/C Ratio	-	-	0.232	0.269	-	
HCM Control Delay (s)	-	-	13.9	11.6	-	
HCM Lane LOS	-	-	B	B	-	
HCM 95th %tile Q(veh)	-	-	0.9	1.1	-	

Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	↑	↑	↑	↑	↑	↑
Traffic Volume (vph)	10	163	209	727	764	16
Future Volume (vph)	10	163	209	727	764	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100	0	100		100	
Storage Lanes	1	1	1		1	
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t		0.850			0.850	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1770	1583	1770	1863	1863	1583
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1770	1583	1770	1863	1863	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	862			936	1903	
Travel Time (s)	19.6			21.3	43.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	177	227	790	830	17
Shared Lane Traffic (%)						
Lane Group Flow (vph)	11	177	227	790	830	17
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane				Yes	Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15		9	
Sign Control	Stop			Free	Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 65.1%

ICU Level of Service C

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	3.4					
Movement	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	↑	↑	↑	↑	↑	↑
Traffic Vol, veh/h	10	163	209	727	764	16
Future Vol, veh/h	10	163	209	727	764	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	100	0	100	-	-	100
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	177	227	790	830	17
Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	2074	830	847	0	-	0
Stage 1	830	-	-	-	-	-
Stage 2	1244	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	59	370	790	-	-	-
Stage 1	428	-	-	-	-	-
Stage 2	272	-	-	-	-	-
Platoon blocked, %	-	-	-	-	-	-
Mov Cap-1 Maneuver	42	370	790	-	-	-
Mov Cap-2 Maneuver	150	-	-	-	-	-
Stage 1	305	-	-	-	-	-
Stage 2	272	-	-	-	-	-
Approach	SE	NE	SW			
HCM Control Delay, s	23.8	2.5	0			
HCM LOS	C					
Minor Lane/Major Mvmt	NEL	NET	SELn1	SELn2	SWT	SWR
Capacity (veh/h)	790	-	150	370	-	-
HCM Lane V/C Ratio	0.288	-	0.072	0.479	-	-
HCM Control Delay (s)	11.4	-	30.9	23.4	-	-
HCM Lane LOS	B	-	D	C	-	-
HCM 95th %tile Q(veh)	1.2	-	0.2	2.5	-	-

Lane Group	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations						
Traffic Volume (vph)	7	94	36	667	939	19
Future Volume (vph)	7	94	36	667	939	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	100		0	
Storage Lanes	1	0	1		0	
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t	0.875			0.997		
Flt Protected	0.996		0.950			
Satd. Flow (prot)	1623	0	1770	1863	1857	0
Flt Permitted	0.996		0.950			
Satd. Flow (perm)	1623	0	1770	1863	1857	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	367			402	936	
Travel Time (s)	8.3			9.1	21.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	8	102	39	725	1021	21
Shared Lane Traffic (%)						
Lane Group Flow (vph)	110	0	39	725	1042	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane				Yes	Yes	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15		9	
Sign Control	Stop			Free	Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 63.4%

ICU Level of Service B

Analysis Period (min) 15

Intersection

Int Delay, s/veh 1.7

Movement	SEL	SER	NEL	NET	SWT	SWR
Lane Configurations	W		↑	↑	↑	
Traffic Vol, veh/h	7	94	36	667	939	19
Future Vol, veh/h	7	94	36	667	939	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	102	39	725	1021	21

Major/Minor	Minor2	Major1	Major2		
Conflicting Flow All	1835	1032	1042	0	-
Stage 1	1032	-	-	-	-
Stage 2	803	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-
Pot Cap-1 Maneuver	83	283	667	-	-
Stage 1	344	-	-	-	-
Stage 2	441	-	-	-	-
Platoon blocked, %				-	-
Mov Cap-1 Maneuver	78	283	667	-	-
Mov Cap-2 Maneuver	205	-	-	-	-
Stage 1	324	-	-	-	-
Stage 2	441	-	-	-	-

Approach SE NE SW

HCM Control Delay, s 26.4 0.5 0

HCM LOS D

Minor Lane/Major Mvmt	NEL	NET	SELn1	SWT	SWR
Capacity (veh/h)	667	-	276	-	-
HCM Lane V/C Ratio	0.059	-	0.398	-	-
HCM Control Delay (s)	10.7	-	26.4	-	-
HCM Lane LOS	B	-	D	-	-
HCM 95th %tile Q(veh)	0.2	-	1.8	-	-

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑		↑	↑	↑		↔			↔	
Traffic Volume (vph)	23	211	10	104	376	24	8	22	34	16	35	19
Future Volume (vph)	23	211	10	104	376	24	8	22	34	16	35	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	100		100	0		0	0	0	0
Storage Lanes	1		0	1		1	0		0	0	0	0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t		0.993				0.850			0.929			0.963
Flt Protected	0.950			0.950				0.994			0.989	
Satd. Flow (prot)	1770	1850	0	1770	1863	1583	0	1720	0	0	1774	0
Flt Permitted	0.950			0.950				0.994			0.989	
Satd. Flow (perm)	1770	1850	0	1770	1863	1583	0	1720	0	0	1774	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		945			2650			1342			1038	
Travel Time (s)		21.5			60.2			30.5			23.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	25	229	11	113	409	26	9	24	37	17	38	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	25	240	0	113	409	26	0	70	0	0	76	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

Intersection Capacity Utilization 39.7%

ICU Level of Service A

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	↑
Traffic Vol, veh/h	23	211	10	104	376	24	8	22	34	16	35	19
Future Vol, veh/h	23	211	10	104	376	24	8	22	34	16	35	19
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	100	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	229	11	113	409	26	9	24	37	17	38	21
Major/Minor	Major1		Major2		Minor1		Minor2					
Conflicting Flow All	435	0	0	240	0	0	963	946	235	950	925	409
Stage 1	-	-	-	-	-	-	285	285	-	635	635	-
Stage 2	-	-	-	-	-	-	678	661	-	315	290	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1125	-	-	1327	-	-	235	262	804	240	269	642
Stage 1	-	-	-	-	-	-	722	676	-	467	472	-
Stage 2	-	-	-	-	-	-	442	460	-	696	672	-
Platoon blocked, %	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-1 Maneuver	1125	-	-	1327	-	-	184	234	804	194	241	642
Mov Cap-2 Maneuver	-	-	-	-	-	-	184	234	-	194	241	-
Stage 1	-	-	-	-	-	-	706	661	-	457	432	-
Stage 2	-	-	-	-	-	-	357	421	-	626	657	-
Approach	EB		WB		NB		SB					
HCM Control Delay, s	0.8		1.6		17.6		23.3					
HCM LOS					C		C					
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)	356	1125	-	-	1327	-	-	272				
HCM Lane V/C Ratio	0.195	0.022	-	-	0.085	-	-	0.28				
HCM Control Delay (s)	17.6	8.3	-	-	8	-	-	23.3				
HCM Lane LOS	C	A	-	-	A	-	-	C				
HCM 95th %tile Q(veh)	0.7	0.1	-	-	0.3	-	-	1.1				

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑	↑	↑	↑↑	↑	↔	↔	↔	↔	↔	↔
Traffic Volume (vph)	136	552	60	52	545	16	45	5	59	1	4	2
Future Volume (vph)	136	552	60	52	545	16	45	5	59	1	4	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		100	100		100	0		0	0	0	0
Storage Lanes	1		1	1		1	0		0	0	0	0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fr _t			0.850			0.850			0.927			0.961
Flt Protected	0.950			0.950			0.980			0.993		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	0	1692	0	0	1778	0
Flt Permitted	0.950			0.950			0.980			0.993		
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	0	1692	0	0	1778	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		5143			2654			1121			1103	
Travel Time (s)		116.9			60.3			25.5			25.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	148	600	65	57	592	17	49	5	64	1	4	2
Shared Lane Traffic (%)												
Lane Group Flow (vph)	148	600	65	57	592	17	0	118	0	0	7	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Yes			Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type:	Unsignalized											
Intersection Capacity Utilization	45.6%							ICU Level of Service A				
Analysis Period (min)	15											

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	↑	↑↑	↑	↑	↑↑	↑	↔	↔	↔	↔	↔	↔
Traffic Vol, veh/h	136	552	60	52	545	16	45	5	59	1	4	2
Future Vol, veh/h	136	552	60	52	545	16	45	5	59	1	4	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	100	100	-	100	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	148	600	65	57	592	17	49	5	64	1	4	2
Major/Minor	Major1		Major2		Minor1		Minor2					
Conflicting Flow All	609	0	0	665	0	0	1308	1619	300	1305	1667	296
Stage 1	-	-	-	-	-	-	896	896	-	706	706	-
Stage 2	-	-	-	-	-	-	412	723	-	599	961	-
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32
Pot Cap-1 Maneuver	966	-	-	920	-	-	117	102	696	118	96	700
Stage 1	-	-	-	-	-	-	301	357	-	393	437	-
Stage 2	-	-	-	-	-	-	588	429	-	455	333	-
Platoon blocked, %	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-1 Maneuver	966	-	-	920	-	-	94	81	696	86	76	700
Mov Cap-2 Maneuver	-	-	-	-	-	-	94	81	-	86	76	-
Stage 1	-	-	-	-	-	-	255	302	-	333	410	-
Stage 2	-	-	-	-	-	-	544	402	-	343	282	-
Approach	EB		WB		NB		SB					
HCM Control Delay, s	1.7		0.8		61.1		42.3					
HCM LOS					F		E					
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)	174	966	-	-	920	-	-	104				
HCM Lane V/C Ratio	0.681	0.153	-	-	0.061	-	-	0.073				
HCM Control Delay (s)	61.1	9.4	-	-	9.2	-	-	42.3				
HCM Lane LOS	F	A	-	-	A	-	-	E				
HCM 95th %tile Q(veh)	4	0.5	-	-	0.2	-	-	0.2				

Appendix C Project Cost Estimates

Appendix C Project Cost Estimates

Cost Summary 2028/2033Transportation improvements

The following are budget costs for the projects planned in the 2028/2033 planning window evaluated in the transportation master plan. This summary has been prepared by Gardner Engineering using cost estimates based on recent projects. Budget costs include construction, right of way, engineering, survey, and contingency.

The proposed projects are summarized in the tables below and overviews are shown in the attached exhibits.

Tables

Appendix C Table 1: 2028/2033 Recommended Roadway Widening Improvements

Appendix C Table 2: 2028/2033Intersection Improvements

Exhibits

Exhibit 1 – 3300 South – 4700 West to 5100 West (Project #1)

Exhibit 2 – 5100 West - 3150 South TO 4000 South (Project #2)

Exhibit 3 – 2700 West – 2050 South to 2550 South (Project #3)

Exhibit 4 – 1800 South to 2100 South (Project #4, 10)

Wilson Lane – 2700 West to 2400 South (Project #5)

1800 South – 2700 West to 2300 West (Project #7)

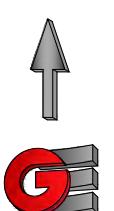
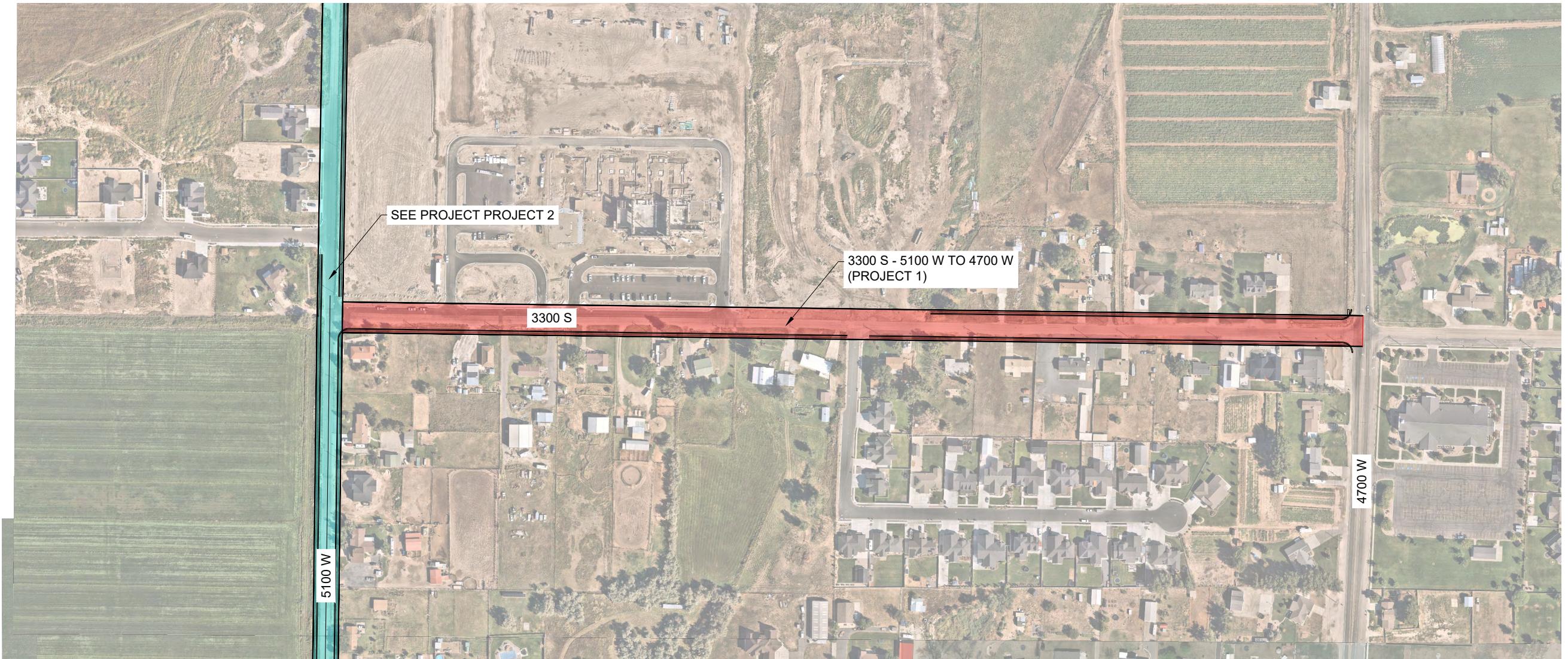
Exhibit 5 – 1800 South – 2050 West to 1750 West (Project #6,15)

Exhibit 6 – 3600 South – 2700 West to Midland Dr (Project #8)

Exhibit 7 – 3300 South to 3600 South (Project #9,16,17)

Exhibit 8 – Midland Drive – 3300 South Alternative Intersection (Project #11)

Exhibit 9 – 4000 South – 5100 West Signal (Project #12)



Exhibit 10 – 4000 South – 4300 West Signal (Project #13)

Appendix C Table 1: 2028 / 2033 Recommended Roadway Widening Improvements

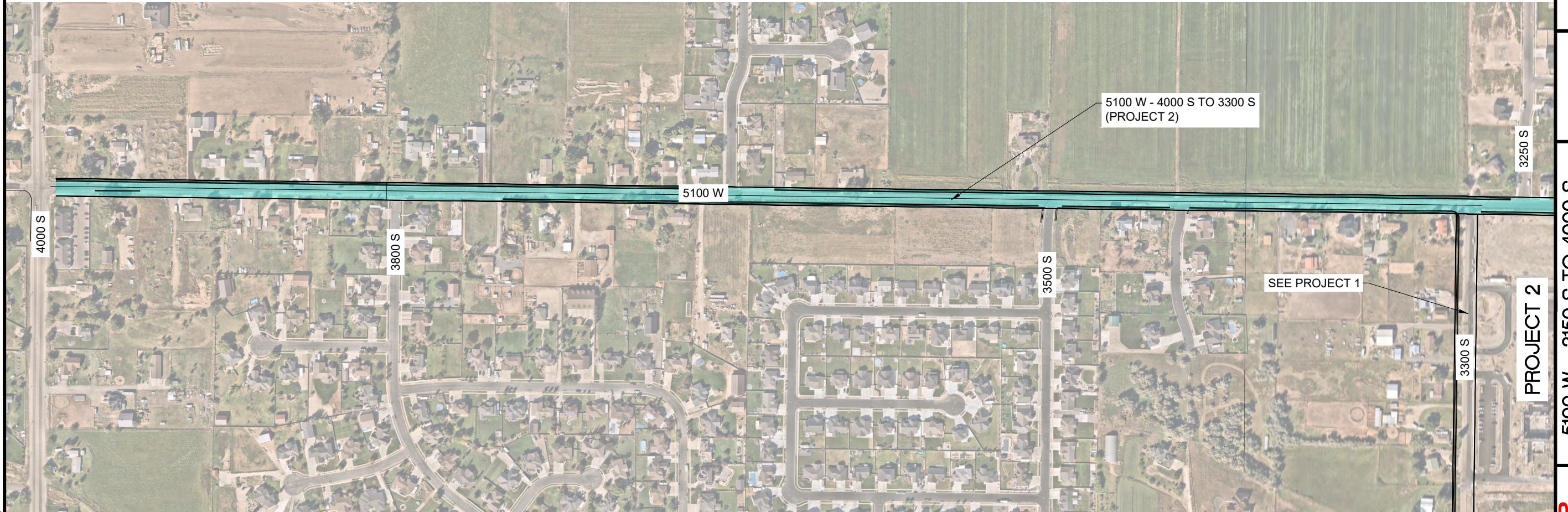
PROJECT #	Road	From	To	Improvement	Cost Estimate	WACOG Funding	Proposed Start Date	Exhibit #
1	3300 South	4700 West	5100 West	Widen Road from 2 to 3 lanes; install sidewalk and C&G	\$2,615,457	\$ 1,999,000	2025	1
2	5100 West	3150 South	4000 South	Widen Road from 2 to 3 lanes; install sidewalk and C&G	\$3,787,721	\$ 2,799,000	2025	2
3	2700 West	2050 South	2550 South	Widen Road from 2 to 3 lanes; install sidewalk and C&G	\$3,550,000	\$ 1,892,000	2024	3
4	Connector	1800 South	2100 South	New Road – 5 Lanes	\$5,785,410	\$ 4,804,000	2026	4
5	1800 South	2700 West	1950 West	Widen to new Connector (2 to 5 lanes)	\$5,513,418	\$ 3,479,360	2028	4
6	3600 South	2700 West	Midland Drive	Widen Road to 5 Lanes	\$1,223,056	-	2029	6
7	Connector	3300 W	3600 South	New Road – 5 Lanes (ROW)	\$12,624,360	\$ 2,800,000	2023	7

Appendix C Table 2: 2028/2033 Intersection Improvements

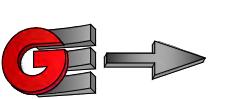
PROJECT #	Intersection		Improvement	Cost Estimate	WACOG Funding	Proposed Start Date	Exhibit #
8 (part of #4)	1800 South	Connector Road	Alternative Intersection (Roundabout)	\$500,000	-	2026	4
9	4000 South	5100 West	Signal & Widening	\$1,000,000	\$ 900,000.00	2026	8
10	4000 South	4300 West	Signal & Widening	\$1,000,000	\$ 900,000.00	2026	9
11	1800 South	1900 West	Signal & Widening (UDOT to install signage)	\$2,248,300	\$1,848,300	2027	5
12 (part of #7)	3300 South	Connector Road	Alternative Intersection (Roundabout)	\$500,000.00	-	2029	7
13	2700 West	3600 South	Alternative Intersection (Roundabout)	\$500,000.00	-	2029	7

0' 150' 300' 600'
Scale in Feet
Custom

EX1


GARDNER
ENGINEERING
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

1580 W 200 S, WEST HAVEN, UT 84041
P 801.476.0202 F 801.476.0066

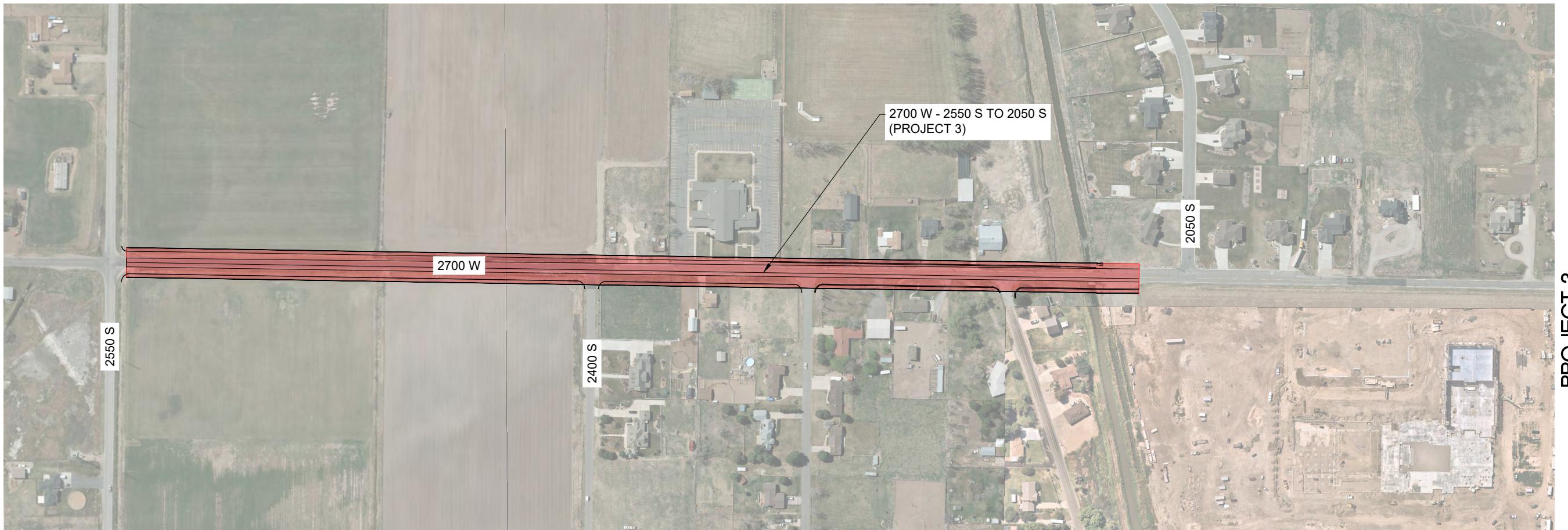

PROJECT 1

3300 S - 4700 W TO 5100 W
TRANSPORTATION MASTER PLAN
WEST HAVEN, WEBER, UTAH

Date: 07-11-25	Date: Custom
Scale: KAN	Scale: Custom
Designed: KAN	Designed: Custom
Drafted: KAN	Drafted: Custom
Checked: RC	Checked: Custom

0' 200' 400' 800'
Scale in Feet
Custom

EX2


**GARDNER
ENGINEERING**
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

1580 W 200 S, WEST HAVEN, UT 84041
P 801.476.0202 F 801.476.0066

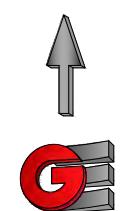
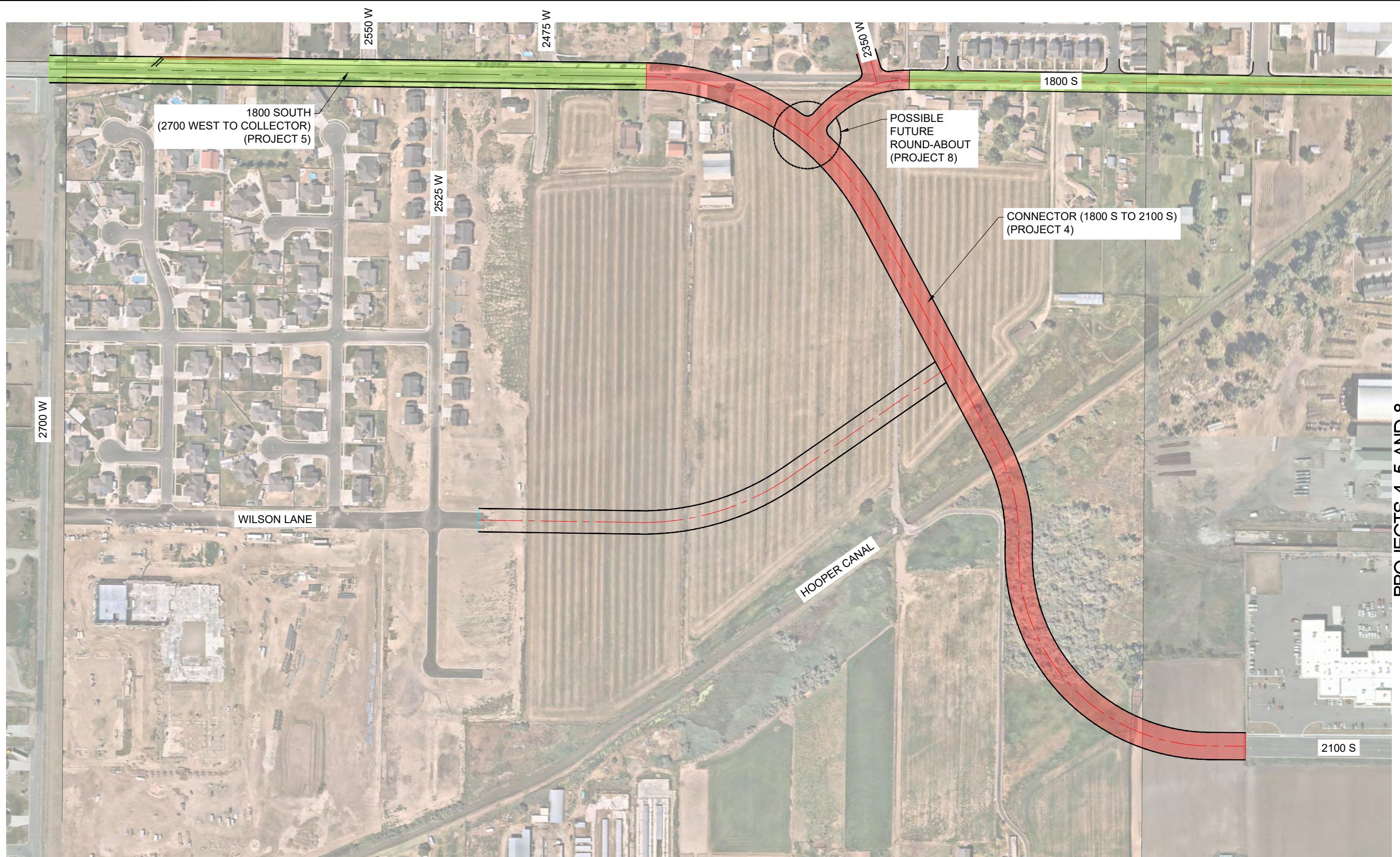
Revisions	Date	Description	Date
	07-11-25	Custom	
	Designed: KAN	Scale: Custom	
	Drafted: KAN		
	Checked: RC		

PROJECT 2

TRANSPORTATION MASTER PLAN
WEST HAVEN, UTAH

0' 150' 300' 600'
Scale in Feet
Custom

EX3



GARDNER
ENGINEERING
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

1580 W 200 S, WEST HAVEN, UT 84041
P 801.476.0202 F 801.476.0066

PROJECT 3

2700 W - 2050 S TO 2550 S
TRANSPORTATION MASTER PLAN
WEST HAVEN, WEBER, UTAH

Date: 07-11-25	Date: Custom
Scale: Custom	Scale: Custom
Designed: KAN	Designed: KAN
Drafted: KAN	Drafted: RC
Checked: RC	Checked: RC

0' 150' 300' 600'
Scale in Feet
Custom

EX4

GARDNER
ENGINEERING

CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

1580 W 2100 S, WEST HAVEN, UT 84041

P 801.476.0202 F 801.476.0066

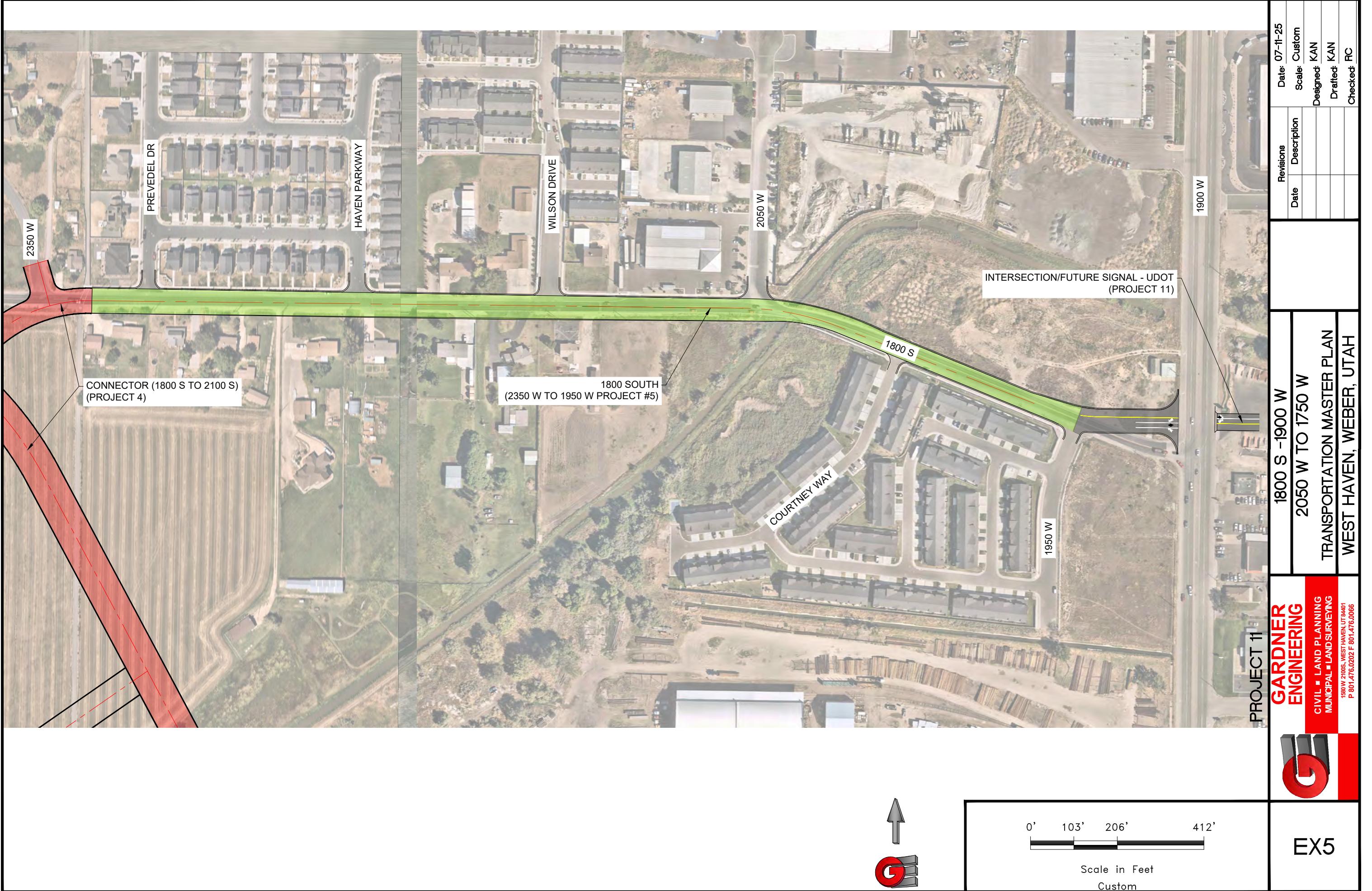
PROJECTS 4, 5 AND 8

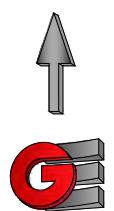
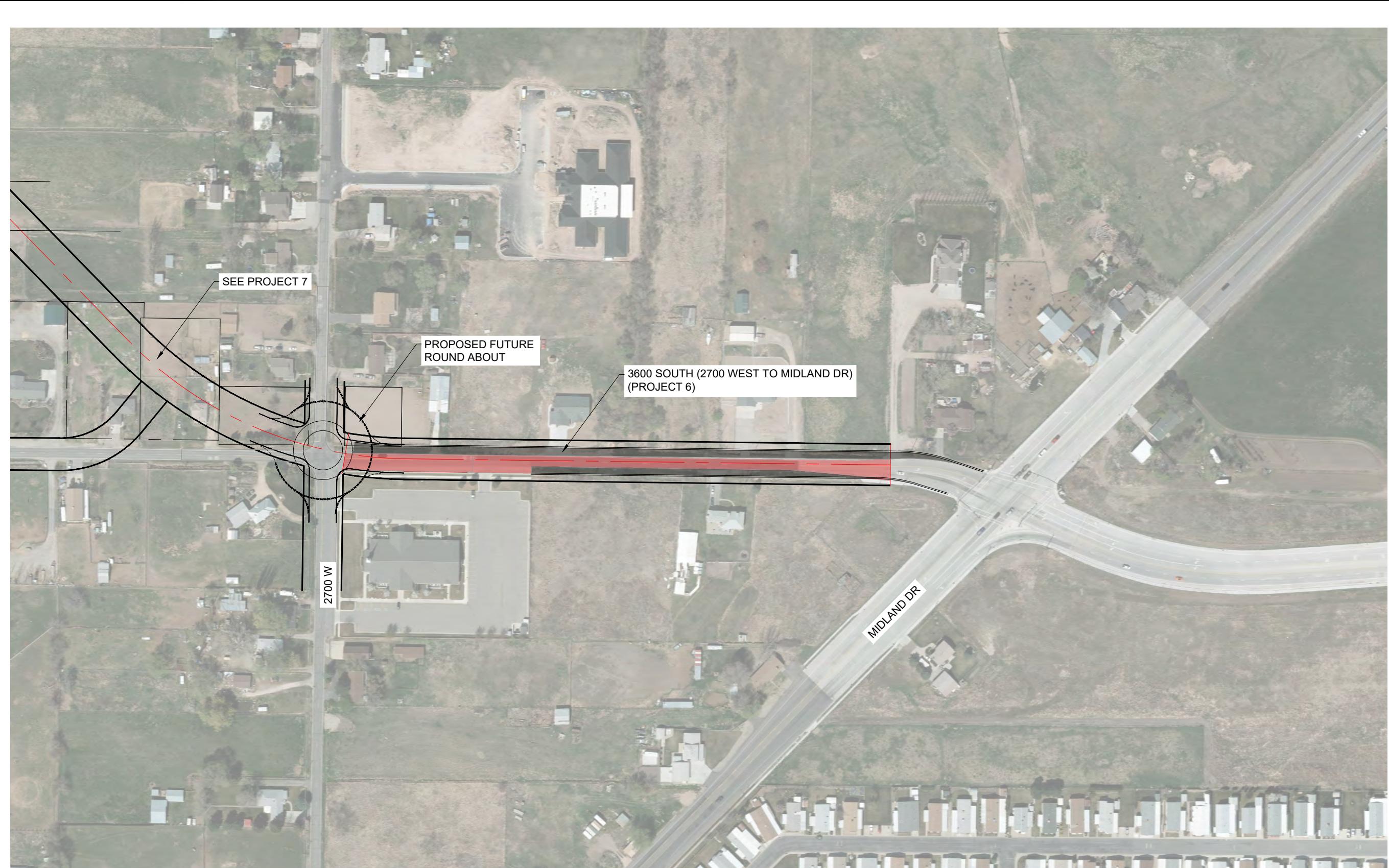
1800 S TO 2100 S

WILSON LANE

TRANSPORTATION MASTER PLAN

WEST HAVEN, UTAH


Date: 07-11-25	Scale: Custom
Designed: KAN	Drafted: KAN
Checked: RC	



Date	Description

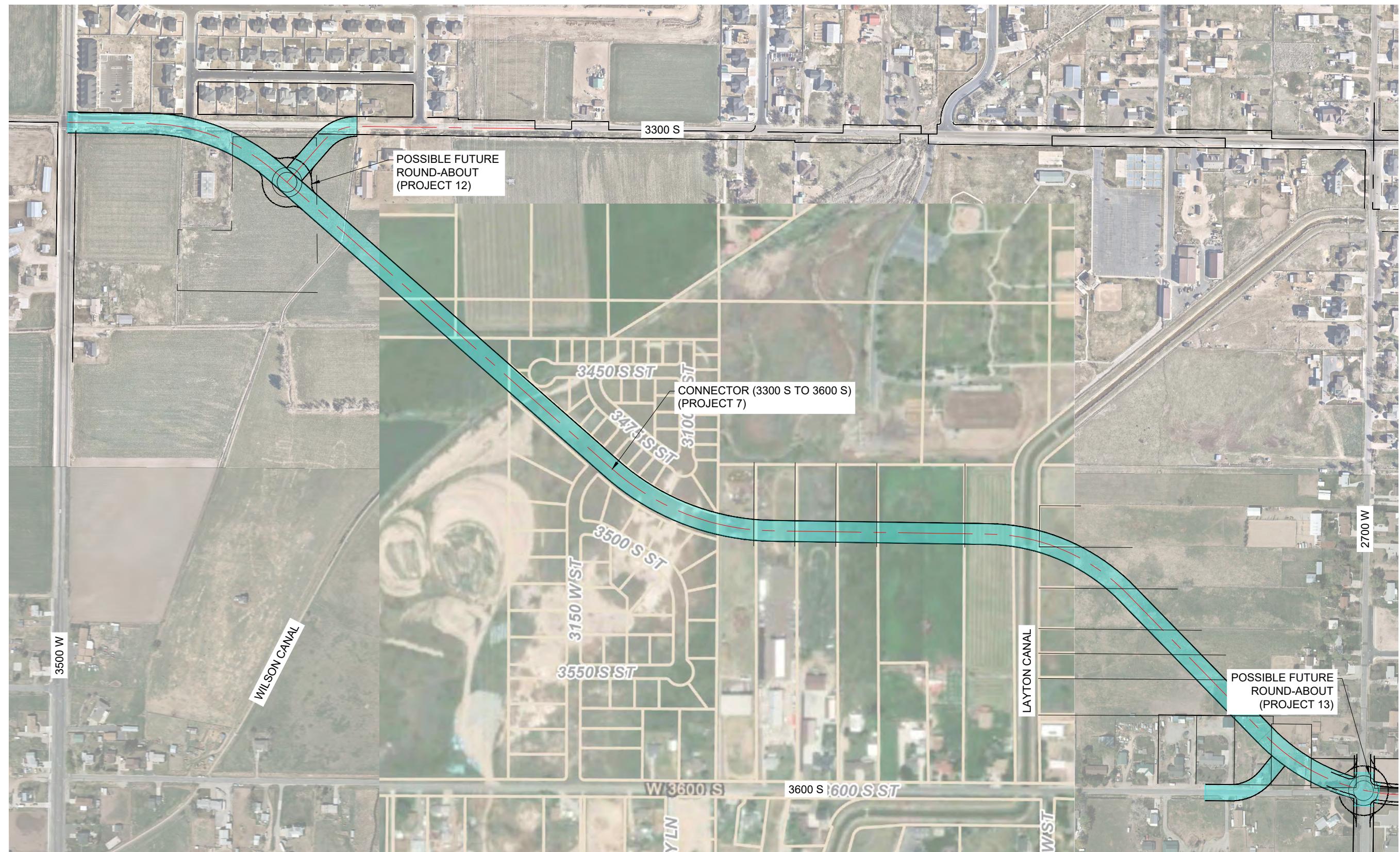
Date	Description

Date	Description

Date	Description

0' 100' 200' 400'
Scale in Feet
1" = 200'

EX6


PROJECT 8
3600 SOUTH - 2700 TO MIDLAND
TRANSPORTATION MASTER PLAN
WEST HAVEN, UTAH

GARDNER
ENGINEERING
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

1580 W 200 S, WEST HAVEN, UT 84041

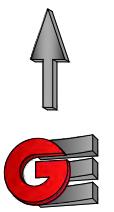
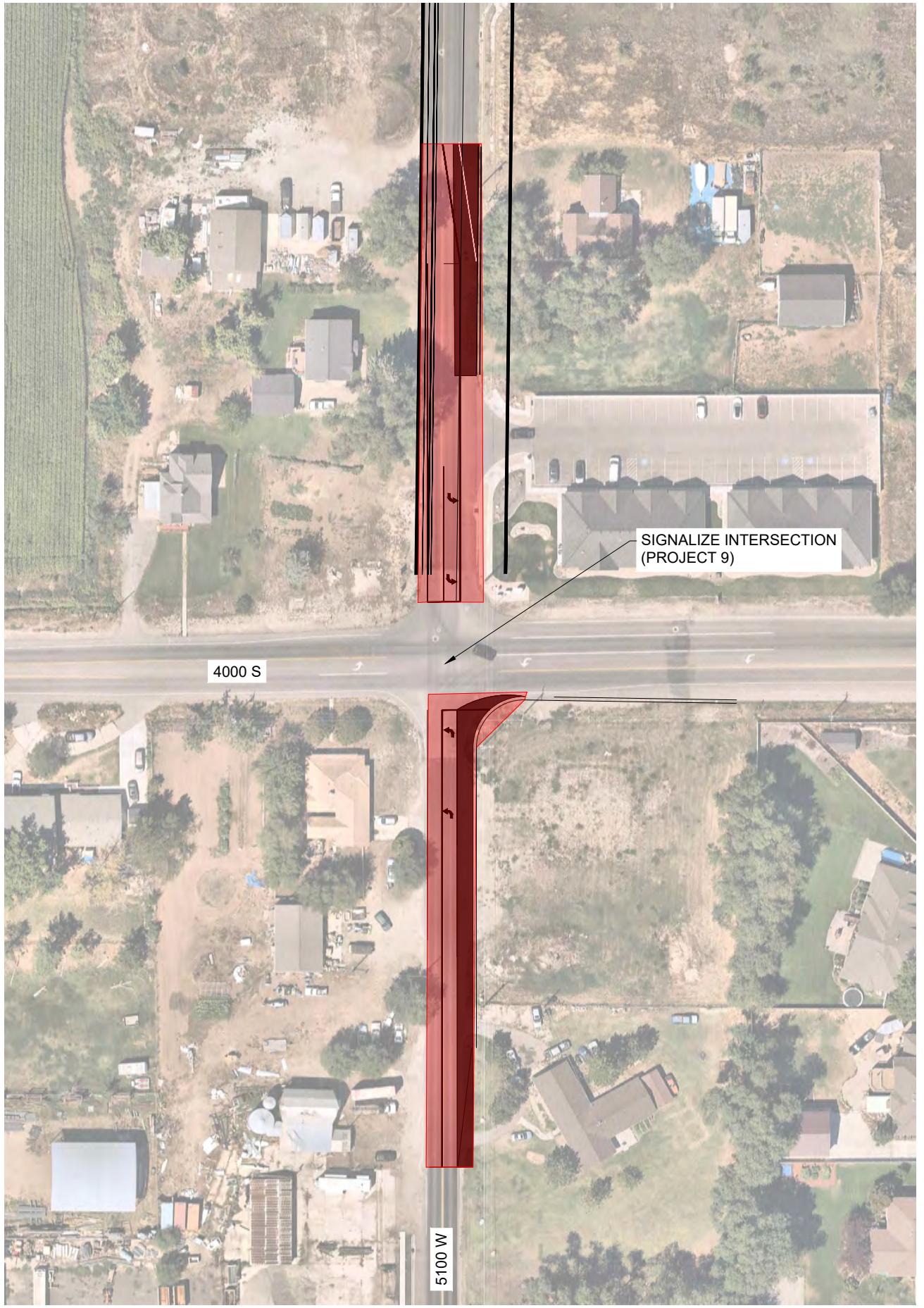
P 801.476.0202 F 801.476.0066

Date: 07-11-25
Scale: 1" = 200'
Designed: KAN
Drafted: KAN
Checked: RC

0' 200' 400' 800'
Scale in Feet
Custom

EX7

GARDNER
ENGINEERING



CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

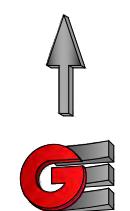
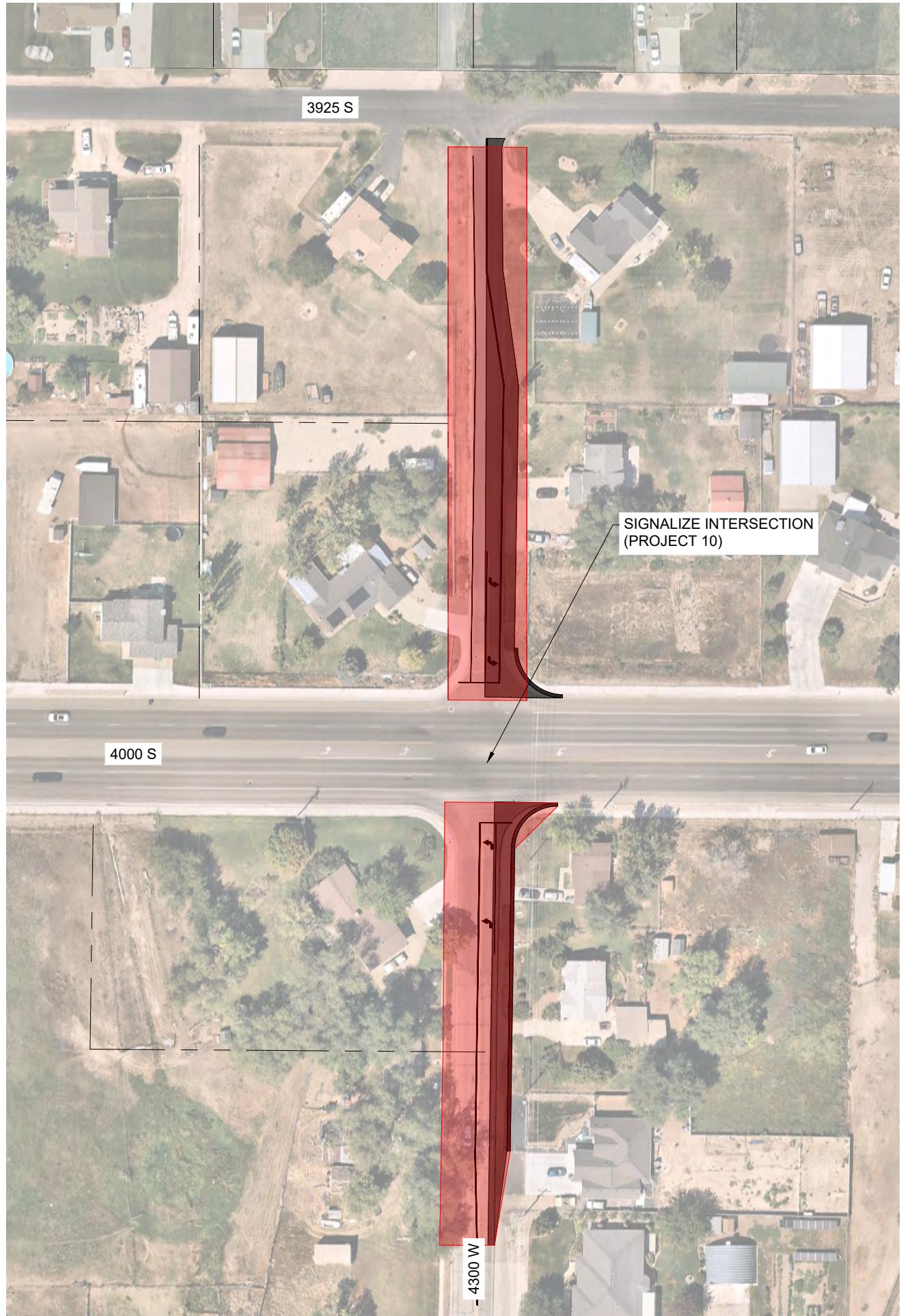
1580 W 200 S, WEST HAVEN, UT 84041

P 801.476.0202 F 801.476.0066

PROJECT 7
3600 S TO 3300 S
TRANSPORTATION MASTER PLAN
WEST HAVEN, UTAH

Date: 07-11-25
Scale: Custom
Designed: KAN
Drafted: KAN
Checked: RC

0' 50' 100' 200'
Scale in Feet
1" = 100'



EX8

**GARDNER
ENGINEERING**
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

1580 W 200 S, WEST HAVEN, UT 84041
P 801.476.0202 F 801.476.0066

PROJECT 9

GARDNER ENGINEERING CIVIL • LAND PLANNING MUNICIPAL • LAND SURVEYING	5100 W SIGNAL	Revisions	Date	Date: 07-11-25
		Date	Description	Scale: 1" = 100'
				Designed: KAN
				Drafted: KAN
				Checked: RC

0' 50' 100' 200'
Scale in Feet
1" = 100'

EX9

**GARDNER
ENGINEERING**
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING

1580 W 200 S, WEST HAVEN, UT 84041
P 801.476.0202 F 801.476.0066

PROJECT 10

4300 W SIGNAL
TRANSPORTATION MASTER PLAN
WEST HAVEN, UTAH

Date: 07-11-25	Date: 07-11-25
Scale: 1" = 100'	Scale: 1" = 100'
Designed: KAN	Designed: KAN
Drafted: KAN	Drafted: KAN
Checked: RC	Checked: RC

Exhibit C – Storm Water Impact Fee Facilities Plan

DRAFT

WEST HAVEN CITY

STORM DRAIN

IMPACT FEE FACILITIES PLAN

SEPTEMBER 2022
REVISED SEPTEMBER 2025

Prepared by:
GARDNER ENGINEERING

TABLE OF CONTENTS

SECTION

I. Executive Summary	3
A. CERTIFICATION of Compliance with Utah State Code (11-36a-306(1)):	5
II. Introduction	6
III. Demographics	7
A. Projected Population at Buildout	7
B. Current Population	8
C. Service Area and Projected Land Use	10
IV. Impact Fee Facility Plan.....	10
A. Design Standards for Planning.....	10
B. Storm Drainage Evaluation	10
C. Inventory of Existing System.....	10
D. Level of Service Summary	11
E. Excess Capacity	11
F. Collection System Analysis	12
G. Suggested Capital Improvement Projects	14
H. Method of Financing Needed Facilities	14

INDEX TO TABLES

<u>TABLE</u>	<u>PAGE</u>
Table 1 - Projected Total Population by Land Use	7
Table 2 - Population Projections 2020-2042.....	9
Table 3 - Capital Projects List.....	Appendix A

INDEX TO FIGURES

<u>FIGURES</u>	<u>PAGE</u>
Figure 1 - West Haven General Plan	F1
Figure 2 - Drainage Basins	F2
Figure 3 - Future Development Area	F3
Figure 4 - Capital Projects Map	F4

APPENDICES

A. CAPITAL PROJECTS

Table 3 – Capital Projects

Figure 4 – Capital Projects Map

Table 4 – Proposed Project sizing

B. EXISTING STORM DRAIN SYSTEM MAPPING

C. Storm Drain Basin Maps with Basin Flow Calculations

C1 – Hooper Slough

C2 – Howard Slough

C3 - 3300 South and Buttermilk Slough

C4 – Hooper Slough

D. COST ESTIMATE

E. DEVELOPMENT PROJECTION AND IMPERVIOUS AREA ESTIMATE

I. Executive Summary

This Storm Drain Impact Fee Facilities Plan (IFFP) summarizes anticipated projects to be undertaken by the City during this impact fee collection period (a 6-year planning window). Projects include system improvements needed to support future growth (impact fee eligible) and improvements needed to address existing drainage deficiencies. Projects that need to address existing deficiencies will be identified as ineligible for funding by impact fees.

It is intended that this IFFP will be used in determining the location and size of system improvements. It is recognized that not all lands will be developed as densely as allowed by zoning, and some zoning may be changed to allow lower or higher densities. The variability of development density and location is accounted for by a regular review and update of the City's IFFP.

Public Facilities identified in this Plan have been sized to accommodate flows at buildout conditions; however, the impact fee will be proportioned to the amount of capacity anticipated to occur within the impact fee collection period in the Impact Fee Analysis (IFA). Proposed land use, population data, and estimated growth rates have been used to calculate the buildout population and year. This information is used for informational purposes and as a resource for prioritizing proposed projects. The estimated buildout population is 39,488. Using estimated growth rates, the estimated buildout year is approximately 2042. Using the US Census data of 3.22 people per household, it is estimated that 6,110 additional units will be developed in the City prior to buildout. Further, it is estimated that the undeveloped area within the City is approximately 1,981 Acres. An estimate of 100 acres of total development or 37.81 acres of impervious development per year, based on historic development data gathered from the Weber County Assessor and the existing development impervious areas sampled throughout the City, as detailed in *Appendix E- Development Projection and Impervious Area Estimate*.

West Haven City is unique in that it is divided into several isolated drainage basins. The basins are created by the various drainage sloughs and the Weber River along the north boundary of the City. Figure 2 – Drainage Basin Overview included in this plan identifies the geographic area of each basin. Historically, the drainage from the roads and fields was conveyed to the slough / river through roadside ditches and culverts. As development has occurred, many of the roadside ditches have been piped, along with additional storm drain infrastructure and detention facilities installed to serve individual subdivisions. The majority of the projects identified in this plan involve the installation of new storm drain infrastructure or the replacement of undersized culverts in ditches that run along the major roads throughout the City to accommodate new growth.

With the assistance of West Haven City Staff, a capital project list was developed to identify the anticipated projects needed to address existing drainage deficiencies and system improvements needed to serve future growth. Estimated peak flows were calculated to determine the size of future storm drainpipes. These projects are identified in Figure 4 – Capital Projects.

Figure 3 – Future Development Area highlights the areas of the City where future development is anticipated to occur. The City's General Plan was used to determine land use densities for these future development areas. City development standards require that, as development occurs, onsite detention basins are constructed as a Project Improvement. Stormwater detained in these basins was evaluated with 0.2 cubic feet per second detained release rates.

Some of the projects identified in this Plan will be necessitated by new development activity. The City's plan for financing system improvements requires that impact fees are necessary to maintain the existing Level of Service. Utah Code provides a mechanism for the City to collect from new development their proportionate share of the costs related to providing the Public Facilities needed within the City. This mechanism is the collection of an impact fee. The IFFP will then be analyzed by others to establish the maximum legal impact fee in a separate document called an Impact Fee Analysis (IFA).

The preliminary estimate of the probable cost of all the capital improvements (including both impact fee eligible and ineligible projects) projected for buildout is \$11,918,773¹. These improvements will occur over the course of time it takes for the projected buildout growth to materialize. The estimated cost of capital improvements (including both impact fee-eligible and ineligible projects) for the current 6-year planning window is \$4,518,540.

It is recommended that this plan be reevaluated and modified within six years or as growth within the City dictates.

¹ Refer to Appendix A- *Capital Projects* – Table 3. Dollar amount is shown in current value.

A. CERTIFICATION of Compliance with Utah State Code (11-36a-306(1)):

To the extent the following items are addressed in the IFFP, Gardner Engineering certifies that the following impact fee facilities plan:

1. Includes only costs of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. Does not include:
 - a. costs of operation and maintenance of public facilities;
 - b. cost for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by the existing resident's;
 - c. an expense for overhead, unless the expense is calculated pursuant to a methodology that is consistent with generally accepted cost accounting practices and the methodological standards set forth by the federal Office of Management and Budget for federal reimbursement; and
3. Complies in each and every relevant respect with the Impact Fee Act.

Ryan Christensen, P.E.

II. Introduction

West Haven City has retained Gardner Engineering to update its Storm Drain Impact Fee Facilities Plan (IFFP).

The IFFP is being updated using the City's current General Plan to estimate future development density.

The steps shown below have been followed in preparing this *West Haven City Storm Drain Impact Fee Facilities Plan*.

- Complete existing storm drain system inventory and capacity within the existing storm drain system to serve growth;
- Identify existing and future storm drain outfalls, then delineate drainage basins;
- Size future storm drain pipes using projected flows;
- Identify projects to address existing deficiencies and projects needed due to growth;
- Prepare cost estimates for future projects and identify the portion of the cost of these future projects that are impact fee eligible.

The IFFP update is to estimate future storm water runoff in order to size future storm drainpipes and prepare cost estimates for proposed projects to be used for Impact Fee Analysis (IFA). The Impact Fee Act requires that an impact fee be imposed only when based on Impact Fee Facilities Plan (IFFP). An IFFP must document the following:

- A. Identify the existing level of service (LOS).
- B. Establish a proposed level of service (LOS).
- C. Identify any excess capacity to accommodate future growth at the proposed level of service.
- D. Identify demands placed upon existing Public Facilities by new Development Activity at the proposed level of service.
- E. Identify the means by which the political subdivision will meet those growth demands identified in D, above, through new growth, "Buying-In" to excess capacity in C, or the construction of a new Public Facility, which may be financed through grants, bonds, interfund loans, impact fees, and anticipated or accepted dedication of system improvements.

III. Demographics

Current and buildout population estimates have been prepared to assist in evaluating future infrastructure needs. To prioritize Public Facilities projects, it is necessary to estimate the buildout population and project the buildout year. Population data and estimated growth rates were used to determine the buildout population and year. This data is presented below.

A. Projected Population at Buildout

The West Haven City General Plan (*Figure 1*) was used to estimate buildout population. See *Table 1 – Projected Total Population by Land Use*.

The densities (units/ac) used are based on the City's General Plan zoning, with adjustments made to account for existing development densities and conservative estimates of population from multi-family residential areas.

Table 1 – Projected Total Population by Land Use at Buildout

Average Land Use Density	Total Acres	Units/Acre	Units at Buildout	Population at Buildout	Undeveloped acres
R-1 Zoning (20,000 ft ² Lots)	770.69	1	771	2,697	181.8
R-2 Zoning (12,500 ft ² Lots)	1024.06	2	2,048	7,168	541.0
R-2.5 Zoning (10,000 ft ² Lots)	353.71	2.5	884	3,095	180.4
R-3 Multi-Family	96.92	12	1,163	4,070	36.6
R-4 (8,000 ft ² Per Acre)	18.23	4	73	255	0.0
AGRICULTURE (A-1)	1337.77	1	1,338	4,682	6.6
AGRICULTURE (A-2)	212.08	1	212	742	174.5
COMMERCIAL (C-1)	90.96	0	0	0	23.4
COMMERCIAL (C-2)	299.92	0	0	0	138.0
COMMERCIAL (C-3)	613.01	0	0	0	226.5
HEAVY INDUSTRIAL (M-2)	131.86	0	0	0	0.0
LIGHT INDUSTRIAL (M-1)	83.09	0	0	0	0.0
MIXED USE ZC HIGH / MEDIUM / LOW DENSITY	1058.35	4	4,233	14,817	156.3
PARKS / PUBLIC OPEN SPACES/ SCHOOLS	526.00	0	0	0	94.2
DRINKING WATER TREATMENT FACILITY	193.68	2	387	1,356	191.6
PH ZONE	34.55	5	173	605	6.2
TOTAL	6844.87	-	-	39,488	1957.0

B. Current Population

West Haven was incorporated on July 1, 1991. The 2010 US Census counted the West Haven City population as 10,272. The 2020 US Census count for the City was 16,739. The average growth rate from 2010 to 2020 calculates to be about 5%. During this 10-year period, the City experienced varying rates of growth in a given year. The US Census estimated population for July 2022 as 19,880. This population estimate reflects a growth rate of just under 9% per year from 2020 to 2022. West Haven City, along with other areas of the Wasatch Front, has experienced unprecedented growth in the past few years. These various growth rates make it challenging to predict future growth rates. For the purpose of calculating the buildout year, a growth rate of 3.5% was used. This rate was used as a conservative approach, assuming that the average growth rate will decrease in the future as the undeveloped area in the city is developed. The assumptions and uncertainties involved in these population projections are acceptable because they are used only as a guide to prioritizing future project timelines. Future updates to the IFFP can adjust for updated growth rates and other growth in the service area.

Table 2 - Population Projections 2010-2043

Year	% Increase	Population	
2010		10,272	US Census Data
2011	5.0%	10,790	
2012	5.0%	11,334	
2013	5.0%	11,905	
2014	5.0%	12,505	
2015	5.0%	13,136	
2016	5.0%	13,798	
2017	5.0%	14,493	
2018	5.0%	15,223	
2019	5.0%	15,991	
2020	5.0%	16,802	US Census Data
2021	8.8%	18,281	
2022	8.8%	19,880	Census Estimate
2023	3.5%	20,576	
2024	3.5%	21,296	
2025	3.5%	22,041	
2026	3.5%	22,813	
2027	3.5%	23,611	
2028	3.5%	24,438	
2029	3.5%	25,293	
2030	3.5%	26,178	
2031	3.5%	27,094	
2032	3.5%	28,043	
2033	3.5%	29,024	
2034	3.5%	30,040	
2035	3.5%	31,091	
2036	3.5%	32,180	
2037	3.5%	33,306	
2038	3.5%	34,472	
2039	3.5%	35,678	
2040	3.5%	36,927	
2041	3.5%	38,219	
2042	3.3%	39,488	Estimated Buildout

C. Service Area and Projected Land Use

The service area boundary of this Impact Fee Facilities Plan includes the West Haven City boundary, and as amended through annexations. The General Plan indicates several areas for future annexations.

IV. Impact Fee Facility Plan

A. Design Standards for Planning

The West Haven storm drain system is comprised of major and minor systems. The minor system consists of the components, including curbs, gutters, ditches, inlets, pipes, open channels, etc. The minor system is designed to carry runoff from the 10-year storm event.

The major system provides overland relief for stormwater flows exceeding the capacity of the minor system. This usually happens during more infrequent storm events, such as the 50 and 100-year storms. The major storm drainage system consists of a combination of storm drainpipes and channelizing surface flows, including the streets and frontages within the right of way. The roadways in newly developed areas should be constructed lower than the adjacent lots, which allows roadways to convey the runoff exceeding the capacity of the minor system.

This IFFP analyzes the minor storm drainage system designed to handle the 10-year storm event. Applying the 100-year storm event to the major storm drainage system is a more complex issue and is not addressed in this Plan. Detailed topography citywide would be necessary to model the flow patterns of a 100-year storm event. It is recommended that the City require that the major storm system in new development be designed to meet the design criteria of the 100-year storm event, specifically the detention facilities. In addition, the City has adopted a Low Impact Development (LID) Standard to address water quality requirements. The LID standard can be accessed on the City's website. The following design criteria are used in this Plan:

Pipe – Size: New storm drainpipes shall be a minimum of 15" as required by West Haven City. It is recommended that the maximum pipe size be based on necessary cover and water table elevations.

Pipe – Slope: Pipes slopes that were evaluated were taken from the data gathered as part of the field survey. Future pipes were sized using an estimated 0.50% slope.

Flow Calculations: The Manning's Equation was used for flow calculations to analyze pipe capacity. For future concrete pipe flow calculations, a Manning's Coefficient (n) of 0.013 was used.

B. Storm Drainage Evaluation

The Rational method was used to approximate the 10-year peak flow for each subbasin. For subbasins that had detention ponds, the release rate of 0.2 cfs/acre was used for the peak flow. Undeveloped areas are anticipated to detain stormwater flows at a rate of 0.2 cfs / acre.

C. Inventory of Existing System

An inventory of the existing storm drain system was initially compiled to create a GIS mapping system. The original mapping was prepared using available plans, survey data, and a visual survey. Ongoing coordination with City staff has been used to

identify unknown information in the existing system mapping. Gardner Engineering surveyed the location of manholes, inlets, and outfalls. Survey Data was to update the existing mapping.

The completed inventory of the storm drain system was used to delineate basins and evaluate flows. The existing storm drain mapping is maintained digitally on the City's online GIS mapping. Additionally, mapping sheets have been created and are included in *Appendix B – Existing Storm Drain System Mapping*.

D. Level of Service Summary

The level of service for the West Haven Storm Drain system is summarized below. The proposed level of service is the same as the existing level of service. Therefore, only one level of service is listed in this Plan. Unlike many other utilities, there are few minimum State of Utah standards for storm drain. The level of service is established to provide the infrastructure needed to protect residents and property from flooding. Standards are set to find a balance between cost, feasibility, and acceptable water levels throughout the City during a storm event. The table below includes the existing and proposed level of service standards.

Level of Service

Description	Standard
Allowable Runoff	Development within the City is required to detain stormwater with a release rate of 0.2 CFS / AC. This release rate is intended to maintain predevelopment runoff rates
Detention	Volume required to hold the 100 – year design storm with at least 1 ft of freeboard. Release rate per Allowable Runoff.
Storm Drain Conveyance	Pipes shall be designed to carry the minor 10-year storm. The major 100-year storm is planned to be conveyed in detention ponds, pipes, and within road right-of-ways. Minimum pipe size is 15" RCP with adequate slope to carry the necessary flows.

E. Excess Capacity

The existing storm drain system was evaluated to determine areas of future development that will be served by existing storm drain infrastructure. Figure 3 – Future Development Area shows areas where future development is anticipated. There are isolated areas of future development that may utilize existing storm drain infrastructure, but the majority of future development will be served by new Public Facilities or project-specific improvements. In addition to future Public Facilities, future development will largely utilize existing sloughs and the Weber River for stormwater conveyance. Buy-in for the use of excess capacity in the sloughs and river was not analyzed because the facilities were not constructed by the City with known costs.

F. Collection System Analysis

Drainage Basins: The City is delineated into 6 different drainage basins A-F. The basins were delineated based on where the basin outfall is located. A map of the drainage basins is shown in *Figure 2 – Drainage Basins Overview*. The following is a description of each basin:

➤ Basin A – Hooper Slough

The Hooper Slough drainage basin is the largest basin in the City. The Hooper Slough begins in the general area south of 1800 South and west for 1900 West. The slough runs out of the existing City boundary west of 3200 West, and then the recently annexed area of Staker Farm Subdivision, and then back into the City south of 3300 South at approximately 4100 West, where it remains within the City boundary until entering Hooper City at 5100 West and 4600 South. There are several outfalls from the storm drain system into the slough. The City has completed several slough culvert improvement projects for roadway widening projects. For long-term flood control, a master planned regional detention pond is planned as part of the Green Farms Subdivision near 4100 West and 3800 South. The Buttermilk Slough and the 3300 South basins both flow into the Hooper Slough. Basin descriptions for these are included below.

➤ Basin B – Buttermilk Slough

The Buttermilk Slough begins within the City east of 2700 West and north of 3300 South, and begins as channelized flow west of the Layton Canal. The Buttermilk Slough flows into a piped section of the Hooper Slough in 3500 West at approximately 2700 South. There are several outfalls to the slough from the storm drain system. The slough runs through the future Windsor Farms Park. For long-term flood control, there is planned regional detention within the park area.

➤ Basin C – Howard Slough

The Howard Slough begins near 3300 West and 3600 South and runs southwest through the City until entering Roy City near 4000 West and 4600 South. There are several outfalls to the slough from the storm drain system. The City has completed culvert upgrades on the Howard Slough for road projects in the past. There have also been isolated areas of the slough that have been piped through the development of adjacent properties.

➤ Basin D – Weber River

The Weber River Basin is located along the City's north boundary, generally northeast of 1900 West and 1800 South. The area within the basin encompasses several industrial zones located east of I-15 and adjacent to 1900 West. There are also residential areas north of 1800 South and east of I-15. These areas drain to the river through various drainage ditches and storm drainpipes.

➤ Basin E – 3300 South

The 3300 South Drainage Basin includes the area tributary to the Hooper Slough east of the Hooper Slough Basin and south of the Buttermilk Basin. The basin includes areas of roadside ditches and development-related storm drain improvements. Runoff from this basin leaves the City boundary and runs into an unincorporated area at 3300 South and 3500 West until eventually flowing into the Hooper Slough at 3300 South and 4200 West. There are planned improvements to enable long-term flood control through the use of a regional detention pond at West Haven Country Park.

➤ Basin F – 5100 West

Runoff from the 5100 West Basin flows north along 5100 West and west along 3300 South to the intersection of these streets, where it then leaves the City boundary and flows north along 5100 West. The runoff from this area eventually enters a ditch tributary to the Walker Slough.

Developed and Undeveloped Area: Figure 3 – Future Development Area includes the general area of future development. The undeveloped area identified was created using aerial imagery, county parcel data, and taking into account planned subdivisions. The Jordan Valley Water parcels were also identified.

The undeveloped areas of the City were evaluated based on the assumption that stormwater runoff would be detained with a maximum release rate of 0.2 cfs / acre.

Storm Water Conveyance and Detention in Sloughs: In most areas of West Haven City, runoff currently collects in storm drainpipes or roadside ditches and is then conveyed to sloughs, which generally flow southwesterly through the City. The existing sloughs serve as drainage channels and, in some areas, provide natural detention. Preserving and maintaining the sloughs for existing and future storm drainage is important because replacing the sloughs with a piped storm drainage system capable of conveying the 100-year storm event is unfeasible due to cost and topography. It is recommended that the City develop a recurring maintenance plan on the sloughs within the City to include dredging existing channels to maintain capacity. Preserving access and obtaining property or easements when development occurs along the sloughs is important to allow for needed maintenance and protection against decreasing slough capacity. The maintenance of sloughs is not an impact fee eligible activity.

Capital Project List: In order to create the capital projects list, evaluation of the existing storm drain system was completed with the assistance of the West Haven City Staff to identify existing issues requiring maintenance or improvements. Consideration of anticipated developments and future road reconstruction projects was also considered. Evaluation of contributing areas was completed to determine peak flows, which were then used to size future projects. *Appendix A – Capital Projects* includes a map (see Figure 4) of the proposed capital projects. Projects were grouped together as applicable and assigned project numbers for reference. The assigned project numbers do not correspond with project priority. Table 3 includes a list of capital projects, including total estimated cost and the costs eligible for funding by impact fees. The percentage eligible for impact fees is based on whether the proposed project is needed to serve future growth or just to address existing issues or deficiencies. After evaluation with City Staff, the proposed projects were prioritized into planning year windows. Brief descriptions of each project were created to clarify the intended scope and purpose of the project.

Project Costs: Cost estimates were developed using current construction costs. The costs are preliminary estimates of probable construction costs, including costs associated with materials, installation, engineering, construction management, and contingency. A cost per foot was developed for each size of storm drainpipe. This cost was applied to the proposed project lengths to determine total project costs. Estimates are shown under *Appendix D – Cost Estimates*. The total estimated cost of projects identified is included in Table 3 in *Appendix A- Capital Projects*.

As development progresses, the existing storm drain system will be required to accommodate increased flows. In some locations, existing storm drain conveyance will need to be improved to support the buildout demands. Some projects are not eligible to be funded entirely from Impact Fees collected. Each Capital Project was listed with a percentage of cost attributed to existing development, cost attributed to future development within the current planning window, and cost attributed to future development outside of the current planning window. *Table 3 in Appendix A - Capital Projects* shows the project costs and the portions of costs attributed to existing and future development. The total amount of project costs eligible for impact fee funding within the current planning window is estimated at \$2,137,856. The total project cost for the current planning window is \$4,518,540.

G. Suggested Capital Improvement Projects

The rate and location of new development will determine which projects the City actually undertakes. Upon reviewing the Capital Projects with City staff, the list was prioritized. The prioritized list was broken down in 6-year increments from 2022 to buildout. The prioritized list is presented in Table 3 of Appendix A, *Capital Projects*. This priority schedule is a suggested course of action only and should be adjusted periodically as future development occurs.

H. Method of Financing Needed Facilities

Impact fees collected shall be used within 6 years of receipt in most cases, except as described in Utah Code Section 11-36-302 Impact fees. The City's plan for financing system improvements requires that impact fees are necessary to maintain the existing Level of Service. As such, the cost of Impact fee eligible projects will be financed through impact fees. If the rate of impact fee collection is insufficient to pay for the related project in cash, outside financing may be sought. Non-impact fee eligible projects will be financed from user fees and taxes, not from impact fees. Non-impact fee projects were recommended by City staff in order to improve or address existing issues or deficiencies in the system.

Grants

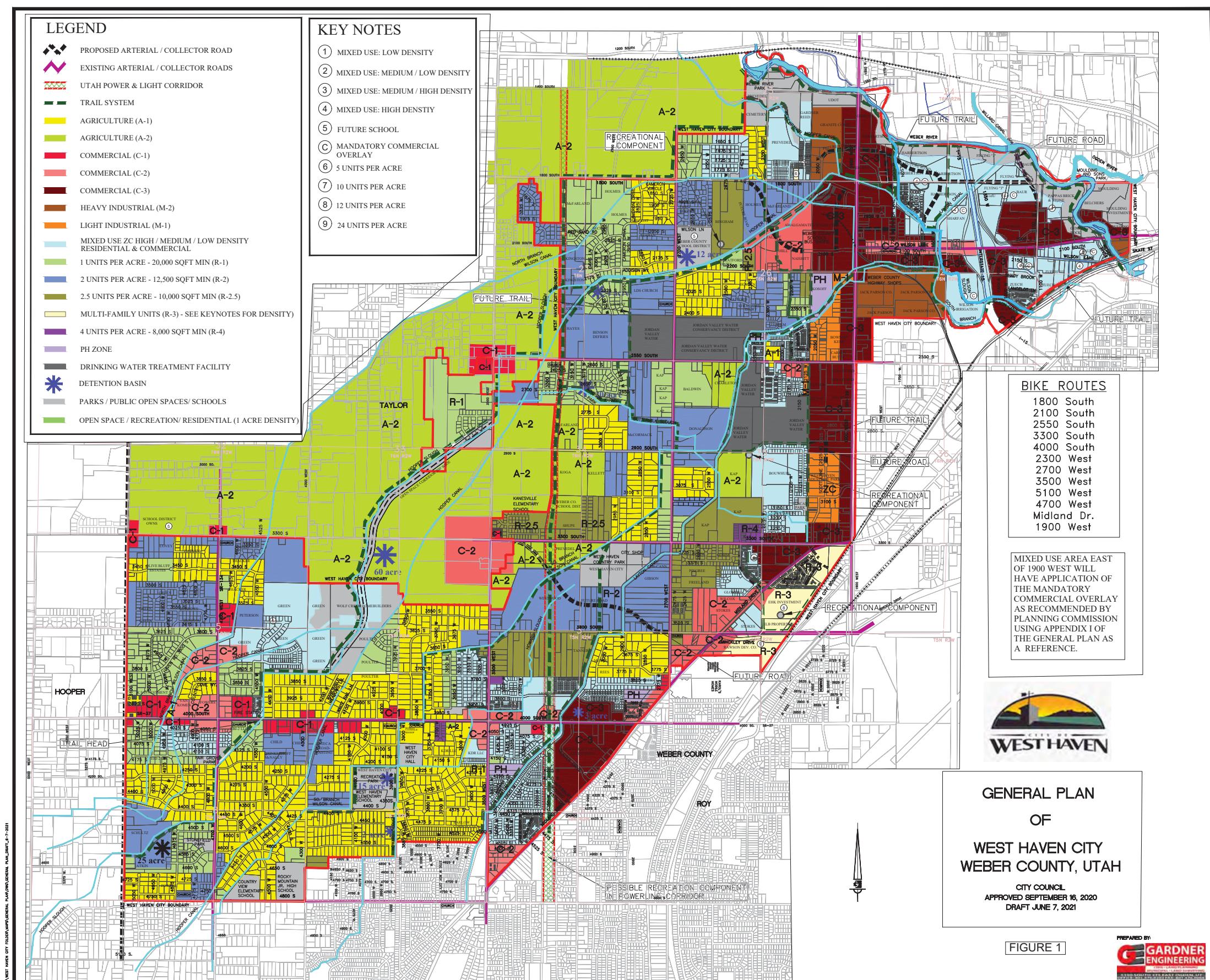
The City is unaware of any potential grant sources for the stormwater collection system. However, should it be the recipient of any such grants, it will then look at the potential to reduce impact fees.

Bonds

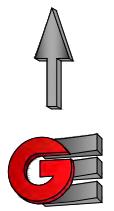
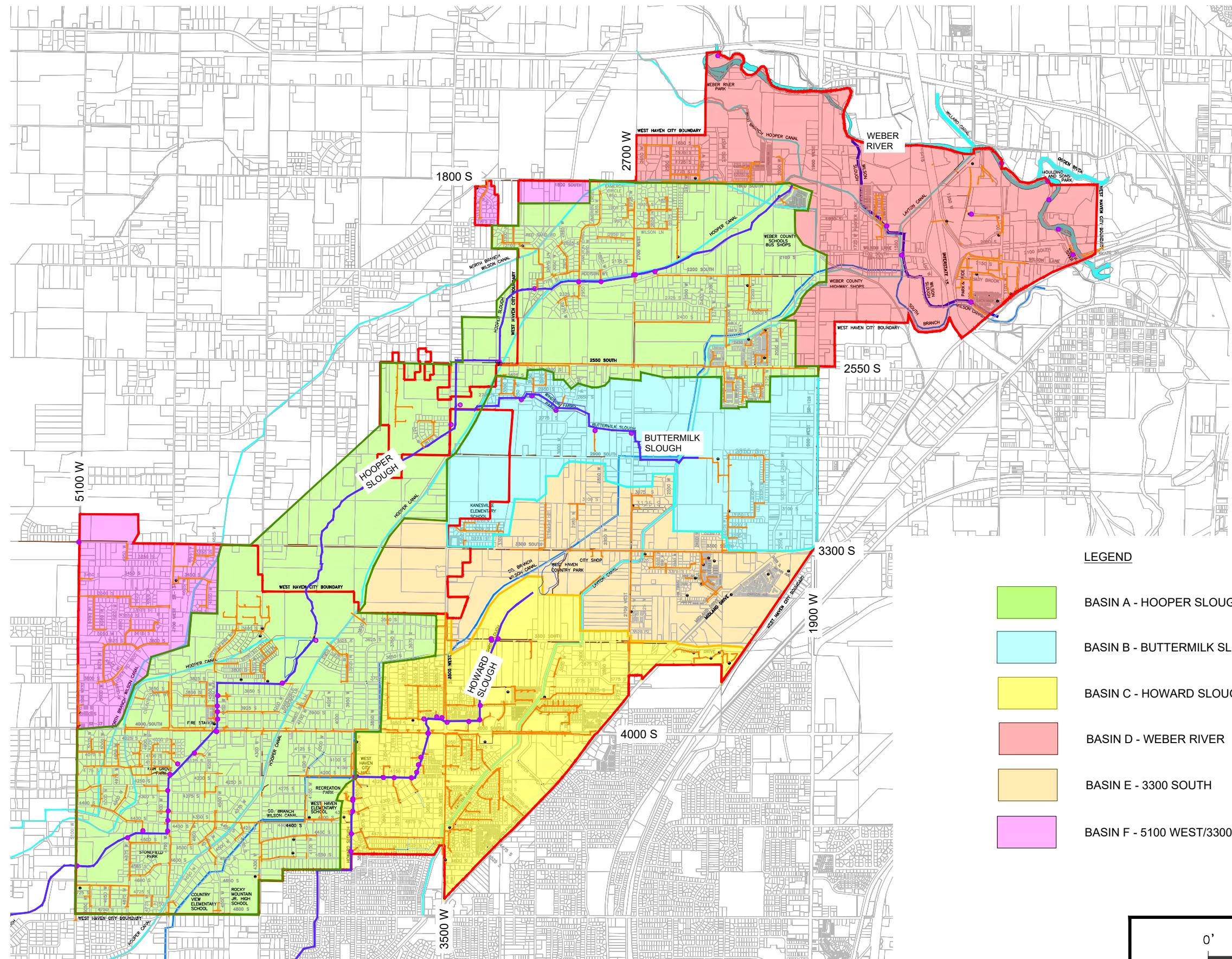
The City has no outstanding bonds for the stormwater collection system. While the City may issue bonds in the future to fund storm collection facilities, no bonds are currently being contemplated; therefore, no costs associated with bond issuance have been included in the calculation of impact fees.

Interfund Loans

The City does not anticipate facilitating an interfund loan.


Impact Fees

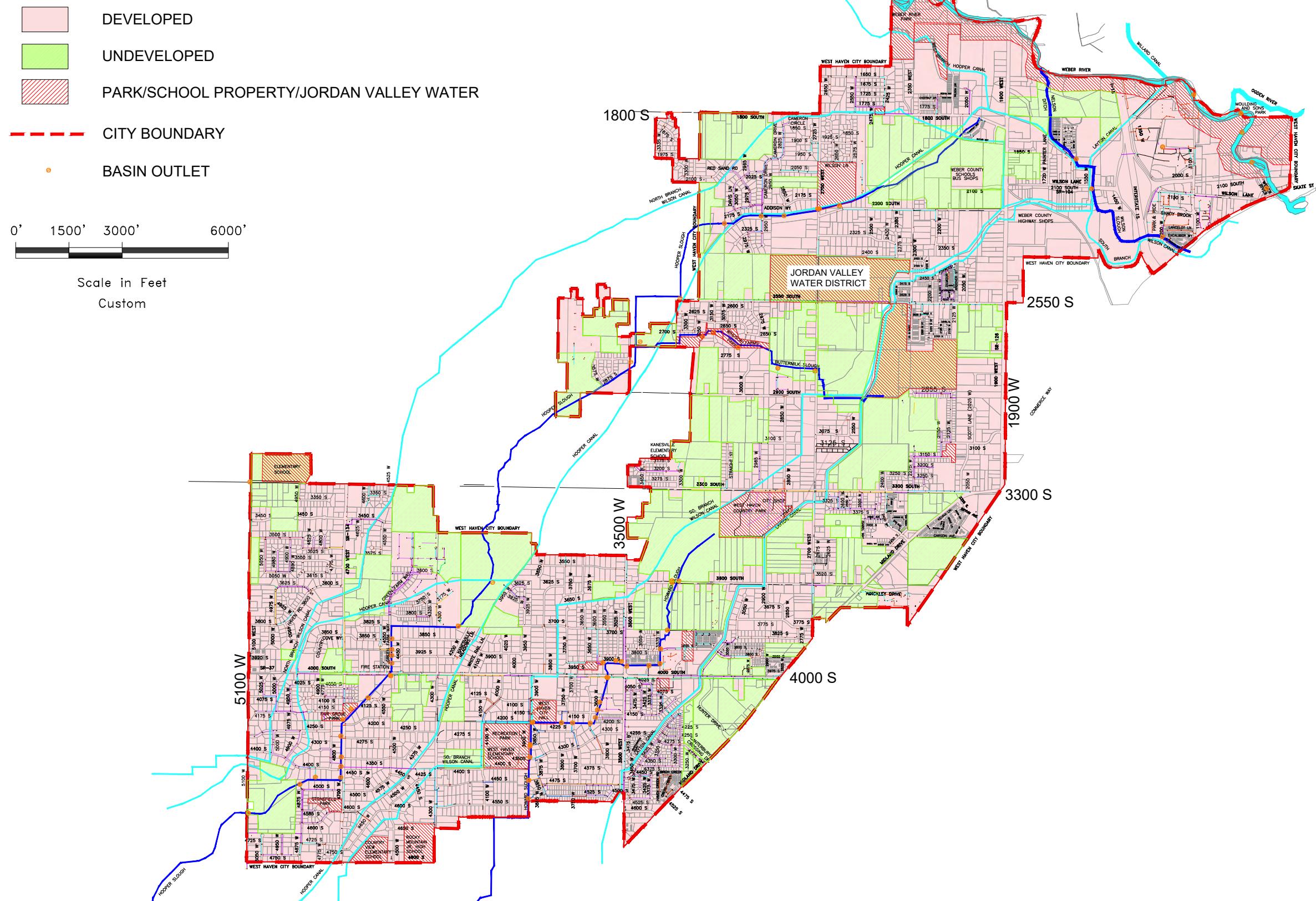
Due to the anticipated growth in the City, impact fees are a viable means of allowing new development to pay for its impacts on the existing system. The City finds that it is necessary to impose impact fees to maintain the proposed level of service for the



stormwater collection system. The City's plan for financing these system improvements relies upon impact fees. This IFFP is developed following legal guidelines, enabling the preparation of an Impact Fee Analysis for the stormwater collection system and allowing the City to charge impact fees for the system.

Anticipated or Accepted Dedications of System Improvements

Any item that a developer funds must be included in the IFFP if a credit against impact fees is to be issued and must be agreed upon with the City before construction of the improvements.

DRAINAGE BASINS OVERVIEW



GARDNER
ENGINEERING
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING
OFFICE: 301-476-0202 FAX: 801-476-0066

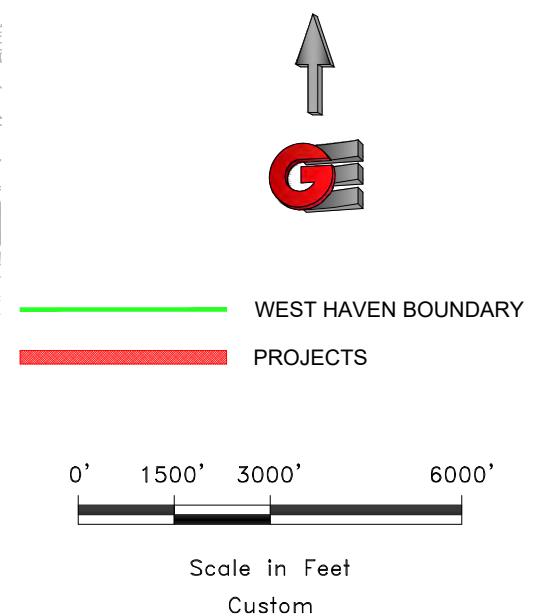
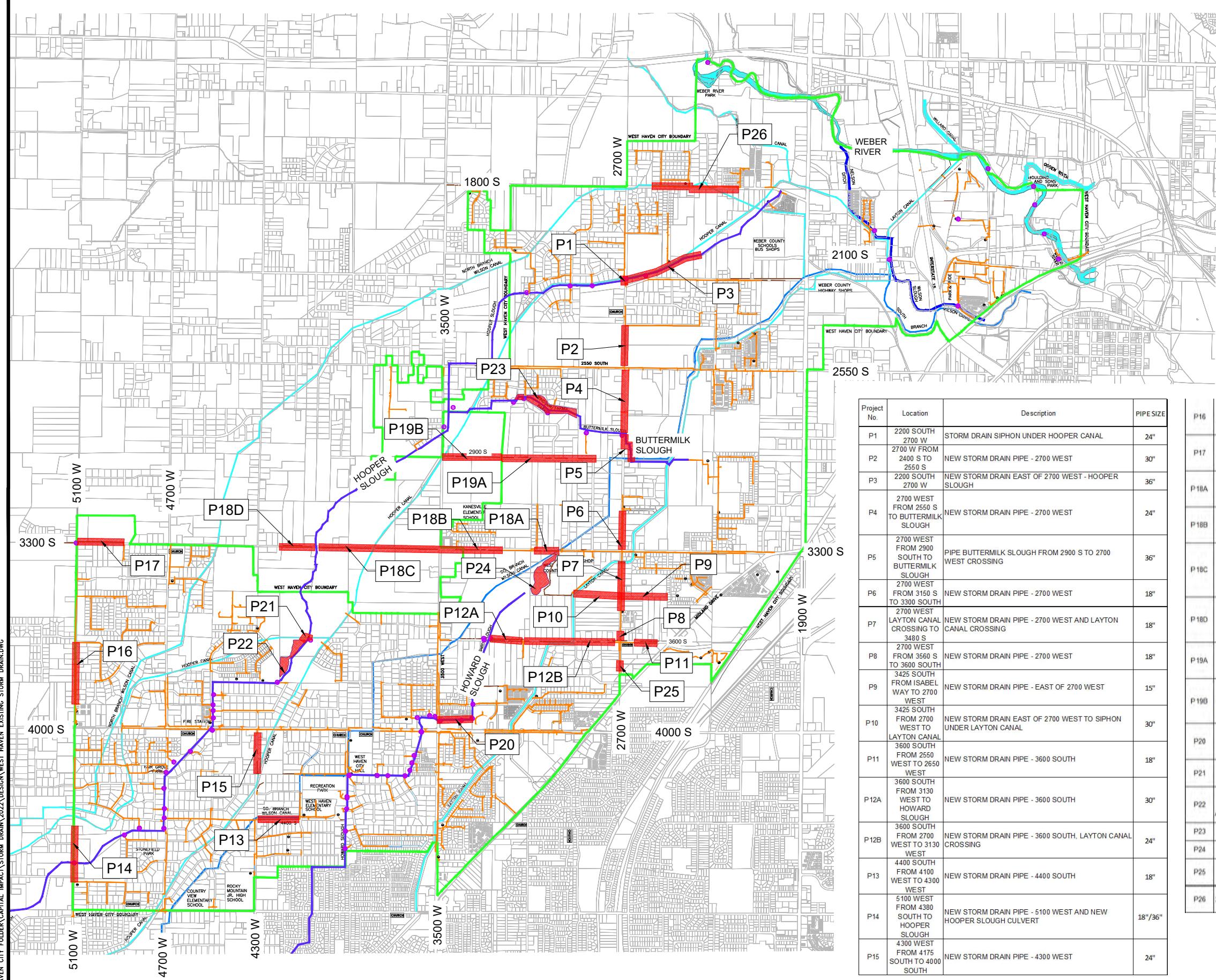
DRAINAGE BASINS OVERVIEW
WEST HAVEN - IFFP
PROJECT ADDRESS
WEST HAVEN, WEBER, UTAH

Date: 08-10-22
Scale: Custom
Designed: KAN
Drafted: KAN
Checked: RC

FUTURE DEVELOPMENT AREA

FIGURE 3

APPENDIX A



Capital Projects

CAPITAL PROJECTS 2022

TABLE 3

Project No.	Location	Description	% of Project Cost Attributed to Existing Development	% of Project Cost Attributed to Future Development Current Planning Window (2023-2028)	% of Project Cost Attributed to Future Development (AFTER 2028)	Total Estimated Project Cost				Project Cost Attributed to Future Development During Planning Window	Total Planning Window Impact Fee Eligible Costs	Project Cost Attributed to Existing Development	Total Planning Window Cost Attributed to Existing Development
						2023-2028	2029-2034	2035-2040	2041-2046				
P1	2200 SOUTH 2700 W	STORM DRAIN SIPHON UNDER HOOPER CANAL	75%	25%	0%	\$106,473.70				\$26,618.43		\$79,855.28	
P2	2700 W FROM 2400 S TO 2550 S	NEW STORM DRAIN PIPE - 2700 WEST	0%	60%	40%	\$307,150.80				\$184,290.48		\$0.00	
P3	2200 SOUTH 2700 W	NEW STORM DRAIN EAST OF 2700 WEST - HOOPER SLOUGH	0%	60%	40%	\$797,221.12				\$478,332.67		\$0.00	
P10	3425 SOUTH FROM 2700 WEST TO LAYTON CANAL	NEW STORM DRAIN WEST OF 2700 WEST TO SIPHON UNDER LAYTON CANAL	0%	60%	40%	\$363,593.04				\$218,155.82		\$0.00	
P16	5100 WEST FROM 3720 SOUTH TO 3500 SOUTH	NEW STORM DRAIN PIPE - 5100 WEST	0%	60%	40%	\$638,783.91				\$383,270.35		\$0.00	
P17	3300 SOUTH FROM 4950 WEST TO 5100 WEST	NEW STORM DRAIN PIPE - 3300 SOUTH	0%	60%	40%	\$290,925.13				\$174,555.08		\$0.00	
P18A	3300 SOUTH FROM 2985 WEST TO STRAIGHT ST.	NEW STORM DRAIN PIPE - 3300 SOUTH	0%	60%	40%	\$186,390.66				\$111,834.39		\$0.00	
P18B	3300 SOUTH FROM 3450 WEST TO CITY BOUNDARY	NEW STORM DRAIN PIPE - 3300 SOUTH	0%	60%	40%	\$382,666.14				\$229,599.68		\$0.00	
P20	3950 SOUTH FROM 3300 WEST TO 3500 WEST	PIPE THE HOWARD SLOUGH BEHIND ELLIES LANDING	100%	0%	0%	\$367,357.58				\$0.00		\$367,357.58	
P22	GREEN FARMS 3700 SOUTH AND 4200 WEST	HOOPER SLOUGH REGIONAL DETENTION	0%	60%	40%	\$552,000.00				\$331,200.00		\$0.00	
P26	1800 S FROM 2600 W TO 2200 W	REPLACE STORM DRAIN PIPE - 1800 SOUTH	100%	0%	0%	\$525,978.03				\$0.00	\$2,137,856.90	\$525,978.03	\$973,190.88
P8	2700 WEST FROM 3560 S TO 3600 SOUTH	NEW STORM DRAIN PIPE - 2700 WEST	0%	0%	100%		\$51,400.87			\$51,400.87		\$0.00	
P9	3425 SOUTH FROM ISABEL WAY TO 2700 WEST	NEW STORM DRAIN PIPE - EAST OF 2700 WEST	30%	0%	70%		\$243,898.48			\$170,728.93		\$73,169.54	
P11	3600 SOUTH FROM 2550 WEST TO 2650 WEST	NEW STORM DRAIN PIPE - 3600 SOUTH	0%	0%	100%		\$128,987.08			\$128,987.08		\$0.00	
P12A	3600 SOUTH FROM 3130 WEST TO HOWARD SLOUGH	NEW STORM DRAIN PIPE - 3600 SOUTH	0%	0%	100%		\$340,995.24			\$340,995.24		\$0.00	
P12B	3600 SOUTH FROM 2700 WEST TO 3130 WEST	NEW STORM DRAIN PIPE - 3600 SOUTH, LAYTON CANAL CROSSING	0%	0%	100%		\$611,956.12			\$611,956.12		\$0.00	
P24	COUNTRY PARK	REGIONAL DETENTION	0%	0%	100%		\$448,800.00			\$448,800.00	\$1,752,868.24	\$0.00	\$73,169.54
P4	2700 WEST FROM 2550 S TO BUTTERMILK SLOUGH	NEW STORM DRAIN PIPE - 2700 WEST	0%	0%	100%		\$309,535.78			\$309,535.78		\$0.00	
P5	2700 WEST FROM 2900 SOUTH TO BUTTERMILK SLOUGH	PIPE BUTTERMILK SLOUGH FROM 2900 S TO 2700 WEST CROSSING	10%	0%	90%		\$335,672.05			\$302,104.85		\$33,567.21	
P6	2700 WEST FROM 3150 S TO 3300 SOUTH	NEW STORM DRAIN PIPE - 2700 WEST	0%	0%	100%		\$218,599.16			\$218,599.16		\$0.00	
P7	2700 WEST LAYTON CANAL CROSSING TO 3480 S	NEW STORM DRAIN PIPE - 2700 WEST AND LAYTON CANAL CROSSING	30%	0%	70%		\$328,146.58			\$229,702.61		\$98,443.97	
P21	HOOPER SLOUGH 3600 SOUTH	DIVERSION STRUCTURE AND NEW CROSSING UNDER WILSON CANAL	50%	0%	50%		\$250,000.00			\$125,000.00		\$125,000.00	
P23	WINDSOR FARM PARK	BUTTERMILK REGIONAL DETENTION	0%	0%	100%		\$468,000.00			\$468,000.00	\$1,652,942.40	\$0.00	\$257,011.18
P13	4400 SOUTH FROM 4100 WEST TO 4300 WEST	NEW STORM DRAIN PIPE - 4400 SOUTH	0%	0%	100%		\$229,655.20			\$229,655.20		\$0.00	
P14	5100 WEST FROM 4380 SOUTH TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 5100 WEST AND NEW HOOPER SLOUGH CULVERT	30%	0%	70%		\$395,780.77			\$277,046.54		\$118,734.23	
P15	4300 WEST FROM 4175 SOUTH TO 4000 SOUTH	NEW STORM DRAIN PIPE - 4300 WEST	30%	0%	70%		\$253,489.91			\$177,442.94		\$76,046.97	
P18C	3300 SOUTH FROM WEST HAVEN BOUNDARY TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 3300 SOUTH AND HOOPER CANAL CROSSING	0%	0%	100%		\$1,461,500.97			\$1,461,500.97		\$0.00	
P18D	3300 SOUTH FROM 4250 WEST TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 3300 SOUTH	0%	0%	100%		\$199,784.50			\$199,784.50		\$0.00	
P19A	2900 SOUTH FROM 2850 WEST TO WH BOUNDARY	NEW STORM DRAIN PIPE - 2900 SOUTH	0%	0%	100%		\$532,435.40			\$532,435.40		\$0.00	
P19B	2900 SOUTH FROM WH BOUNDARY TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 2900 SOUTH	0%	0%	100%		\$532,435.40			\$532,435.40		\$0.00	
P25	2700 W FROM 3700 S TO 3750 S	NEW STORM DRAIN PIPE - 2700 WEST	0%	0%	100%		\$59,159.49			\$59,159.49	\$3,469,460.44	\$0.00	\$194,781.20
						\$4,518,540.10	\$1,826,037.78	\$1,909,953.57	\$3,664,241.64				
										Total Cost Attributed to Existing Development	Total Impact Fee Eligible Costs		
										\$11,918,773.10	\$1,498,152.81		\$10,420,620.29

CAPITAL PROJECTS

Project No.	Location	Description	PIPE SIZE
P16	5100 WEST FROM 3720 SOUTH TO 3500	NEW STORM DRAIN PIPE - 5100 WEST	36"
P17	3300 SOUTH FROM 4950 WEST TO 5100 WEST	NEW STORM DRAIN PIPE - 3300 SOUTH	24"
P18A	3300 SOUTH FROM 4250 WEST TO 3600 WEST	NEW STORM DRAIN PIPE - 3300 SOUTH	30"
P18B	3300 SOUTH FROM 3450 WEST TO CITY BOUNDARY	NEW STORM DRAIN PIPE - 3300 SOUTH	36"
P18C	3300 SOUTH FROM WEST HAVEN BOUNDARY TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 3300 SOUTH AND HOOPER CANAL CROSSING	36"
P18D	3300 SOUTH FROM 4250 WEST TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 3300 SOUTH	18"
P19A	2900 SOUTH FROM 2650 WEST TO WH BOUNDARY	NEW STORM DRAIN PIPE - 2900 SOUTH	24"
P19B	2900 SOUTH FROM WH BOUNDARY TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 2900 SOUTH	30"
P20	3950 SOUTH FROM 3300 WEST TO 3600 WEST	PIPE THE HOWARD SLOUGH BEHIND ELLIES LANDING	48"
P21	HOOPER SLOUGH 3600 SOUTH	DIVERSION STRUCTURE AND NEW CROSSING UNDER WILSON CANAL	0
P22	GREEN FARMS 3700 SOUTH AND 4200 WEST	HOOPER SLOUGH REGIONAL DETENTION	5.2
P23	WINDSOR FARM PARK	BUTTERMILK REGIONAL DETENTION	9.2
P24	COUNTRY PARK	REGIONAL DETENTION	7.48
P25	4400 SOUTH FROM 4100 WEST TO 4300 WEST	NEW STORM DRAIN PIPE - 4400 SOUTH	18"
P26	5100 WEST FROM 4380 SOUTH TO HOOPER SLOUGH	NEW STORM DRAIN PIPE - 5100 WEST AND NEW HOOPER SLOUGH CULVERT	18"/36"
P15	4300 WEST FROM 4175 SOUTH TO 4000 SOUTH	NEW STORM DRAIN PIPE - 4300 WEST	24"

CAPITAL PROJECTS		WEST HAVEN - IFFP		VARIOUS LOCATIONS		WEST HAVEN, UTAH	
Date:	08-10-22	Date:	Custom	Scale:	Custom	Designed:	KAN
Designed:	KAN	Drafted:	KAN	Checked:	RC		
Date:		Date:		Revisions			
				Date	Description		

GARDNER
ENGINEERING
CIVIL - LAND PLANNING
MUNICIPAL - LAND SURVEYING
5150 SOUTH 375 EAST OGDEN, UT
OFFICE: 301-476-0202 FAX: 801-476-0066

T4

FIGURE 4

PROPOSED PROJECT SIZING

Table 4

APPENDIX B

Existing Storm Drain System Mapping

West Haven Storm Drain 2022 Map

Legend

city boundary

Storm Drain

Type

- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe

Diameter in inches

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

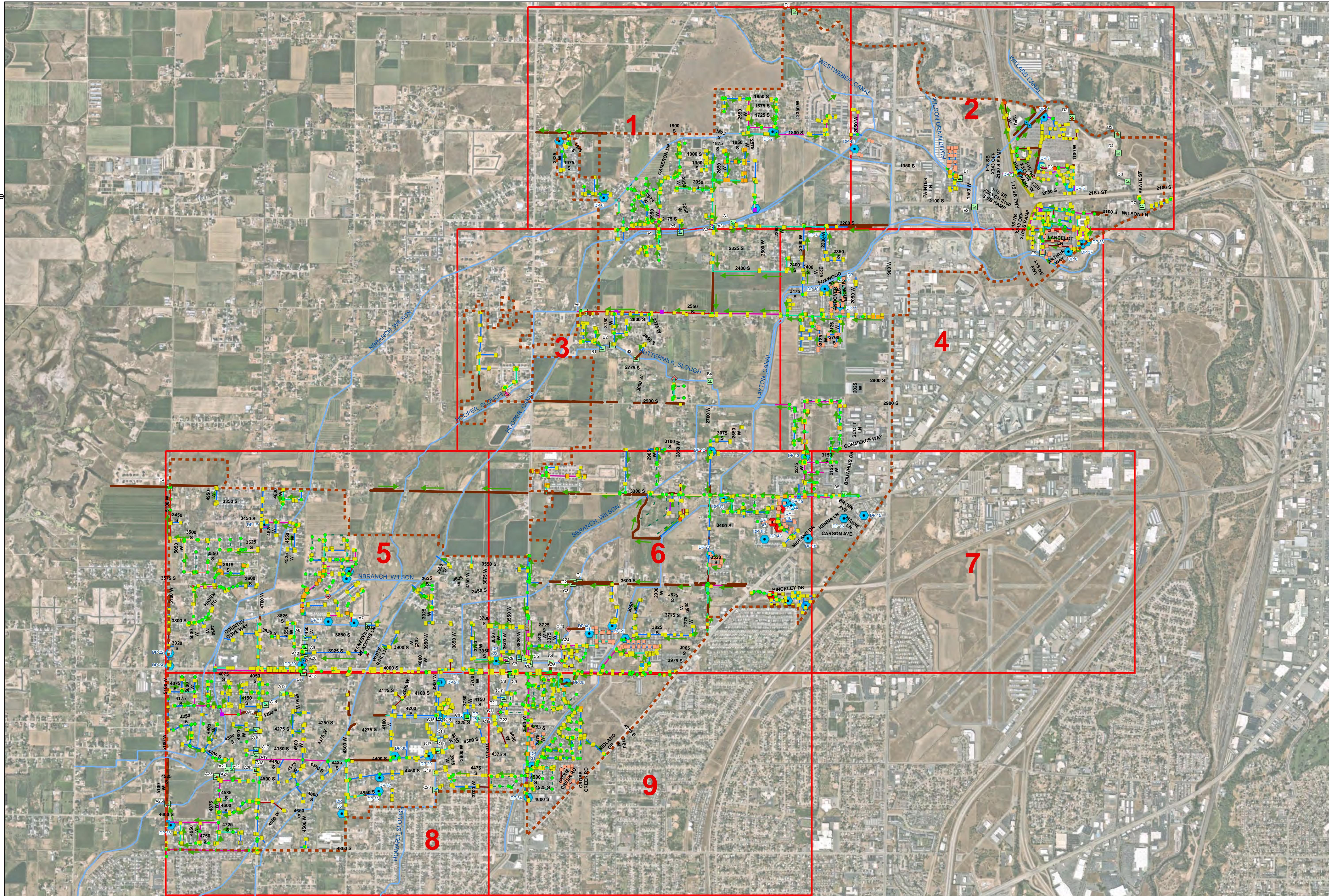
LandDrainPipe

Diameter in inches

- 4
- 8
- Flow Direction
- Barrow Pit
- OpenDitch

Storm Drain Outfall

Status


- Surveyed
- Non Surveyed

Detention Ponds

Type

- Underground
- Surface
- CanalSlough
- WH_Roads1

Grid Index

0 1,125 2,250 4,500 6,750 9,000 Feet

Projected Coordinate System: NAD_1983_StatePlane_Utah_North_FIPS_4301_Feet
Aerial imagery is from Nearmap

Legend

city boundary

Storm Drain**Type**

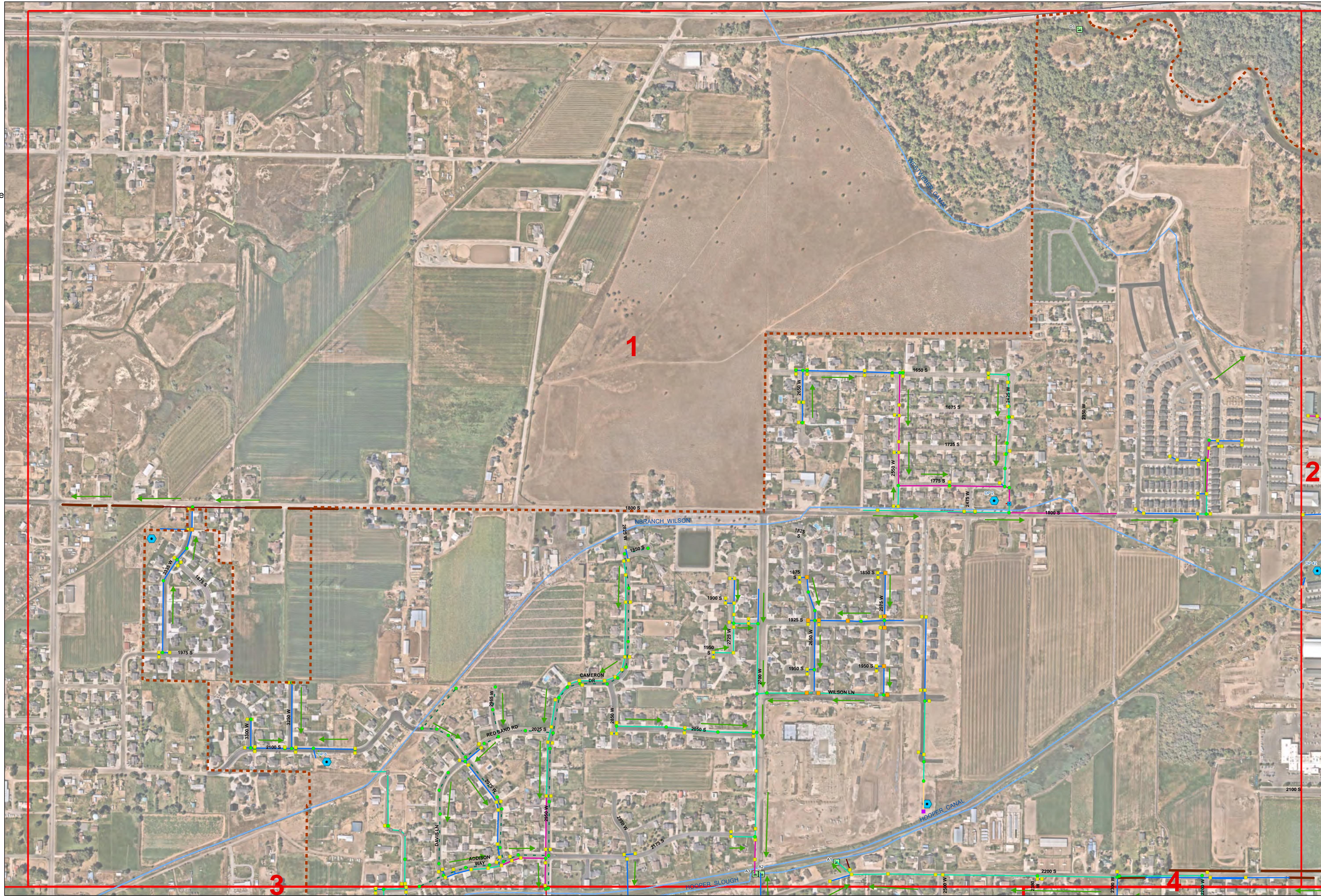
- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

LandDrainPipe**Diameter in inches**

- 4
- 8
- Flow Direction
- Barrow Pit
- OpenDitch


Storm Drain Outfall**Status**

- Surveyed
- ♦ Non Surveyed

Detention Ponds**Type**

- Underground
- Surface
- CanalSlough
- WH_Roads1

Grid Index

Legend

city boundary

Storm Drain**Type**

- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

LandDrainPipe**Diameter in inches**

- 4
- 8
- Flow Direction
- Barrow Pit
- OpenDitch

Storm Drain Outfall**Status**

- Surveyed
- Non Surveyed

Detention Ponds**Type**

- Underground
- Surface
- CanalSlough
- WH_Roads1
- Grid Index

Legend

city boundary

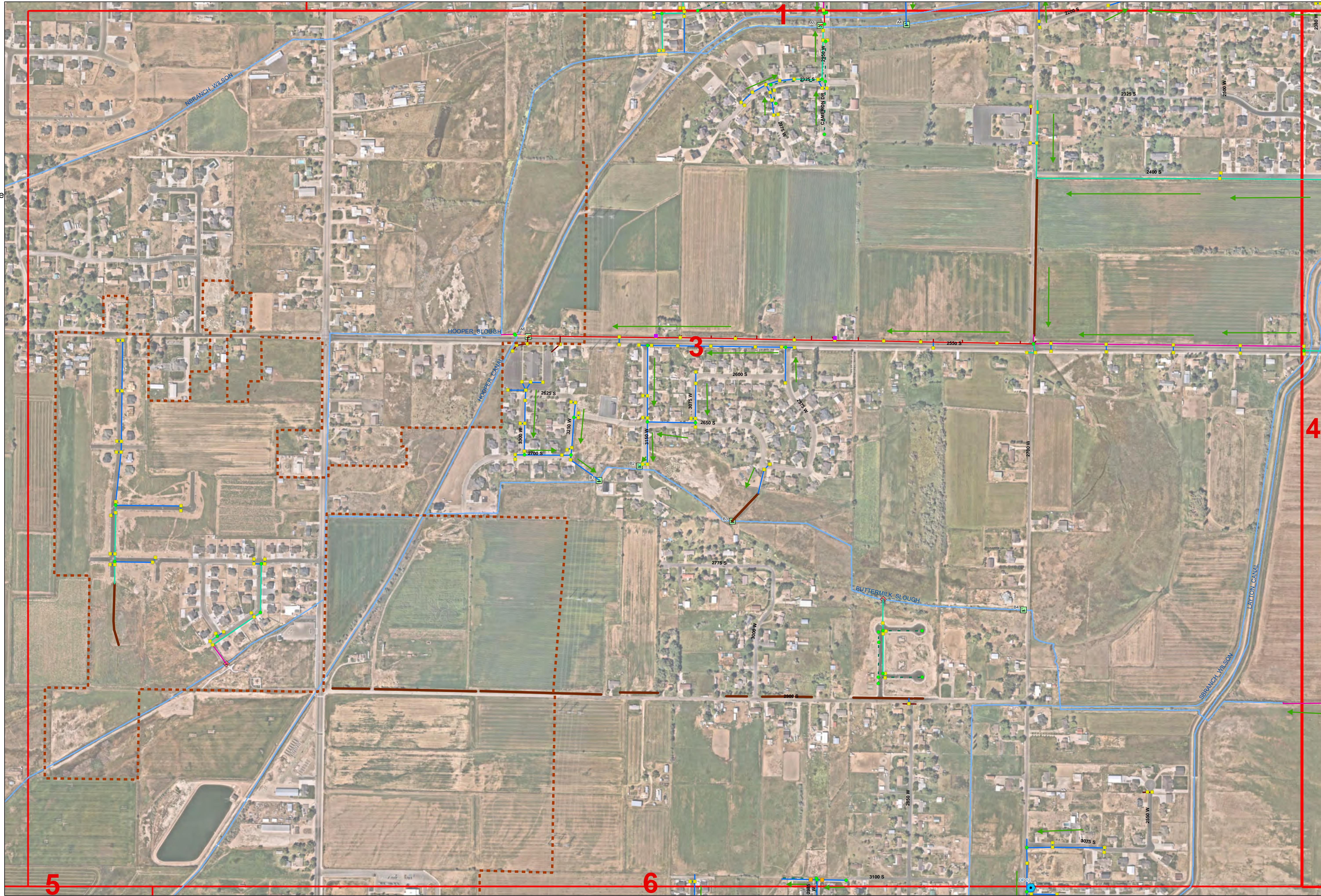
Storm Drain**Type**

- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

LandDrainPipe**Diameter in inches**


- 4
- 8
- Flow Direction
- Barrow Pit
- OpenDitch

Storm Drain Outfall**Status**

- Surveyed
- ◆ Non Surveyed

Detention Ponds**Type**

- Underground
- Surface
- CanalSlough
- WH_Roads1

Grid Index

0 300 600 900 1,200 1,500 1,800 2,100 2,400 Feet

Projected Coordinate System: NAD_1983_StatePlane_Utah_North_FIPS_4301_Feet
Aerial imagery is from Nearmap

West Haven Storm Drain 2022 Map

Page 4 of 9

Legend

 city boundary

Storm Drain

Type

- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe

StemBrain Pipe

Diameter in inches

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

LandDrainPipe

Diameter in inches

Flow Direction

4

8

Storm Drain Outfall

Status

- Surveyed
- Non Surveyed

Detention Ponds

Type

- Underground
- Surface
- CanalSlough
- WH_Roads1
- Grid Index

Projected Coordinate System: NAD_1983_StatePlane_Utah_North_FIPS_4301_Feet
Aerial imagery is from Nearmap

Legend

city boundary

Storm Drain**Type**

- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

LandDrainPipe**Diameter in inches**

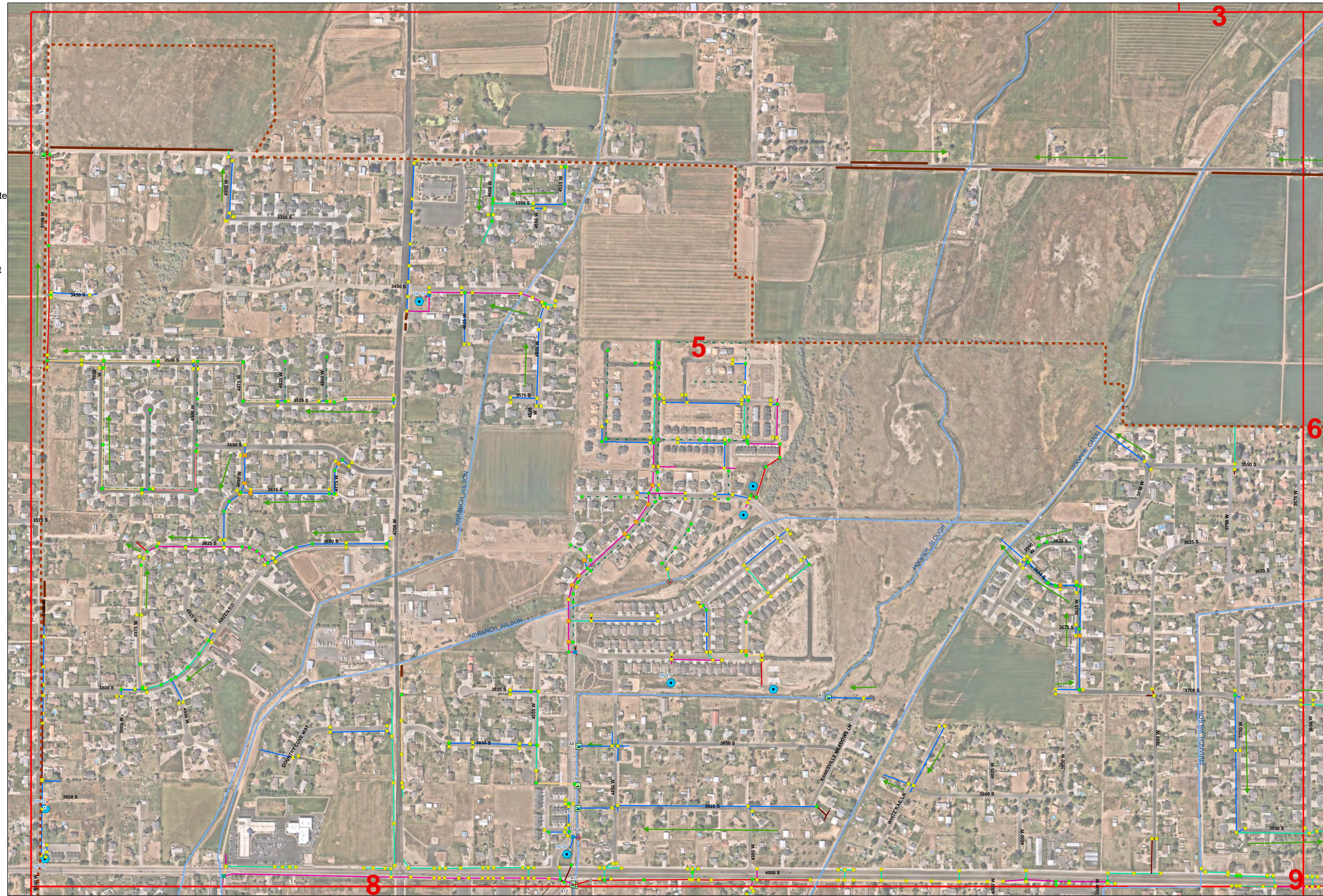
- 4
- 8

Flow Direction

Barrow Pit

OpenDitch

Storm Drain Outfall**Status**


- Surveyed

- Non Surveyed

Detention Ponds**Type**

- Underground
- Surface
- CanalSlough
- WH_Roads1

Grid Index

Legend

city boundary

Storm Drain**Type**

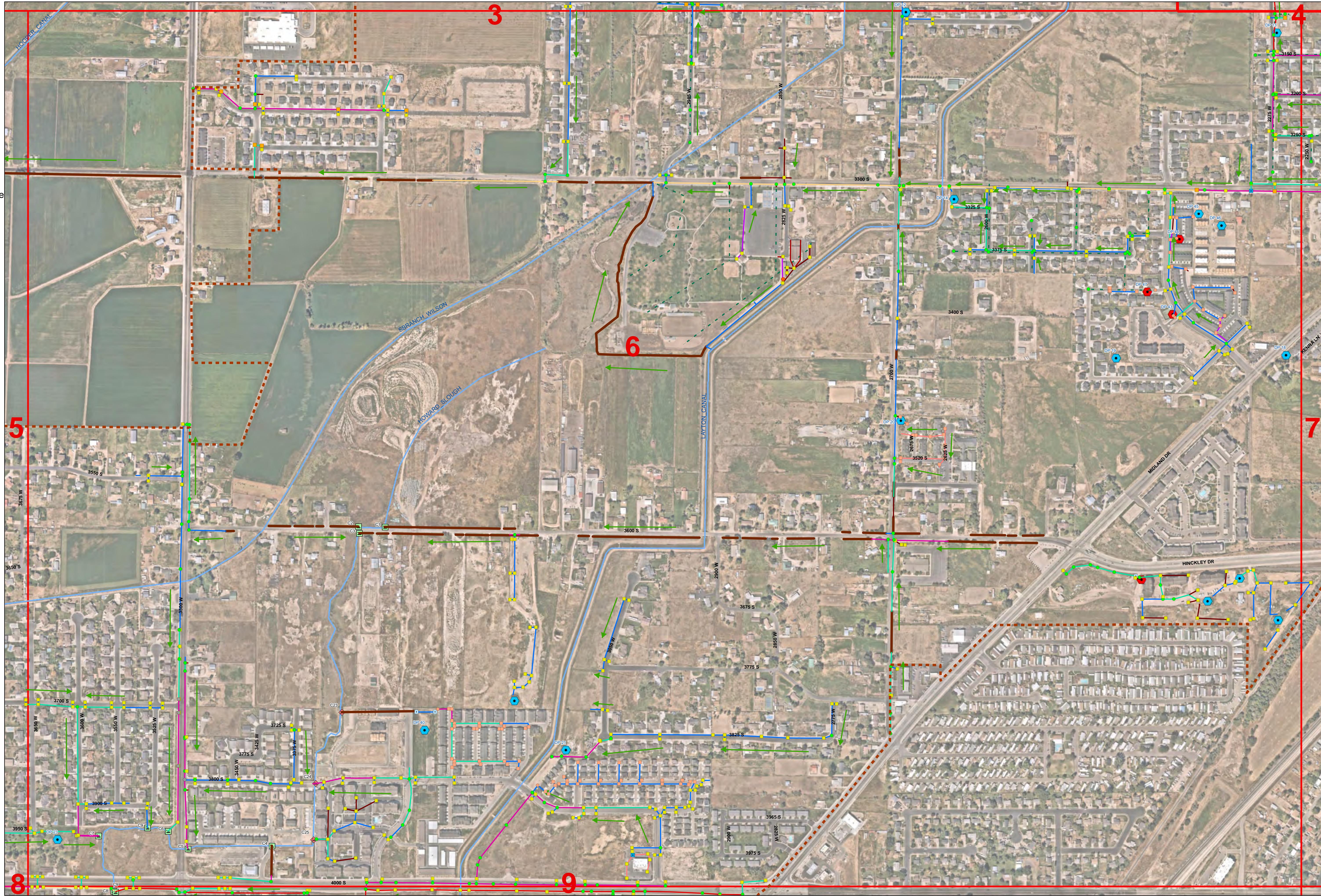
- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

Storm Drain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

Land Drain Pipe**Diameter in inches**

- 4
- 8
- Flow Direction
- Barrow Pit
- Open Ditch


Storm Drain Outfall**Status**

- Surveyed
- ♦ Non Surveyed

Detention Ponds**Type**

- Underground
- Surface
- Canal Slough
- WH_Roads1

— Grid Index

0 300 600 900 1,200 1,500 1,800 2,100 2,400 Feet

Projected Coordinate System: NAD_1983_StatePlane_Utah_North_FIPS_4301_Feet
Aerial imagery is from Nearmap

Legend

city boundary

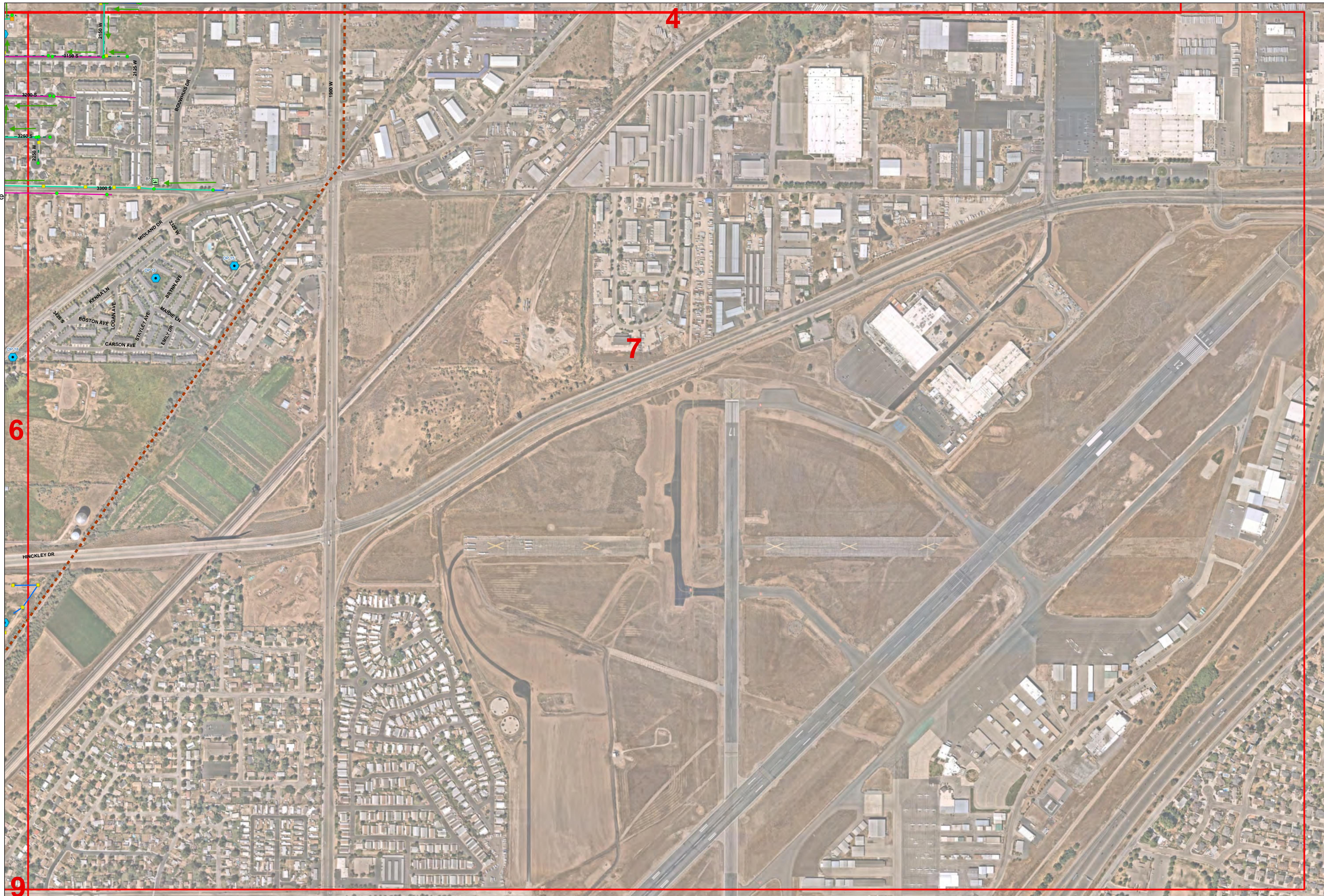
Storm Drain**Type**

- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

LandDrainPipe**Diameter in inches**


- 4
- 8
- Flow Direction
- Barrow Pit
- OpenDitch

Storm Drain Outfall**Status**

- Surveyed
- ◆ Non Surveyed

Detention Ponds**Type**

- Underground
- Surface
- CanalSlough
- WH_Roads1
- Grid Index

Legend

city boundary

Storm Drain**Type**

- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

StormDrain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

LandDrainPipe**Diameter in inches**

- 4
- 8

Flow Direction

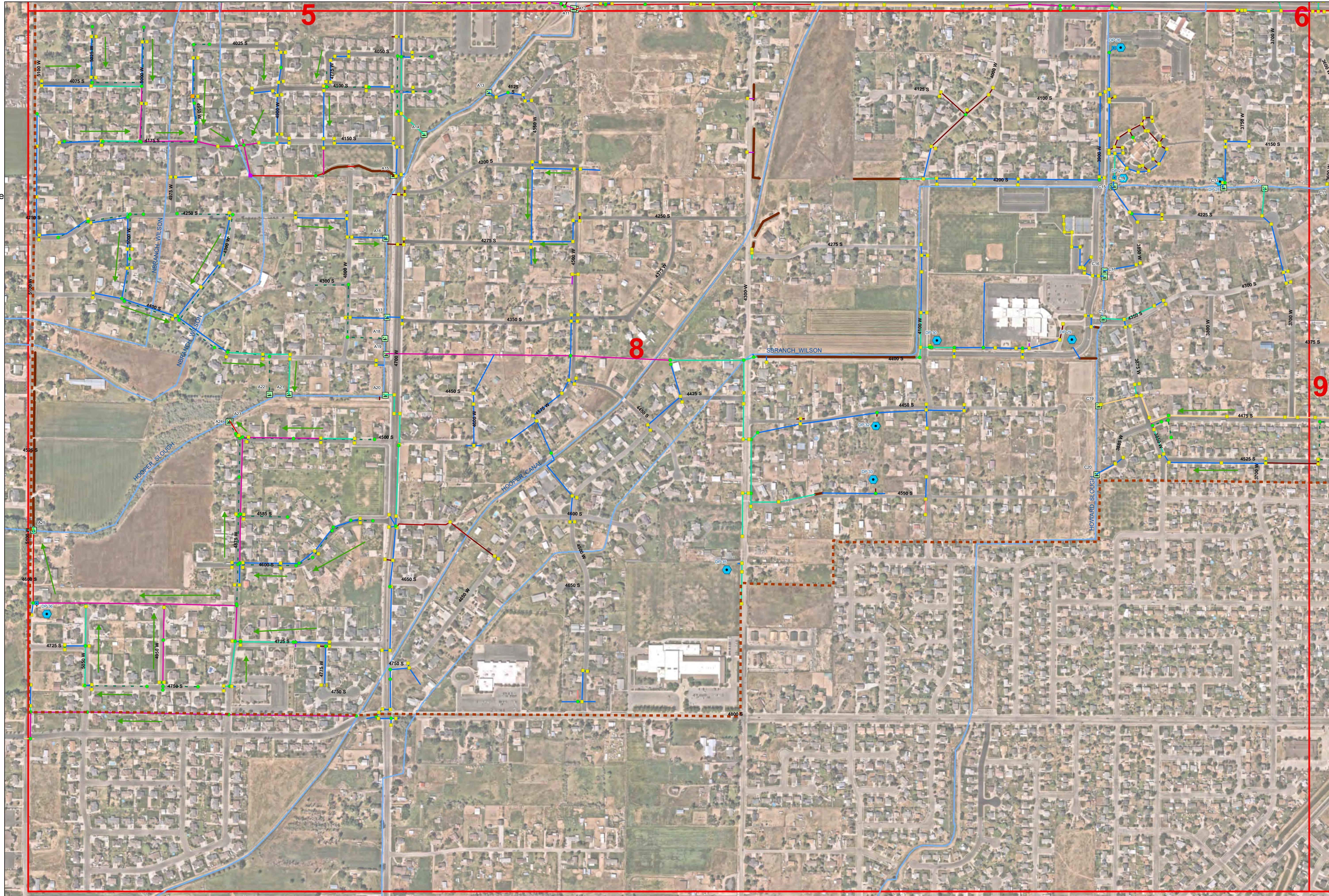
Barrow Pit

OpenDitch

Storm Drain Outfall**Status**

- Surveyed
- Non Surveyed

Detention Ponds**Type**


- Underground

- Surface

- CanalSlough

- WH_Roads1

- Grid Index

Legend

city boundary

Storm Drain**Type**

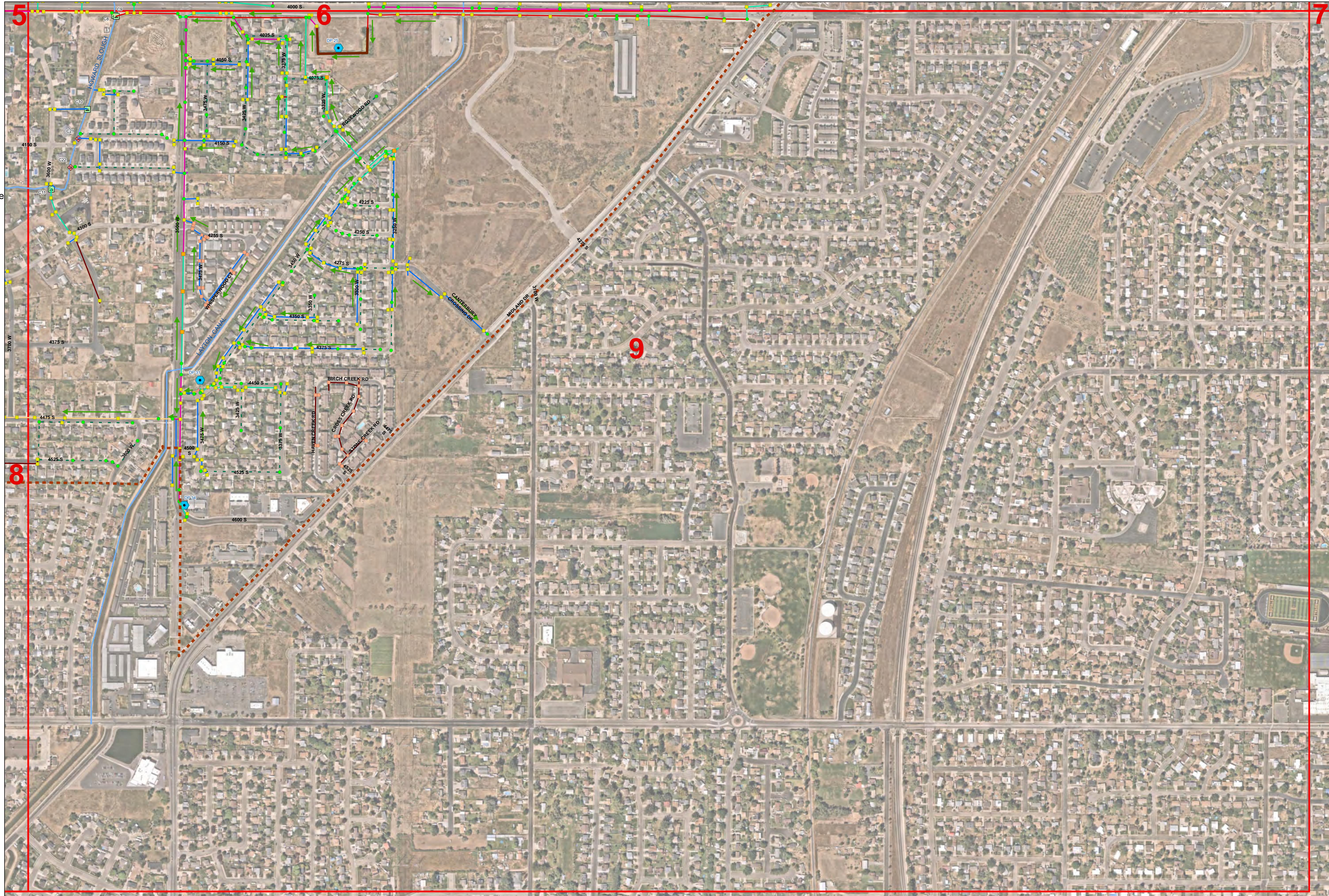
- Catch Basin
- Catch Basin Private
- Clean Out Box
- Combo Box
- Combo Box Private
- Control Structure
- Control Structure Private
- Manhole
- Manhole (paved over)
- Manhole Private
- Storm Water Treatment
- Sump Box

Storm Drain Pipe**Diameter in inches**

- 4
- 6
- 8
- 10
- 12
- 15
- 18
- 24
- 30
- 36
- 40
- 48

Land Drain Pipe**Diameter in inches**

- 4
- 8
- Flow Direction
- Barrow Pit
- Open Ditch


Storm Drain Outfall**Status**

- Surveyed
- ♦ Non Surveyed

Detention Ponds**Type**

- Underground
- Surface
- Canal Slough
- WH_Roads1

Grid Index

APPENDIX C

Storm Drain Basin Maps with Basin Flow Calculations

STORM DRAIN HOOPER SLOUGH

STORM DRAIN HOOPER SLOUGH

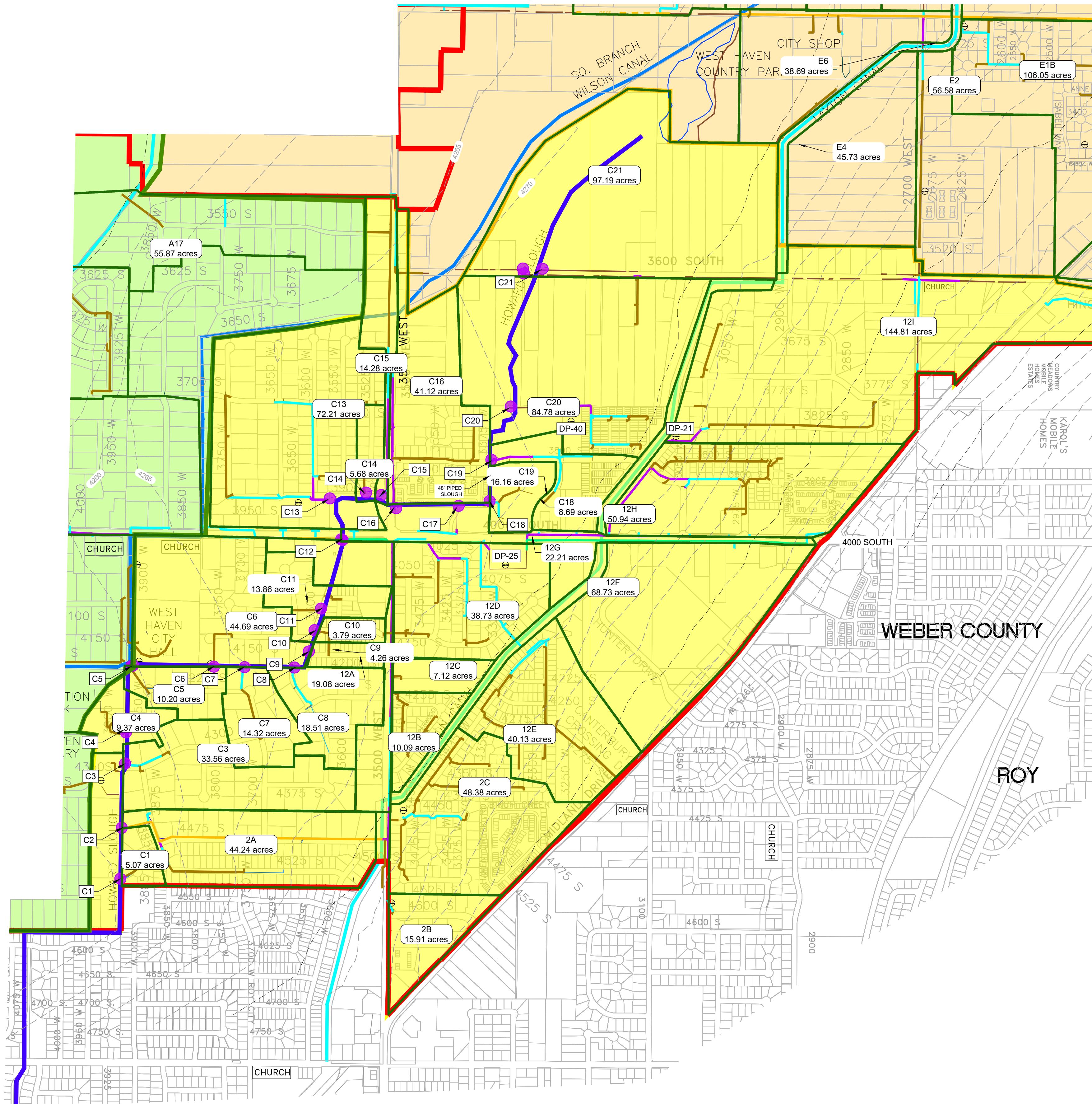
STORM DRAIN HOOPER SLOUGH

WEST HAVEN - IFFP
PROJECT ADDRESS
WEST HAVEN, WEBER, UTAH

GARDNER ENGINEERING
CIVIL • LAND PLANNING
MUNICIPAL • LAND SURVEYING
366 S CHAMBER ST, SUITE 105, OGDEN, UT
84405
P 801.476.0202 F 801.476.0066

Basin A - Hooper Slough

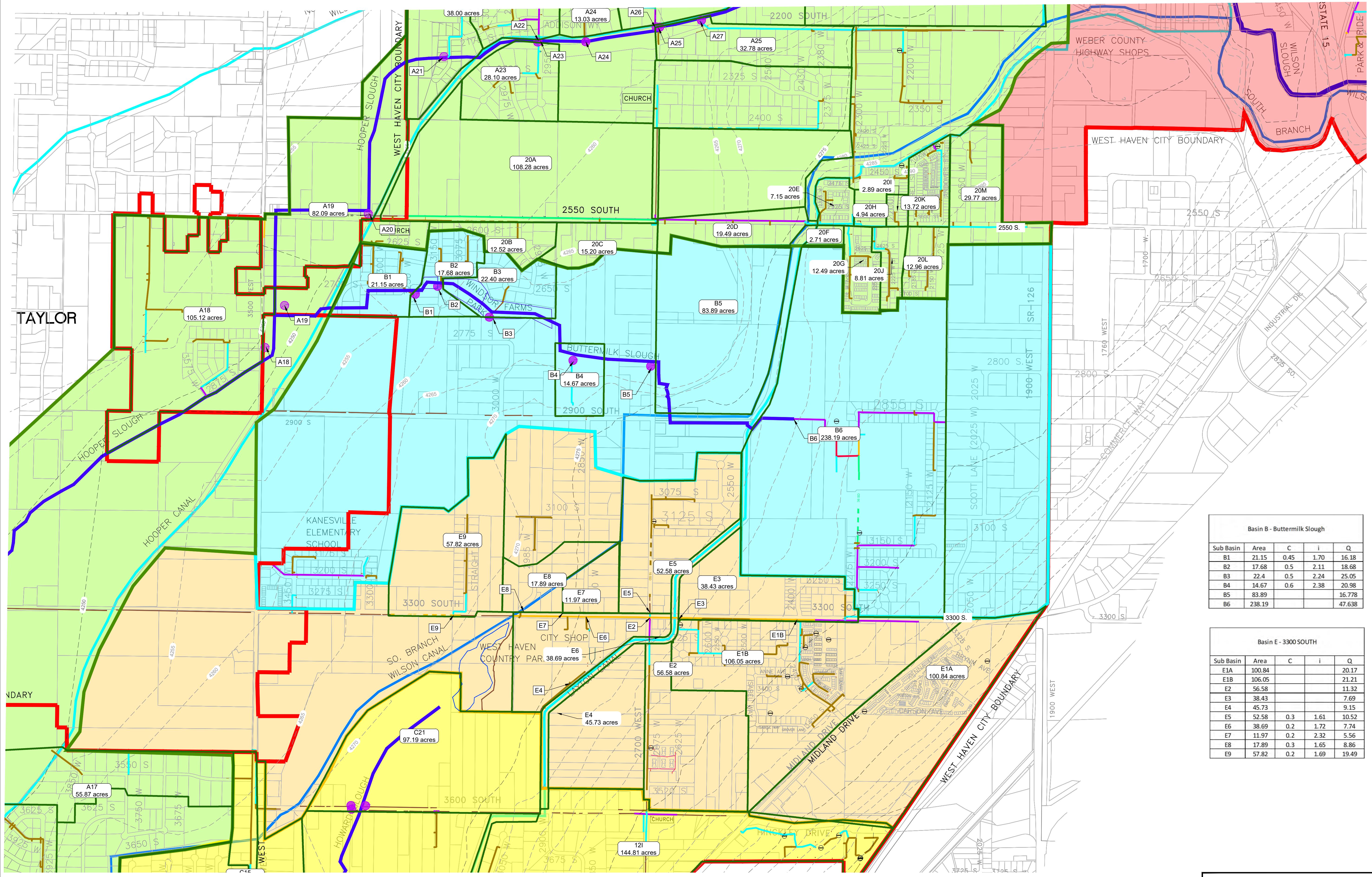
Sub Basin	Area	C	i	Q
A1	55.46			11.09
A2	55.74	0.35	1.71	33.33
A3	64.17	0.2	1.79	22.98
A4	34.32	0.3	1.69	17.39
A5-1	190.17			38.03
A5-2	35.97	0.2	1.83	13.19
A5-3	53.12	0.2	1.79	18.97
A6	12.22	0.2	2.24	5.48
A7	9.42	0.2	2.32	4.37
A8	77.88	0.4	1.76	54.70
A9	16.39	0.6	2.24	22.01
A10	96.46	0.3	1.51	43.73
A11	172.72	0.3	0.86	44.35
A12	3.74			0.75
A13	23.46	0.2	1.02	4.79
A14	23.09	0.3	1.51	10.44
A15	30.75	0.2	1.38	8.49
A16	48.83	0.25	2.10	25.69
A17	55.87	0.2	1.37	15.28


LEGEND

- 15" STORM DRAIN
- 18" STORM DRAIN
- 24" STORM DRAIN
- 30" STORM DRAIN
- 36" STORM DRAIN
- OUTLET TO SLOUGH

Scale in Feet
Custom

C1


STORM DRAIN MAP - HOWARD SLOUGH

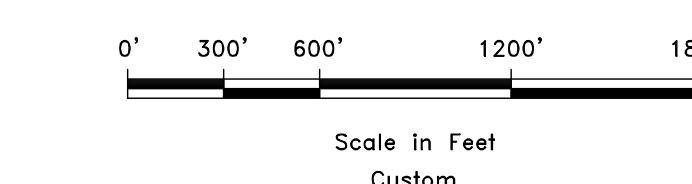
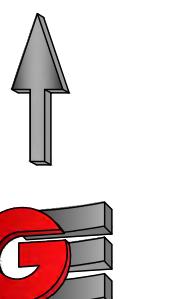
Basin C - Howard Slough				
Sub Basin	Area	C	i	Q
C1	5.07	0.2	2.45	2.49
C2A	44.24	0.2	1.77	15.69
C2B	15.91			3.18
C2C	48.38			9.68
C3	33.56	0.2	1.74	11.68
C4	9.37	0.18	2.30	3.88
C5	10.2	0.2	2.16	4.40
C6	44.69	0.24	1.95	20.89
C7	14.32	0.2	1.94	5.57
C8	18.51	0.2	1.84	6.82
C9	4.26	0.4	2.34	3.99
C10	3.79	0.4	2.33	3.53
C11	13.86	0.2	2.05	5.69
C12A	19.08	0.6	1.89	21.61
C12B	10.09	0.5	2.33	11.77
C12C	7.12	0.55	2.27	8.91
C12D	38.73	0.3	2.00	23.20
C12E	40.13	0.45	2.27	40.95
C12F	68.73			13.75
C12G	15.19	0.6	1.65	15.01
C12H	50.94	0.7	2.40	85.50
C12I	144.81			28.96
C13	72.21			14.44
C14	5.69	0.4	2.13	4.85
C15	14.28	0.4	0.86	4.89
C16	41.12	0.5	1.13	23.21
C17	6.89	0.7	2.23	10.78
C18	8.69	0.4	2.18	7.58
C19	16.16	0.5	2.05	16.53
C20	84.78			16.96
C21	97.19	0.4	1.38	19.44

DWG:	REVISIONS	DATE	DESCRIPTION	REVISIONS	DATE	DESCRIPTION		
DWG: C2			DWG: C2			DWG: C2		
GARDNER ENGINEERING CIVIL & LAND PLANNING MUNICIPAL LAND SURVEYING 9683 CHAMBER ST. SUITE #5 OGDEN, UT P 801.476.0202 E 801.476.0066			GARDNER ENGINEERING CIVIL & LAND PLANNING MUNICIPAL LAND SURVEYING 9683 CHAMBER ST. SUITE #5 OGDEN, UT P 801.476.0202 E 801.476.0066			GARDNER ENGINEERING CIVIL & LAND PLANNING MUNICIPAL LAND SURVEYING 9683 CHAMBER ST. SUITE #5 OGDEN, UT P 801.476.0202 E 801.476.0066		
SCALE: Custom	DATE: 08-16-22	DESIGN: KAN	DRAWN: KAN	CHECKED: RC				

STORM DRAIN BASINS 3300 S AND BUTTERMILK SLOUGH

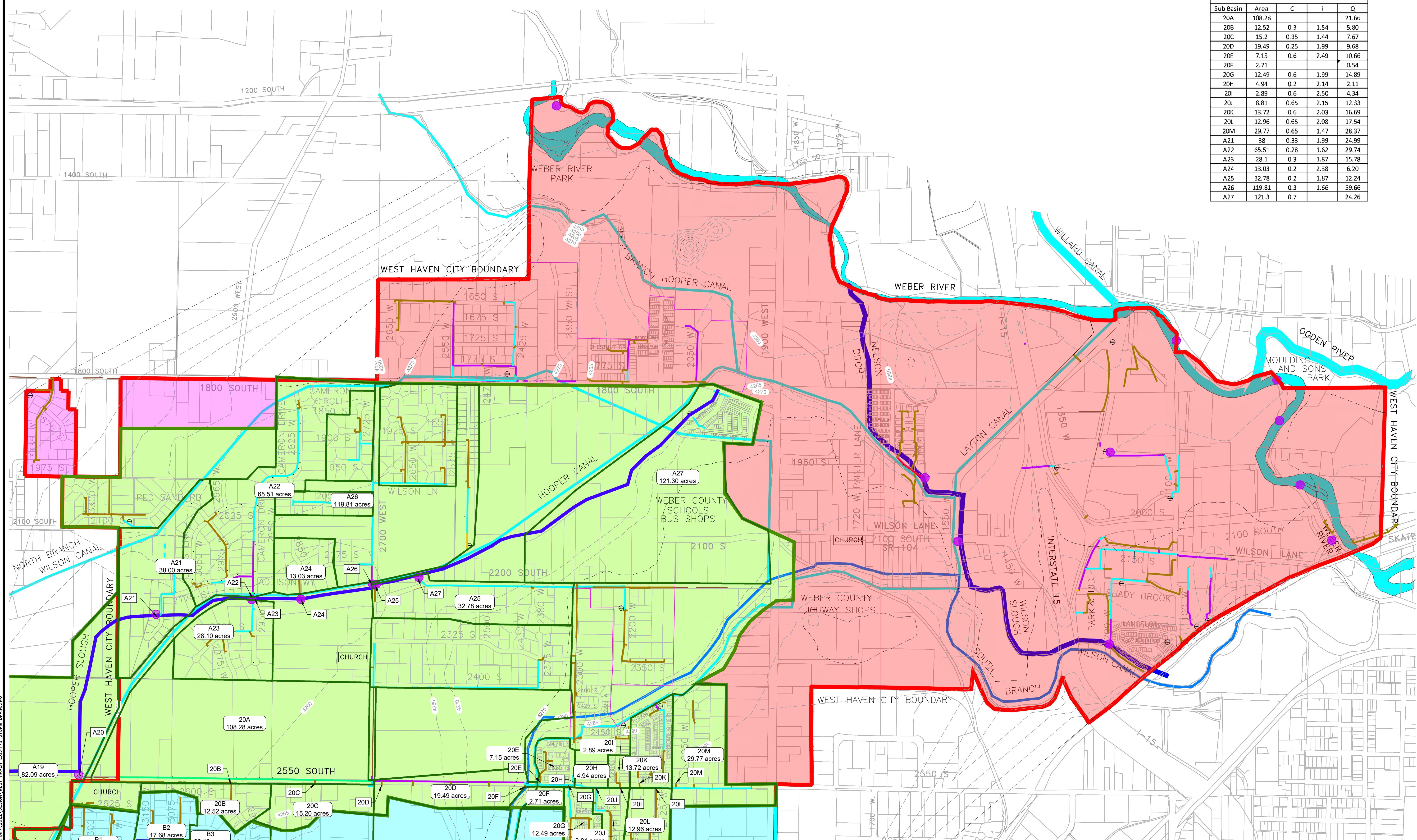
GARDNER
ENGINEERING
CIVIL & LAND PLANNING
MUNICIPAL LAND SURVEYING
9683 CHAMBER ST, SUITE #5, OGDEN, UT
P 801.476.0202 E 801.476.0066

C3

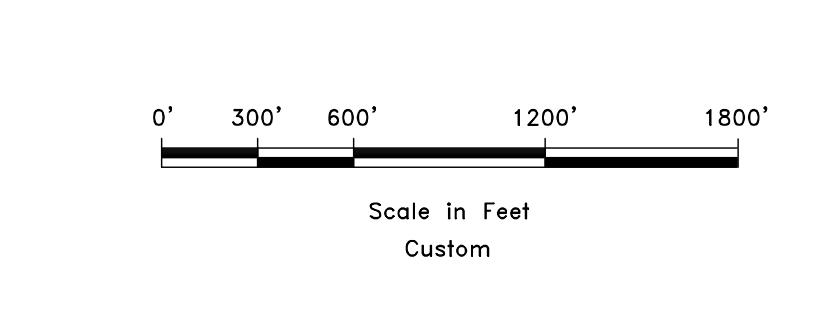
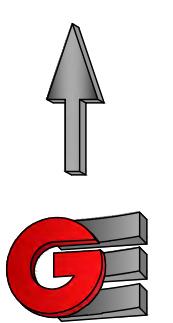


STORM DRAIN BASINS 3300 S AND BUTTERMILK SLOUGH				
WEST HAVEN - IFFF				
PROJECT ADDRESS				
WEST HAVEN, UTAH				

SCALE	Custom
DATE	08-16-22
DESIGN	KAN
DRAWN	KAN
CHECKED	RC

DWG:


Basin B - Buttermilk Slough				
Sub Basin	Area	C	i	Q
B1	21.15	0.45	1.70	16.18
B2	17.68	0.5	2.11	18.68
B3	22.4	0.5	2.24	25.05
B4	14.67	0.6	2.38	20.98
B5	83.89			16.778
B6	238.19			47.638

Basin E - 3300 SOUTH				
Sub Basin	Area	C	i	Q
E1A	100.84			20.17
E1B	106.05			21.21
E2	56.58			11.32
E3	38.43			7.69
E4	45.73			9.15
E5	52.58	0.3	1.61	10.52
E6	38.69	0.2	1.72	7.74
E7	11.97	0.2	2.32	5.56
E8	17.89	0.3	1.65	8.86
E9	57.82	0.2	1.69	19.49

Scale in Feet
Custom

STORM DRAIN MAP

15" STORM DRAIN
18" STORM DRAIN
24" STORM DRAIN
30" STORM DRAIN
36" STORM DRAIN

C4

GARDNER
ENGINEERING
CIVIL & LAND PLANNING
MUNICIPAL LAND SURVEYING
968 CHAMBER ST, SUITE #5 OGDEN, UT
P 801.475.0202 E 801.476.0066

DWG:

REVISIONS
DATE
DESCRIPTION
DATE
DRAWN
DESIGN
CHECKED
RC

DWG:

SCALE Custom
DATE 08-16-22
DESIGN KAN
DRAWN KAN
CHECKED RC

APPENDIX D

Cost Estimate

Per Foot Cost Estimate - Storm Drain

9/2/2022

15" RCP					
Description	Quantity	Quantity Per Foot of Pipe	Unit Price	Unit	Total Cost Per Foot of Pipe
15" RCP		1	\$ 85.00	LF	\$ 85.00
Catch Basins w/ Laterals	2 per 500 ft	0.004	\$ 4,500.00	EA	\$ 18.00
SD Manhole	1 per 500 ft	0.002	\$ 5,500.00	EA	\$ 11.00
Structural Fill	Full Length - 12" D x 4'W	0.28	\$ 20.00	TON	\$ 5.60
Asphalt Patch	50% Length - 4"D x 6'W	0.074925	\$ 150.00	TON	\$ 11.24
Traffic Control	1 Per 2000 ft	0.0005	\$ 10,000.00	LS	\$ 5.00
Engineering	8%				\$ 10.87
Construction Management	5%				\$ 6.79
Contingency	20%				\$ 27.17
Total					\$ 180.67

18" RCP					
Description	Quantity	Quantity Per Foot of Pipe	Unit Price	Unit	Total Cost Per Foot of Pipe
18" RCP		1	\$ 95.00	LF	\$ 95.00
Catch Basins w/ Laterals	2 per 500 ft	0.004	\$ 4,500.00	EA	\$ 18.00
SD Manhole	1 per 500 ft	0.002	\$ 5,500.00	EA	\$ 11.00
Structural Fill	Full Length - 12" D x 4'W	0.28	\$ 20.00	TON	\$ 5.60
Asphalt Patch	50% Length - 4"D x 6'W	0.074925	\$ 150.00	TON	\$ 11.24
Traffic Control	1 Per 2000 ft	0.0005	\$ 10,000.00	LS	\$ 5.00
Engineering	8%				\$ 11.67
Construction Management	5%				\$ 7.29
Contingency	20%				\$ 29.17
Total					\$ 193.97

24" RCP					
Description	Quantity	Quantity Per Foot of Pipe	Unit Price	Unit	Total Cost Per Foot of Pipe
24" RCP		1	\$ 110.00	LF	\$ 110.00
Catch Basins w/ Laterals	2 per 500 ft	0.004	\$ 4,500.00	EA	\$ 18.00
SD Manhole	1 per 500 ft	0.002	\$ 5,500.00	EA	\$ 11.00
Structural Fill	Full Length - 12" D x 4'W	0.28	\$ 20.00	TON	\$ 5.60
Asphalt Patch	50% Length - 4"D x 6'W	0.074925	\$ 150.00	TON	\$ 11.24
Traffic Control	1 Per 2000 ft	0.0005	\$ 10,000.00	LS	\$ 5.00
Engineering	8%				\$ 12.87
Construction Management	5%				\$ 8.04
Contingency	20%				\$ 32.17

Total	\$ 213.92
-------	-----------

30" RCP					
Description	Quantity	Quantity Per Foot of Pipe	Unit Price	Unit	Total Cost Per Foot of Pipe
30" RCP		1	\$ 140.00	LF	\$ 140.00
Catch Basins w/ Laterals	2 per 500 ft	0.004	\$ 4,500.00	EA	\$ 18.00
SD Manhole	1 per 500 ft	0.002	\$ 5,500.00	EA	\$ 11.00
Structural Fill	Full Length - 12" D x 6'W	0.42	\$ 20.00	TON	\$ 8.40
Asphalt Patch	50% Length - 4"D x 8'W	0.0999	\$ 150.00	TON	\$ 14.99
Traffic Control	1 Per 2000 ft	0.0005	\$ 10,000.00	LS	\$ 5.00
Engineering	8%				\$ 15.79
Construction Management	5%				\$ 9.87
Contingency	20%				\$ 39.48

Total	\$ 262.52
-------	-----------

36" RCP					
Description	Quantity	Quantity Per Foot of Pipe	Unit Price	Unit	Total Cost Per Foot of Pipe
36" RCP		1	\$ 165.00	LF	\$ 165.00
Catch Basins w/ Laterals	2 per 500 ft	0.004	\$ 4,500.00	EA	\$ 18.00
SD Manhole	1 per 500 ft	0.002	\$ 5,500.00	EA	\$ 11.00
Structural Fill	Full Length - 12" D x 6'W	0.42	\$ 20.00	TON	\$ 8.40
Asphalt Patch	50% Length - 4"D x 8'W	0.0999	\$ 150.00	TON	\$ 14.99
Traffic Control	1 Per 2000 ft	0.0005	\$ 10,000.00	LS	\$ 5.00
Engineering	8%				\$ 17.79
Construction Management	5%				\$ 11.12
Contingency	20%				\$ 44.48

Total	\$ 295.77
-------	-----------

42" RCP					
Description	Quantity	Quantity Per Foot of Pipe	Unit Price	Unit	Total Cost Per Foot of Pipe
42" RCP		1	\$ 195.00	LF	\$ 195.00
Catch Basins w/ Laterals	2 per 500 ft	0.004	\$ 4,500.00	EA	\$ 18.00
SD Manhole	1 per 500 ft	0.002	\$ 5,500.00	EA	\$ 11.00
Structural Fill	Full Length - 12" D x 6'W	0.42	\$ 20.00	TON	\$ 8.40
Asphalt Patch	50% Length - 4"D x 8'W	0.0999	\$ 150.00	TON	\$ 14.99
Traffic Control	1 Per 2000 ft	0.0005	\$ 10,000.00	LS	\$ 5.00
Engineering	8%				\$ 20.19
Construction Management	5%				\$ 12.62
Contingency	20%				\$ 50.48

Total	\$ 335.67
--------------	------------------

48" RCP					
Description	Quantity	Quantity Per Foot of Pipe	Unit Price	Unit	Total Cost Per Foot of Pipe
48" RCP		1	\$ 210.00	LF	\$ 210.00
Catch Basins w/ Laterals	2 per 500 ft	0.004	\$ 4,500.00	EA	\$ 18.00
SD Manhole	1 per 500 ft	0.002	\$ 5,500.00	EA	\$ 11.00
Structural Fill	Full Length - 12" D x 6'W	0.42	\$ 20.00	TON	\$ 8.40
Asphalt Patch	50% Length - 4"D x 8'W	0.0999	\$ 150.00	TON	\$ 14.99
Traffic Control	1 Per 2000 ft	0.0005	\$ 10,000.00	LS	\$ 5.00
Engineering	8%				\$ 21.39
Construction Management	5%				\$ 13.37
Contingency	20%				\$ 53.48

Total	\$ 355.62
--------------	------------------

APPENDIX E

Development Projection and Impervious Area Estimate

Appendix E

Development Projection and Impervious Area Estimate

Average Impervious Area:

Existing Single-Family Residential Development within the City was sampled to determine the average impervious area on various single-family lot sizes. The sampling process consisted of measuring impervious area and total lot sizes on existing lots throughout the City using aerial imagery. The total lot count per size was determined by utilizing parcel data from Weber County sorted by area to create a total lot count for each size group. The total lots sampled listed indicates how many lots were analyzed to measure total impervious area and lot size. The goal was to sample enough lots to achieve a 95% confidence interval with a 5% margin of error. This goal was achieved on smaller lot size groups. The goal was not achieved on lot sizes of 2 AC – 3 AC and above because of the lack of developed parcels of these larger sizes. The data is summarized in Table 1:

TABLE 1

Single Family Lot Sizes	Min (sf)	Max (sf)	Average Impervious Area (sf)	Average Impervious Area (%)	Lot Count	Lots Sampled
1/4 AC or Less- Single Family Residential	5,000	12,499	4,281	44.6%	1,518	307
Greater than 1/4 AC up to 1/2 AC - Single Family Residential	12,500	21,780	6,108	38.3%	1,264	294
Greater than 1/2 AC up to 1 AC - Single Family Residential	21,780	43,560	7,626	21.0%	1,403	304
Greater than 1 AC up to 2 AC - Single Family Residential	43,560	87,120	8,962	16.3%	646	241
Greater than 2 AC up to 3 AC - Single Family Residential	87,121	130,680	9,563	9.5%	150	91
Greater than 3 AC up to 4 AC - Single Family Residential	130,681	174,240	11,454	7.9%	78	22
Greater than 4 AC or More - Single Family Residential	174,241	+	13,027	3.6%	150	47
2 AC or Less - Single Family Residential	5,000	87,120	6,621	23.8%	-	-

**The average impervious area of all single-family lots sampled was 7,134 square feet.

Projected Development:

Data from the Weber County Assessor indicates that an average of 100 acres per year are developed within the City. Table 2 includes developed acres per year.

TABLE 2

Year	Developed Acres (AC)
2017	100.6
2018	75.3
2019	93.7
2020	113.4
2021	100.0
2022	116.3
Total	599.35 (average 99.9)

Table 3 includes estimates for each development type during the impact fee collection period. The percentages were estimated using data from the Weber County Assessor from 2017 – 2022 for single family and multi-family residential. Out of 100 acres developed, the following includes yearly average area and percentages of each type.

TABLE 3

Type	Yearly Average Developed Acres	Yearly Average Developed by %
Single Family Residential	73 Acres	73%
Multi-Family Residential	13 Acres	13%
Non Residential	14 Acres	14%

To estimate the projected impervious area developed per year during impact fee collection period, the following assumptions have been used:

- Single Family Residential will be developed at lot sizes of 2 Acres or less, and it is estimated that 23.8% of developed lots will be impervious area. This range of lot sizes was selected as a conservative estimate assuming that the majority of lots developed within the City will be within this range. Note that this percentage of imperviousness is based on data sampled from existing residential development in the above-noted lot size range.
- Multi-Family Residential will be developed at an average of 71.1% impervious area. This percentage of imperviousness is based on the data sampled from existing multi-family residential development within the City. Each of the existing multi-family developments throughout the city were sampled by measuring the total area and impervious area. The ratio of impervious to total area was calculated.
- Non-Residential will be developed at an estimate of 80.0% impervious area. The estimate is based on recent residential development. It is anticipated that future commercial development will include impervious area in the range of 70-90%.

Summary:

Using the estimated developed area and impervious area percentages above; of the projected 100 developed acres per year, it is estimated that 37.81 acres or 1,646,836 square feet will be impervious.

Exhibit D – Parks Impact Fee Facilities Plan & Impact Fee Analysis

DRAFT

LEWIS | ROBERTSON | BURNINGHAM

WEST HAVEN, UTAH

OCTOBER
2025

IMPACT FEE FACILITIES PLAN (IFFP)
& IMPACT FEE ANALYSIS (IFA)
PARKS, RECREATION, OPEN SPACE, AND
TRAILS

PREPARED BY:

LRB PUBLIC FINANCE ADVISORS
FORMERLY LEWIS YOUNG ROBERTSON & BURNINGHAM INC.

TABLE OF CONTENTS

IMPACT FEE CERTIFICATION.....	3
IFFP CERTIFICATION	3
IFA CERTIFICATION	3
DEFINITIONS	4
SECTION I: EXECUTIVE SUMMARY	5
SUMMARY OF MAXIMUM LEGAL IMPACT FEE	5
CONSIDERATION OF ALL REVENUE SOURCES	6
EXPENDITURE OF IMPACT FEES.....	6
GROWTH-DRIVEN EXTRAORDINARY COSTS	6
SUMMARY OF TIME PRICE DIFFERENTIAL	6
SECTION II: GENERAL IMPACT FEE METHODOLOGY.....	7
SECTION III: OVERVIEW OF SERVICE AREA & DEMAND	9
SERVICE AREA.....	9
DEMAND UNITS.....	9
SECTION IV: EXISTING FACILITIES INVENTORY & LOS.....	11
EXISTING FACILITY INVENTORY.....	11
LEVEL OF SERVICE ANALYSIS	11
EXCESS CAPACITY.....	12
SECTION V: PUBLIC FACILITY ANALYSIS.....	13
SYSTEM VS. PROJECT IMPROVEMENTS	14
FINANCING STRATEGY & CONSIDERATION OF ALL REVENUE RESOURCES	14
SECTION VI: PARKS & RECREATION IMPACT FEE CALCULATION.....	16
CONSIDERATION OF ALL REVENUE SOURCES.....	17
EXPENDITURE OF IMPACT FEES	17
GROWTH-DRIVEN EXTRAORDINARY COSTS.....	18
SUMMARY OF TIME PRICE DIFFERENTIAL	18
APPENDIX A: PARK INVENTORY	19
APPENDIX B: POPULATION PROJECTIONS	21

IMPACT FEE CERTIFICATION

IFFP CERTIFICATION

LRB Public Finance Advisors (formerly Lewis Young Robertson & Burningham, Inc.) certifies that the attached impact fee facilities plan:

1. includes only the costs of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. does not include:
 - a. costs of operation and maintenance of public facilities;
 - b. costs for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by existing residents;
 - c. an expense for overhead, unless the expense is calculated pursuant to a methodology that is consistent with generally accepted cost accounting practices and the methodological standards set forth by the federal Office of Management and Budget for federal grant reimbursement; and,
3. complies in each and every relevant respect with the Impact Fees Act.

IFA CERTIFICATION

LRB Public Finance Advisors certifies that the Impact Fee Analysis (IFA):

1. includes only the costs of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. does not include:
 - a. costs of operation and maintenance of public facilities;
 - b. costs for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by existing residents;
 - c. an expense for overhead, unless the expense is calculated pursuant to a methodology that is consistent with generally accepted cost accounting practices and the methodological standards set forth by the federal Office of Management and Budget for federal grant reimbursement;
 - d. offsets costs with grants or other alternate sources of payment; and
3. complies with every relevant respect with the Impact Fees Act.

LRB Public Finance Advisors makes this certification with the following caveats:

1. All the recommendations for implementation of the IFFP made in the IFFP documents or in the IFA documents are followed by City Staff and elected officials.
2. If all or a portion of the IFFP or IFA are modified or amended, this certification is no longer valid.
3. All information provided to LRB is assumed to be correct, complete, and accurate. This includes information provided by the City as well as outside sources.

LRB PUBLIC FINANCE ADVISORS

DEFINITIONS

The following acronyms or abbreviations are used in this document:

IFA: Impact Fee Analysis

IFFP: Impact Fee Facilities Plan

HH: Household

LOS: Level of Service

LRB: LRB Public Finance Advisors

The following definitions are used in this document:

Development Activity: any construction or expansion of a building, structure, or use, any change in use of a building or structure, or any changes in the use of land that creates additional demand and need for public facilities.¹

Per Capita: per person.

Public Facilities: impact fee facilities² that have a life expectancy of 10 or more years and are owned or operated by or on behalf of a local political subdivision or private entity.

System Improvements: existing public facilities that are: identified in the impact fee analysis and designed to provide services to service areas within the community at large, and future public facilities that are intended to provide services to service areas within the community at large.³

Single Family: Defined as any single unit detached housing.

Multi-Family: Any residential units not considered single family.

¹11-36a-102(3)

² See 11-36-a-102(17) for list of applicable impact fee facilities.

³11-36a-102(22)

SECTION I: EXECUTIVE SUMMARY

The purpose of the Parks, Recreation, Open Space and Trails Impact Fee Facilities Plan (IFFP), with supporting Impact Fee Analysis (IFA), is to fulfill the requirements established in Utah Code Title 11 Chapter 36a, the "Impact Fees Act", and help the City of West Haven (the City) fund necessary capital improvements for future growth. This document will address the future parks, recreation, open space, and trails infrastructure needed to serve the City through the next 10 years, as well as the maximum legal impact fees the City may charge to new growth to maintain the existing level of service (LOS).

- **Impact Fee Service Area:** The Service Area for this analysis includes all areas within the City incorporated limits, and as amended. **FIGURE 3.1** illustrates the Service Area including the City's incorporated limits as of December 2024. This document identifies the necessary future system improvements for the Service Area that will maintain the existing LOS into the future.
- **Demand Analysis:** The demand units utilized in this analysis include population and household growth. As new development (and in some cases redevelopment) occurs within the City, it generates increased demand on City infrastructure. The system improvements identified in this study are designed to maintain the existing LOS for any new (or possibly redeveloped) property, if the redevelopment includes housing within the City.
- **Level of Service:** Through the inventory of existing public facilities, combined with the growth assumptions, this analysis identifies the existing LOS which is provided to the City's existing residents and ensures that future public facilities are constructed to maintain this same LOS.
- **Excess Capacity:** This study calculates a buy-in component related to the City's community center (The Barn Community Center). However, the City has ultimately opted to exclude the buy-in component from the analysis since this facility is rented and not freely available to the public.
- **Capital Facilities Analysis:** Due to the projected new development (and possible redevelopment) within the City, additional capital improvements will be necessary as they relate to parks, recreation, open space, and trails.
- **Funding of Future Facilities:** This analysis assumes future growth-related facilities will be funded through impact fee revenues.

SUMMARY OF MAXIMUM LEGAL IMPACT FEE

The impact fees in this analysis will be assessed within the Service Area. The table below illustrates the calculated maximum legal impact fee for parks, recreation, open space, and trails.

TABLE 1.1: ESTIMATE OF IMPACT FEE VALUE PER CAPITA

TYPE OF IMPROVEMENT			TOTAL COST PER CAPITA
Combined			\$1,452
OTHER COMPONENTS TO FEE	ADDITIONAL VALUE	DEMAND SERVED	TOTAL VALUE PER CAPITA
Impact Fee Credit	-	9,850	\$0
Professional Expense	\$10,850	9,850	\$1
Estimate of Impact Fee Per Capita			\$1,453

TABLE 1.2: IMPACT FEE PER HOUSEHOLD

	AVERAGE HH SIZE ¹	FEES PER HH	EXISTING FEE PER HH	% CHANGE
Single-Family	3.62	\$5,260	\$2,144	145%
Multi-Family (Including Mobile Homes)	2.65	\$3,850	\$1,796	114%

Single family residential is defined as any single unit detached housing. Multi-family is defined as any residential unit not considered single family.

¹ Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates
Table B25033: Total Population in Occupied Housing Units by Tenure by Units in Structure
Table DP04: Selected Housing Characteristics

NON-STANDARD IMPACT FEES

The City reserves the right under the Impact Fees Act to assess an adjusted fee that more closely matches the true impact that the land use will have upon public facilities.⁴ This adjustment could result in a different impact fee if the City determines that a particular user may create a different impact than what is standard for its land use. The City may also decrease the impact fee if the developer can provide documentation, evidence, or other credible analysis that the proposed impact will be lower than what is proposed in this analysis.

FORMULA FOR NON-STANDARD PARKS AND RECREATION IMPACT FEES:

$$\text{Estimated Population per Unit} \times 1,453 = \text{Impact Fee per Unit}$$

CONSIDERATION OF ALL REVENUE SOURCES

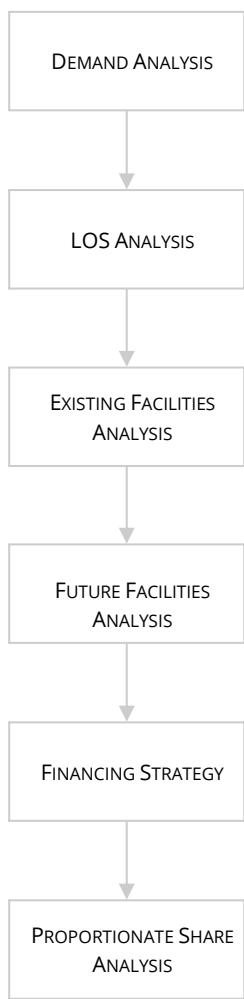
The Impact Fees Act requires this document to consider all revenue sources to finance the impacts on system improvements, including: (a) grants; (b) bonds; (c) interfund loans; (d) impact fees; and (e) anticipated or accepted dedications of system improvements. See **Section V** for further discussion regarding the consideration of revenue sources.

EXPENDITURE OF IMPACT FEES

The Impact Fee Act requires that impact fees should be spent or encumbered within six years after each impact fee is paid, indicating that there is a rolling timeline when identifying the impacts placed on public facilities by development activity. This analysis addresses a 10-year planning horizon in order to account for the rolling timeline, while ensuring that the assumptions included in the analysis are relevant to new development activity, and accounting for the need for entities to update the impact fee analysis periodically. Impact fees collected in the IFFP planning horizon should be spent only on those system improvements identified to maintain the LOS.

GROWTH-DRIVEN EXTRAORDINARY COSTS

The City does not anticipate any extraordinary costs necessary to provide services to future development.


SUMMARY OF TIME-PRICE DIFFERENTIAL

The Impact Fees Act allows for the inclusion of a time price differential to ensure that the future value of costs incurred at a later date is accurately calculated to include the costs of construction inflation. A three percent annual construction inflation adjustment is applied to the proposed capital improvements identified in this analysis. The impact fee analysis should be updated regularly to account for changes in cost estimates over time.

⁴ 11-36a-402(1)(c)

SECTION II: GENERAL IMPACT FEE METHODOLOGY

FIGURE 2.1: IMPACT FEE METHODOLOGY

The purpose of this study is to fulfill the requirements of the Impact Fees Act regarding the establishment of an IFFP and IFA. The IFFP is designed to identify the existing LOS and the demands placed upon existing public facilities by future development and evaluate how these demands will be met. The IFFP is also intended to outline the system improvements which are intended to be funded by impact fees.

The IFA is designed to proportionately allocate the cost of the new public facilities and any excess capacity to new development, while ensuring that all methods of financing are considered. Each component must consider the existing level of service (LOS) provided to existing development and ensure that impact fees are not used to raise that level of service. The following elements are important considerations when completing an IFFP and IFA.

DEMAND ANALYSIS

The demand analysis serves as the foundation for the IFFP. This element focuses on a specific demand unit related to each public facility – the existing demand on public facilities and the future demand as a result of new development that will impact public facilities.

LEVEL OF SERVICE ANALYSIS

The demand placed upon existing public facilities by existing development is known as the existing "Level of Service" ("LOS"). Through the inventory of existing facilities, combined with the growth assumptions, this analysis identifies the level of service which is provided to a community's existing residents and ensures that future facilities maintain these standards. Any excess capacity identified within existing facilities can be apportioned to new development. Any demand generated from new development that overburdens the existing public facilities beyond the existing capacity justifies the construction of new public facilities.

EXISTING FACILITY INVENTORY

In order to quantify the demands placed upon existing public facilities by new development activity, to the extent possible, the Impact Fee Facilities Plan provides an inventory of the existing public facilities. The inventory valuation should include the original construction cost and estimated useful life of each facility. The inventory of existing facilities is important to properly determine the excess capacity of existing facilities and the utilization of excess capacity by new

development.

FUTURE CAPITAL FACILITIES ANALYSIS

The demand analysis, existing facility inventory, and LOS analysis allow for the development of a list of capital projects necessary to serve new growth and to maintain the existing LOS. This list includes any excess capacity of existing facilities as well as future system improvements necessary to maintain the level of service.

FINANCING STRATEGY

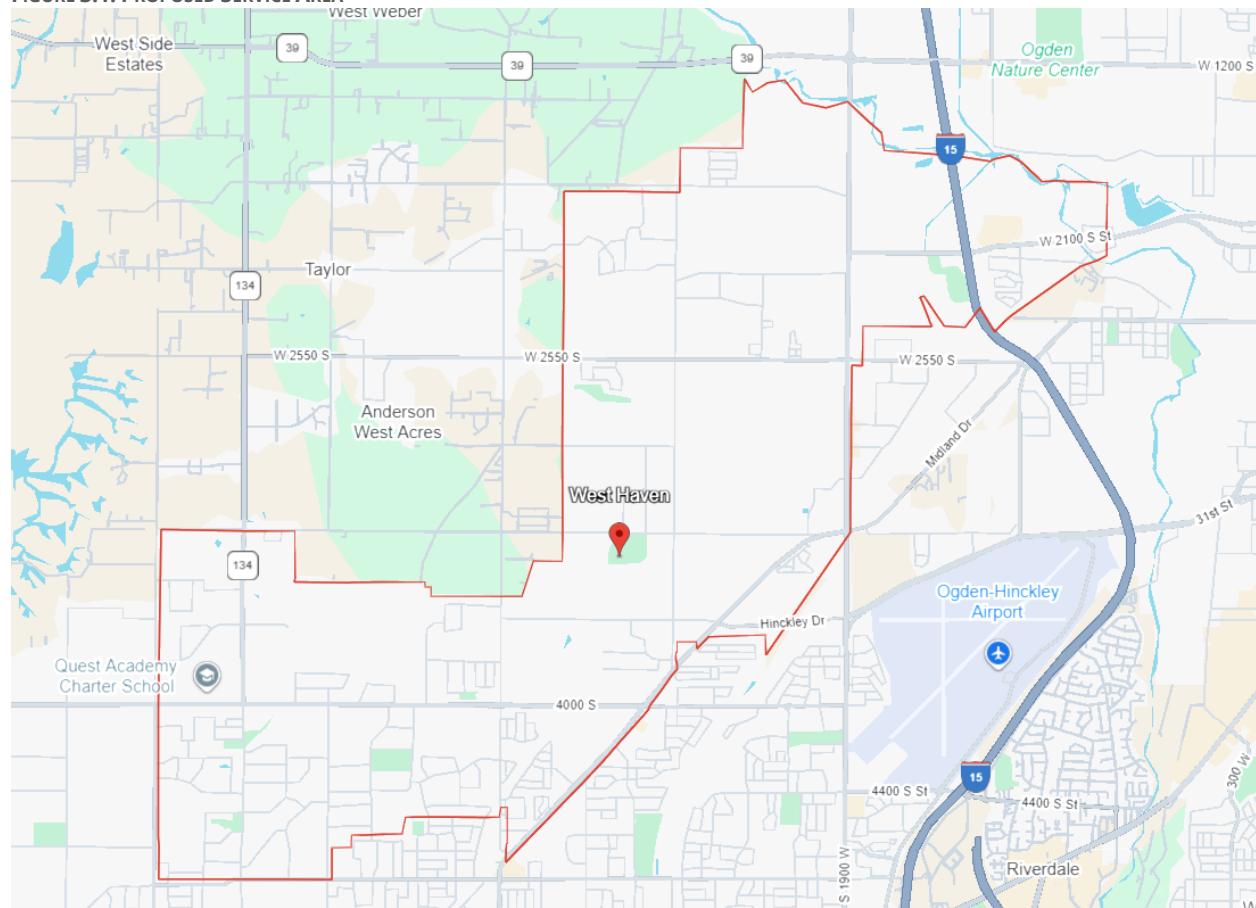
This analysis must also include a consideration of all revenue sources, including impact fees, future debt costs, alternative funding sources, and the dedication of system improvements, which may be used to obtain or finance system improvements.⁵ In conjunction with this revenue analysis, there must be a determination that impact fees are necessary to maintain the existing LOS.⁶

PROPORTIONATE SHARE ANALYSIS

The written impact fee analysis (IFA) is required under the Impact Fees Act and must identify the impacts placed on public facilities by development activity and how these impacts are reasonably related to the new development. The written impact fee analysis (IFA) must include a proportionate share analysis, clearly detailing that the cost of future or existing (that have excess capacity) public facilities improvements are roughly proportionate to the reasonably related to the service demands needed for any new development activity. A local political subdivision or private entity may only impose impact fees on development activities when its plan for financing system improvements establishes that impact fees are necessary to maintain the existing level of service (UCA 11-36a-302 (3)). The City has determined that assessing impact fees on development activities are necessary to maintain the existing level of services in the future.

⁵ 11-36a-302(2)

⁶ 11-36a-302(3)



SECTION III: OVERVIEW OF SERVICE AREA & DEMAND

SERVICE AREA

Figure 3.1 illustrates the proposed impact fee service area, which incorporates the entire municipal boundary of the City. The impact fees related to parks, recreation, open space, and trails will be assessed within the service area, and as the incorporated boundaries of the City is amended through annexations.

FIGURE 3.1: PROPOSED SERVICE AREA

DEMAND UNITS

The demand unit in this analysis is population and growth in population. For purposes of this analysis, the existing population is estimated at 23,990 people and is anticipated to reach 33,840 people within the 10-year planning horizon (2034). This represents an increase of 9,850 people. The population projections are based on several sources including historical Census data, and an assumed growth rate of 3.5 percent (See **Appendix B**).

TABLE 3.1: DEMAND PROJECTIONS

YEAR	POPULATION
2024	23,990
2034	33,840

TABLE 3.2: EXISTING DEMAND PROJECTIONS

YEAR	POPULATION
10 Yr. IFFP Growth	9,850
Average HH Size	3.23

Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates
Table DP02: Selected Social Characteristics

Because of this growth, the City will need to construct additional parks, recreation, open space, and trails to maintain the existing LOS. The future population in the City is used to determine the additional parks and recreation needs a 10-year planning horizon. The LOS standards for parks, recreation facilities, open space, and trails improvements have been calculated, with a blended LOS determined for the future population, giving the City flexibility to provide future residents with the types of improvements that are desired. If growth projections and land use change significantly in the future, the City will need to update the demand projections and the impact fees.

SECTION IV: EXISTING FACILITIES INVENTORY & LOS

The purpose of this section is to address the parks, recreation, open space, and trails IFA and to help the City plan for the necessary public facilities improvements for future growth. This section will address the future parks, recreation, open space, and trails facilities needed to serve the City through the next 10 years, as well as address the appropriate parks, recreation, open space, and trails impact fees the City may charge to new growth (development activity) to maintain the existing LOS.

EXISTING FACILITY INVENTORY

The City's existing inventory for the purpose of determining impact fees is shown in **TABLE 4.1**. See **APPENDIX A** for a detailed list of facilities and amenities. The City-owned public facilities illustrated below will be the basis for the LOS analysis discussed later in this section. The table below includes all eligible parks, recreation, open space, and trail facilities. The impact fee analysis isolates only the City-funded, impact fee eligible facilities, with a useful life of 10 or more years when determining LOS.

TABLE 4.1: PARKS, RECREATION, OPEN SPACE, AND TRAIL FACILITIES

	CITY FUNDED ACREAGE	TOTAL VALUE	EXISTING POPULATION	PER CAPITA
Combined	149.21	\$34,832,855	23.990	\$1,452

Note: Calculations based on a 2024 population of 23,990.

LAND VALUATION

Recent land acquisitions by the City were used to determine the land acquisition cost for additional park land in the City. For the purposes of this analysis, \$90,000 per acre is used as the cost to acquire additional park land. The basis for this cost is based on a recent appraisal of property provided to the City.⁷

MANNER OF FINANCING EXISTING PUBLIC FACILITIES

The City's existing parks and recreation facilities have been funded through a combination of General Fund revenues, grants, other governmental funds, and donations. General Fund revenues include a mix of sales taxes, federal and state grants, and any other available General Fund revenues. While the City has received some grants and donations to fund parks and recreation facilities, all park land and improvements funded through grants and donations have been excluded in the impact fee calculations.

LEVEL OF SERVICE ANALYSIS

The LOS for this analysis is based on the current parks, recreation facilities, open space and trails. The LOS consists of developed and undeveloped⁸ park facilities that have been funded by the City. **TABLE 4.2** below shows the LOS for parks and public lands within the Service Area. The City proposed LOS in the future is the same as the existing LOS identified in this analysis.

⁷ Appraisal report dated January 26, 2024, prepared for Wall Consultant Group on Behalf of West Haven City.

⁸ Undeveloped facilities include land that is dedicated for parks, recreation, open space, and trails and is considered part of the existing LOS.

TABLE 4.2: LEVEL OF SERVICE SUMMARY

	CITY FUNDED ACREAGE	TOTAL VALUE ¹	EXISTING POPULATION	PER CAPITA
Combined LOS	149.21	\$34,832,855	23,990	\$1,452

Note: Calculations based on a 2024 population of 23,990.

1.Total value reflects the existing inventory's total land and improvement value of \$31,666,232, with an additional 10% (\$3,166,623) allocated to design and engineering.

Note: Calculations based on a 2024 population of 23,990.

EXCESS CAPACITY

The City currently operates a rentable community center that is available for public use and has a useful life of more than 10 years. The facility will serve existing and future development through buildout. The determination of a buy-in value per capita is found in **TABLE 4.3**.

TABLE 4.3: CALCULATION OF BUY-IN

EXISTING AMENITY	VALUE PER UNIT	CITY FUNDS	ESTIMATED VALUE OF CITY FUNDED
Reservable Building - Community Center	\$887,421	100% ¹	\$887,421
	Population Served		40,000
	Value Per Capita		\$22.19

1. The City provided density credits in exchange for community center.

However, the City has ultimately opted to exclude the buy-in component from the analysis since this facility is rented and not freely available to the public.

SECTION V: PUBLIC FACILITY ANALYSIS

Future planning for parks, recreation, open spaces and trails is an ongoing process based on the changes in population and community preference. The City will purchase and improve parks and public lands to maintain the LOS defined in this document. Actual future improvements will be determined as development occurs and the opportunity to acquire and improve park land arises. Impact fees will only be assessed to maintain the existing LOS.

The analysis of impact fee eligible costs above is further refined based on the expected changes in population over the 10-year planning horizon and the existing LOS. Based on the expected growth of 9,850 people, **TABLE 5.1** illustrates the City will need to invest an estimate of \$14.3 million in parks, recreation, open space, and trail facilities (including amenities) to maintain the existing LOS as shown in **TABLE 4.2**. The City may invest at a higher level; however, impact fees cannot be used to increase the existing LOS.

TABLE 5.1: ILLUSTRATION OF INVESTMENT NEEDED TO MAINTAIN LOS

TYPE OF IMPROVEMENT	UNIT OF MEASURE	POPULATION INCREASE IFFP HORIZON	TOTAL VALUE PER CAPITA	ESTIMATED FUTURE INVESTMENT
Combined LOS	Per Capita	9,850	\$1,425	\$14,302,327

Table 5.1 illustrates the estimated population growth in the Service Area and the estimated future investment, excluding buy-in to existing public facilities. Future investment will be used to acquire additional parks, recreation, open spaces, and trails and fund new park improvements and amenities or make improvements to existing park facilities to add capacity to the system. The following types of improvements may be considered, or others, so long as the improvements add capacity to public facilities:

- Land Acquisition
- Sod and Irrigation Improvements
- Pavilions
- Restrooms and other Parks and Recreation Buildings
- Picnic Tables
- Playgrounds
- Trailways/Walkways
- Volleyball Courts
- Tennis Courts
- Basketball Courts
- Other Recreational Courts and Facilities
- Baseball/Softball Field Facilities
- Multi-Purpose Fields
- Field Lighting
- Concession/Buildings
- Parking
- Skate Parks
- Design, engineering, and planning
- Water shares
- Other Park and Recreation Amenities

The timing of construction for growth-related parks and recreation facilities will depend on the rate of development activity and the availability of funding. For the purposes of this analysis, a specific construction schedule is not required. The construction of park facilities can follow development without impeding continued development activity. This analysis assumes that construction of needed park facilities will proceed on a pay-as-you-go basis.

SYSTEM VS. PROJECT IMPROVEMENTS

System improvements are defined as existing and future public facilities designed to provide services to the community at large.⁹ Project improvements are improvements and facilities that are planned and designed to provide service for a specific development (resulting from a development activity) and considered necessary for the use and convenience of the occupants or users of that development.¹⁰ The Impact Fee Analysis may only include the costs of impacts on system improvements related to new growth within the proportionate share analysis. Only parks and recreation facilities that serve the entire community (i.e. system improvements) are included in the LOS.

FINANCING STRATEGY & CONSIDERATION OF ALL REVENUE RESOURCES

This analysis assumes that construction of needed parks and recreation facilities will proceed on a pay-as-you-go basis, and assumes a standard annual dollar amount the City should anticipate collecting and plan to expend on park improvements. The IFFP must also include a consideration of all revenue sources including impact fees and developer dedications of system improvements, which may be used to finance system improvements.¹¹ In conjunction with this revenue analysis, there must be a determination that impact fees are necessary to maintain the existing LOS.¹²

GENERAL FUND REVENUES

It is anticipated that the City may continue to utilize General Fund revenues, to maintain existing park, recreation, open space, and trail facilities. Impact fee revenues will be a continual source of revenue to fund growth related improvements. The City does not currently assess property tax.

GRANTS AND DONATIONS

New developments may dedicate future system improvements related to park facilities and in such instances the entity that dedicates these system improvements will be entitled to an impact fee credit or reimbursement for the negotiated value of system improvements.

The City may receive grant money to assist with park construction and improvements. This analysis has removed all funding that has come from grants and donations to ensure that none of those infrastructure items are included in the LOS. Therefore, the City's existing LOS standards have been funded by the City's existing residents. Funding future improvements through impact fees places a similar burden upon future users as that which has been placed upon existing users through impact fees, and other revenue sources.

IMPACT FEE REVENUES

Impact fees are an ideal mechanism for funding growth-related infrastructure. Impact fees are currently charged to ensure that new growth pays its proportionate share of the costs for the development of public facilities. Impact fee revenues can also be attributed to the future expansion of public facilities if the revenues are used to maintain an existing LOS. Increases to an existing LOS cannot be funded with impact fee revenues. An impact fee analysis is required to accurately assess the true impact of a particular user on the City public facilities to mitigate the impact of new

⁹ 11-36a-102(20)

¹⁰ 11-36a-102(13)

¹¹ 11-36a-302(2)

¹² 11-36a-302(3)

development on public facilities. The City has determined that assessing impact fees on development activities is necessary to maintain the existing level of services in the future.

DEBT FINANCING

In the event the City has not amassed sufficient impact fees in the future to pay for the construction of time sensitive or urgent public facilities needed to accommodate new growth, the City must look to revenue sources other than impact fees for funding. The Impact Fees Act allows for the costs related to the financing of future public facilities to be legally included in the impact fee. This allows the City to finance and quickly construct infrastructure for new development and reimburse itself later from impact fee revenues for the costs of issuing debt (i.e., interest costs). Future debt financing has not been considered in the calculation of the parks and recreation impact fee.

SECTION VI: IMPACT FEE CALCULATION

The calculation of the parks, recreation, open space, and trails impact fee is based on the growth-driven approach, which is based on the **growth** in population (or residential land uses). The growth-driven methodology utilizes the existing LOS and perpetuates that LOS into the future. Impact fees are then calculated to provide sufficient funds for the entity to expand or provide additional public facilities, as growth occurs within the community (service area). Under this methodology, impact fees are calculated to ensure new residential development provides sufficient investment to maintain the current LOS standards in the community (service area). This approach is often used for public facilities that are not governed by specific capacity limitations and do not need to be built before development occurs (i.e., park facilities).

PARKS AND RECREATION IMPACT FEE CALCULATION

Utilizing the estimated value per capita within the system and the value per capita to provide the same level of improvements, the total fee per capita is shown in **TABLE 6.1** below. The impact fee also includes a buy-in fee which development activity will contribute toward the excess capacity of system. It is anticipated that new development will also pay general taxes similar to existing development for the general operation and maintenance of the system.

TABLE 6.1: ESTIMATE OF IMPACT FEE VALUE PER CAPITA

TYPE OF IMPROVEMENT			TOTAL COST PER CAPITA
Combined			\$1,452
OTHER COMPONENTS TO FEE	ADDITIONAL VALUE	DEMAND SERVED	TOTAL VALUE PER CAPITA
Impact Fee Credit	-	9,850	\$0
Professional Expense	\$10,850	9,850	\$1
Estimate of Impact Fee Per Capita			\$1,453

TABLE 6.2: IMPACT FEE PER HOUSEHOLD

	AVERAGE HH SIZE ¹	FEES PER HH	EXISTING FEE PER HH	% CHANGE
Single-Family	3.62	\$5,260	\$2,144	145%
Multi-Family	2.65	\$3,850	\$1,796	114%

Single family residential is defined as any single unit detached housing. Multi-family is defined as any residential unit not considered single family.

¹ Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates

Table B25033: Total Population in Occupied Housing Units by Tenure by Units in Structure

Table DP04: Selected Housing Characteristics

NON-STANDARD IMPACT FEE

The proposed fees are based on population growth. The Impact Fees Act allows the City to assess an adjusted fee that more closely matches the true impact that the land use will have upon parks and recreation facilities.¹³ This adjustment could result in a different impact fee if the City determines that a particular land use may create a different impact than what is standard for its land use. The City may also decrease the impact fee if the developer can provide documentation, evidence, or other credible analysis that the proposed impact will be lower than what is proposed in this analysis. The formula for determining a non-standard impact fee is found below.

¹³ 11-36a-402(1)(c)

FORMULA FOR NON-STANDARD PARKS AND RECREATION IMPACT FEES:

Estimated Population per Unit x \$1,453 = Impact Fee per Unit

The formula for a non-standard impact fee should be included in the impact fee enactment (by resolution or ordinance). In addition, the impact fee enactment should contain the following elements:

- A provision establishing one or more service areas within which the local political subdivision or private entity calculates and imposes impact fees for various land use categories.
- A schedule of impact fees for each type of development activity that specifies the amount of the impact fee to be imposed or the formula that the local political subdivision or private entity will use to calculate each impact fee.
- A provision authorizing the local political subdivision or private entity to adjust the standard impact fee at the time the fee is charged to:
 - Respond to unusual circumstances in specific cases or a request for a prompt and individualized impact fee review for the development activity of the state, a school district, or a charter school and an offset or credit for a public facility for which an impact fee has been or will be collected.
 - Ensure that the impact fees are imposed fairly.
- A provision governing the calculation of the amount of the impact fee to be imposed on a particular development that permits adjustment of the amount of the impact fee based upon studies and data submitted by the developer.
- A provision that allows a developer, including a school district or a charter school, to receive a credit against or proportionate reimbursement of an impact fee if the developer:
 - Dedicates land for a system improvement.
 - Builds and dedicates some or all of a system improvement.
 - Dedicates a public facility that the local political subdivision or private entity and the developer agree will reduce the need for a system improvement.
- A provision that requires a credit against impact fees for any dedication of land for, improvement to, or new construction of, any system improvements provided by the developer if the facilities:
 - Are system improvements; or,
 - Dedicated to the public and offset the need for an identified system improvement.

Other provisions of the impact fee enactment include exemption of fees for development activity attributable to low-income housing, the state, a school district, or a charter school. Exemptions may also include other development activities with a broad public purpose. If an exemption is provided, the entity should establish one or more sources of funds other than impact fees to pay for that development activity. The impact fee exemption for development activity attributable to a school district or charter school should be applied equally to either scenario.

CONSIDERATION OF ALL REVENUE SOURCES

The Impact Fees Act requires this document consider all revenue sources to finance the impacts on system improvements, including: (a) grants; (b) bonds; (c) interfund loans; (d) impact fees; and (e) anticipated or accepted dedications of system improvements. See **Section V** for further discussion regarding the consideration of revenue sources.

EXPENDITURE OF IMPACT FEES

The Impact Fee Act requires that impact fees should be spent or encumbered within six years after each impact fee is paid, indicating that there is a rolling timeline when identifying the impacts placed on public facilities by development activity. This analysis addresses a 10-year planning horizon in order to account for the rolling timeline, while ensuring that the assumptions included in the analysis are relevant to new development activity, and accounting for the need for entities to update the impact fee analysis periodically. Impact fees collected in the IFFP planning horizon should be spent only on those system improvements identified to maintain the LOS.

GROWTH-DRIVEN EXTRAORDINARY COSTS

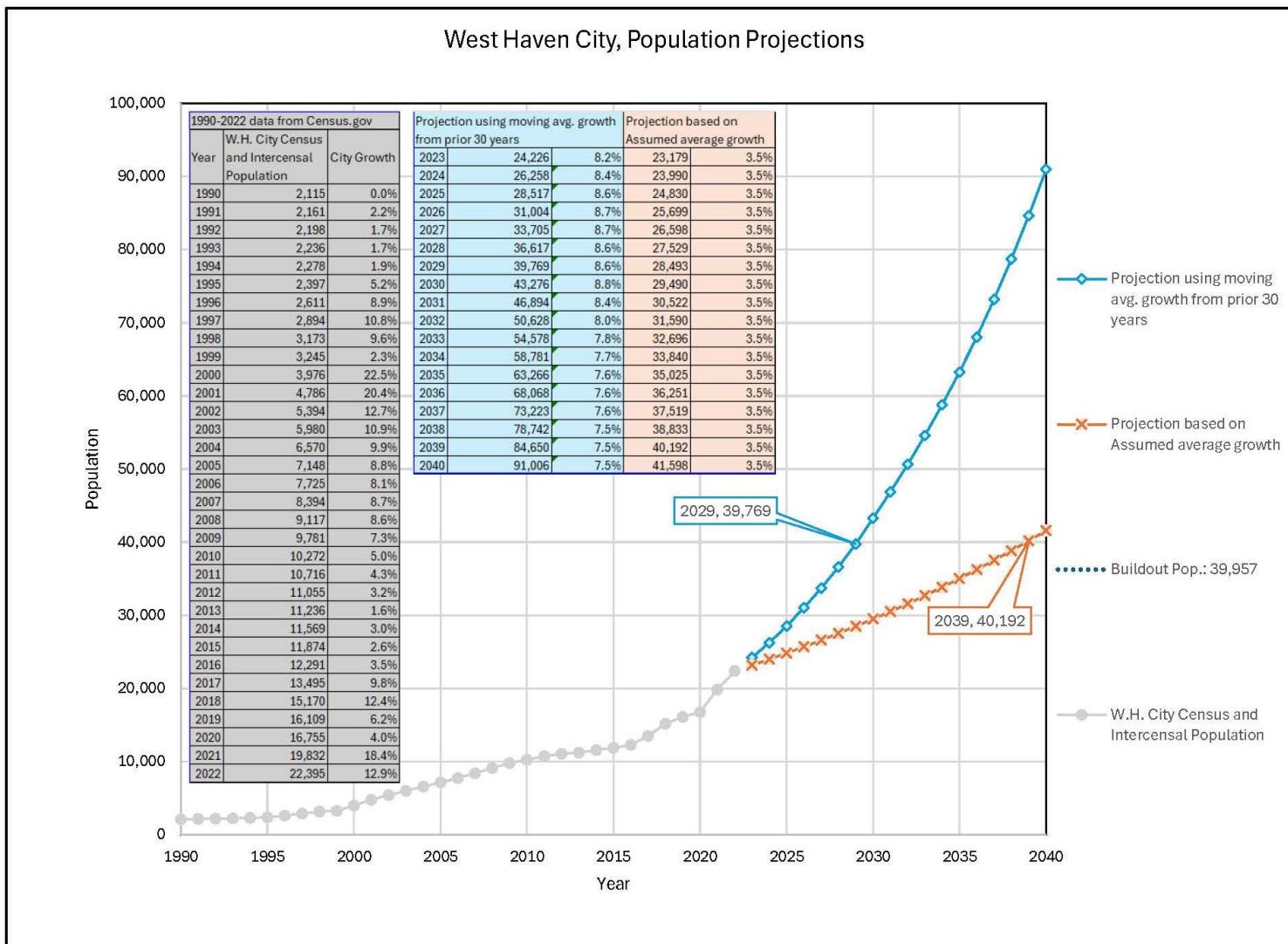
The City does not anticipate any extraordinary costs necessary to provide services to future development.

SUMMARY OF TIME PRICE DIFFERENTIAL

The Impact Fees Act allows for the inclusion of a time price differential to ensure a fair comparisons of amounts paid at different times. The LOS for this analysis is based on the current value of parks, recreation facilities, open space and trails in today's dollars. The LOS consists of developed and undeveloped park facilities that have been funded by the City. This ensures the impact fee captures the value of the investment made by current residents while adjusting for the value in today's dollars.

APPENDIX A: PARK INVENTORY

PARKS, RECREATION, OPEN SPACE, & TRAILS IFFP & IFA WEST HAVEN, UTAH


This analysis excludes the Barn Community Center.

APPENDIX B: POPULATION PROJECTIONS

Exhibit E - Transportation Impact Fee Analysis

DRAFT

LEWIS | ROBERTSON | BURNINGHAM

WEST HAVEN,
UTAH

OCTOBER
2025

IMPACT FEE ANALYSIS (IFA)
TRANSPORTATION

PREPARED BY:

LRB PUBLIC FINANCE ADVISORS
FORMERLY LEWIS YOUNG ROBERTSON & BURNINGHAM INC.

TABLE OF CONTENTS

IMPACT FEE CERTIFICATION.....	3
IFA CERTIFICATION.....	3
DEFINITIONS	4
SECTION I: EXECUTIVE SUMMARY	5
PROPORTIONATE SHARE ANALYSIS	5
CONSIDERATION OF ALL REVENUE SOURCES.....	7
EXPENDITURE OF IMPACT FEES	7
GROWTH-DRIVEN EXTRAORDINARY COSTS.....	7
SUMMARY OF TIME PRICE DIFFERENTIAL	7
SECTION II: GENERAL IMPACT FEE METHODOLOGY.....	8
SECTION III: OVERVIEW OF SERVICE AREA, DEMAND AND LEVEL OF SERVICE	10
SERVICE AREA	10
DEMAND UNITS	10
LEVEL OF SERVICE.....	11
SECTION IV: EXISTING FACILITIES INVENTORY.....	12
EXCESS CAPACITY & BUY-IN.....	12
SECTION V: PUBLIC FACILITY ANALYSIS.....	14
FUTURE CAPITAL PROJECTS	14
SYSTEM VS. PROJECT IMPROVEMENTS	14
FUNDING OF FUTURE FACILITIES	15
PROPOSED CREDITS OWED TO DEVELOPMENT	16
EQUITY OF IMPACT FEES.....	16
NECESSITY OF IMPACT FEES.....	16
SECTION VI: TRANSPORTATION IMPACT FEE CALCULATION	17
PROPOSED TRANSPORTATION IMPACT FEE	17
CONSIDERATION OF ALL REVENUE SOURCES.....	19
EXPENDITURE OF IMPACT FEES	19
GROWTH-DRIVEN EXTRAORDINARY COSTS.....	19
SUMMARY OF TIME PRICE DIFFERENTIAL	19
APPENDIX A: WEST HAVEN TRIP GENERATION ESTIMATE MEMO	21

IMPACT FEE CERTIFICATION

IFA CERTIFICATION

LRB Public Finance Advisors certifies that the Impact Fee Analysis (IFA) prepared for transportation:

1. includes only the costs of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. does not include:
 - a. costs of operation and maintenance of public facilities;
 - b. costs for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by existing residents;
 - c. an expense for overhead, unless the expense is calculated pursuant to a methodology that is consistent with generally accepted cost accounting practices and the methodological standards set forth by the federal Office of Management and Budget for federal grant reimbursement;
 - d. offsets costs with grants or other alternate sources of payment; and
3. complies with every relevant respect with the Impact Fees Act.

LRB Public Finance Advisors makes this certification with the following caveats:

1. All the recommendations for implementation of the IFFP made in the IFFP documents or in the IFA documents are followed by City Staff and elected officials.
2. If all or a portion of the IFFP or IFA are modified or amended, this certification is no longer valid.
3. All information provided to LRB is assumed to be correct, complete, and accurate. This includes information provided by the City as well as outside sources.

LRB PUBLIC FINANCE ADVISORS

DEFINITIONS

The following acronyms or abbreviations are used in this document:

AADT:	Average Annual Daily Trips
CFP:	Capital Facilities Plan
IFA:	Impact Fee Analysis
IFFP:	Impact Fee Facilities Plan
KSF:	1,000 Square Feet
LOS:	Level of Service
LRB:	LRB Public Finance Advisors

The following definitions are used in this document:

Development Activity:	any construction or expansion of a building, structure, or use, any change in use of a building or structure, or any changes in the use of land that creates additional demand and need for public facilities. ¹
Public Facilities:	impact fee facilities ² that have a life expectancy of 10 or more years and are owned or operated by or on behalf of a local political subdivision or private entity.
System Improvements:	existing public facilities that are: identified in the impact fee analysis and designed to provide services to service areas within the community at large, and future public facilities that are intended to provide services to service areas within the community at large. ³
Trip:	A vehicle trip represents the average daily trip with an origin or destination (entering or exiting) within the Service Area.

¹11-36a-102(3)

² See 11-36-a-102(17) for list of applicable impact fee facilities.

³11-36a-102(22)

SECTION I: EXECUTIVE SUMMARY

The purpose of the Transportation Impact Fee Analysis (IFA) is to fulfill the requirements established in Utah Code Title 11 Chapter 36a, the “Impact Fee Act,” and help West Haven City (the City) plan necessary capital improvements for future growth. This document will determine the maximum legal impact fee the City may charge to new growth to maintain the existing level of service (LOS) for the transportation system. This analysis is supported by the 2025 West Haven Transportation Capital Facilities Plan (CFP) and Impact Fee Facilities Plan (IFFP) prepared by A Trans Transportation Engineering and the West Haven Trip Generation Estimate Memo (see **Appendix A**).

- **Impact Fee Service Area:** The impact fees related to transportation will be assessed within the proposed Service Area, which includes the City's incorporated limits and as amended through annexations.
- **Demand Analysis:** The demand unit used in this analysis is based upon each land use category's impact and road usage characteristics expressed in the number of trips generated. As residential and commercial growth occurs within the City, it generates increased demand on existing and proposed roadways in the City. The system improvements identified in this study are designed to maintain the existing LOS within the City.
- **Level of Service:** Level of Service (LOS) assesses the level of congestion and associated delays on a roadway segment or intersection. LOS is measured using a letter grade A through F, where A represents free flowing traffic with absolutely no congestion and F represents grid lock. The City has adopted an acceptable standard of LOS D for its street network and intersections. A LOS D is when roadways operate at its most efficient capacity. Generally, up to a LOS D traffic volumes have not commenced to decrease in spite of increased delays.
- **Excess Capacity:** It is anticipated that new development will benefit from the existing roadways that have been constructed within the service area. Approximately 15.8 percent of the system is attributed to the demand within the IFFP planning horizon. As a result, **\$2.7M** of the total original system cost is included in this analysis, based on the original cost of system improvements as identified in the City's financial records.
- **Capital Facilities Analysis:** The IFFP has identified **\$21.2M** in improvements needed within the next ten years, based on construction timing and inflation of three percent annually. A total of **\$9M** is related to the demand within the next ten years, which is the IFA's planning horizon.
- **Financing of Future Facilities:** The future capital projects which are intended to serve new growth will be financed using impact fees, grants, transportation funding, or general fund revenues. The costs associated with future debt are not included in the Impact Fee Analysis.

PROPORTIONATE SHARE ANALYSIS

The proportionate share analysis determines the cost assignable to new development based on the proposed capital projects and the new growth served by the proposed projects during the 10-year planning horizon. The impact fee per trip is **\$298.38** as shown in **Table 1.1** below.

TABLE 1.1: PROPORTIONATE SHARE ANALYSIS

	TOTAL COST	ALLOCATION TO IFFP	COST TO IFFP	TRIPS SERVED	COST PER TRIP*
Existing Facilities	\$17,166,110	15.8%	\$2,712,245	39,695	\$68.33
Future Roadways	\$18,894,402	42.8%	\$8,084,010	39,695	\$203.65
Future Intersections	\$2,338,995	42.8%	\$1,000,744	39,695	\$25.21
Professional Expense (IFFP/IFA)	\$47,150	100.0%	\$47,150	39,695	\$1.19
				Total	\$298.38

* A vehicle trip represents average daily trip with origin or destination (entering or exiting) within the Service Area. The Trips Served represent the total increase in average daily trips within the IFFP planning horizon that occur within the Service Area.

IMPACT FEE SUMMARY BY LAND USE TYPE

The impact fee by land use type is illustrated in **Table 1.2**.

TABLE 1.2: IMPACT FEE SUMMARY BY LAND USE TYPE

LAND USE CATEGORY	ITE CODE	DEMAND UNIT*	AVERAGE DAILY TRIPS	PASS BY REDUCTION	PASS BY TRIPS REDUCED	TOTAL TRIPS	PROPOSED IMPACT FEE
Cost per Trip							\$298.38
Single Family Residential	210	Unit	9.43	0%	-	9.43	\$2,814
Multi Family Low Rise**	220	Unit	6.74	0%	-	6.74	\$2,011
Multi Family Mid Rise***	221	Unit	4.54	0%	-	4.54	\$1,355
Senior Adult Housing-Detached	251	Unit	4.31	0%	-	4.31	\$1,286
Senior Adult Housing-Attached	252	Unit	3.24	0%	-	3.24	\$967
Assisted Living	254	Beds	2.60	0%	-	2.60	\$776
Hotel	310	Rooms	7.99	0%	-	7.99	\$2,384
Light Industrial	110	KSF	4.08	0%	-	4.08	\$1,217
Industrial Park	130	KSF	3.37	0%	-	3.37	\$1,006
Mini Warehouse	151	KSF	1.45	0%	-	1.45	\$433
Elementary School	520	Students	2.27	0%	-	2.27	\$677
Middle/Jr. High School	522	Students	2.10	0%	-	2.10	\$627
High School	525	Students	1.94	0%	-	1.94	\$579
Daycare Center	565	KSF	47.62	0%	-	47.62	\$14,209
Nursing Home	620	Beds	3.06	0%	-	3.06	\$913
Clinic	630	KSF	37.60	0%	-	37.60	\$11,219
Church	560	KSF	7.60	0%	-	7.60	\$2,268
General Office	710	KSF	10.84	0%	-	10.84	\$3,234
Medical Dental Office	720	KSF	36.00	0%	-	36.00	\$10,742
Free-Standing Discount Superstore	813	KSF	50.52	28%	14.15	36.37	\$10,853
Hardware/Paint Store	816	KSF	8.07	26%	2.10	5.97	\$1,782
Shopping Center/General Commercial	820	KSF	37.01	34%	12.58	24.43	\$7,288
New Car Sales	841	KSF	27.84	0%	-	27.84	\$8,307
Tire Store	848	KSF	27.69	0%	-	27.69	\$8,262
Supermarket	850	KSF	93.84	36%	33.78	60.06	\$17,920
Convenience Market w/ Gas Pumps	853	KSF	624.20	66%	411.97	212.23	\$63,324
Discount Club	857	KSF	42.26	23%	9.72	32.54	\$9,709
Home Improvement Superstore	862	KSF	30.74	48%	14.76	15.98	\$4,770
Department Store	875	KSF	22.88	0%	-	22.88	\$6,827
Pharmacy/Drugstore w/ Drive Thru	881	KSF	108.40	49%	53.12	55.28	\$16,496
Drive-In Bank	912	KSF	100.35	47%	47.16	53.19	\$15,869
Quality Restaurant	931	KSF	83.84	44%	36.89	46.95	\$14,009

LAND USE CATEGORY	ITE CODE	DEMAND UNIT*	AVERAGE DAILY TRIPS	PASS BY REDUCTION	PASS BY TRIPS REDUCED	TOTAL TRIPS	PROPOSED IMPACT FEE
High Turnover/Sit Down Restaurant	932	KSF	107.20	43%	46.10	61.10	\$18,232
Fast Food with Drive Thru	934	KSF	467.48	50%	233.74	233.74	\$69,743
Quick Lube	941	KSF	69.57	0%	-	69.57	\$20,758
Self-Service Car Wash	947	Wash Stalls	108.00	0%	-	108.00	\$32,225

Source for trip statistics is the Institute of Traffic Engineers (ITE) Manual, 11th Edition. Adjustment factors can be found using the "List of Land Uses with Vehicle Pass-By Rates and Data." Land use categories indicated are not all inclusive. Refer to ITE manual for appropriate category and adjustment factors if not found in this report. For non-standard uses, the non-standard formula can be used. Each land use within proposed development will be evaluated.

* KSF: 1,000 Square Feet

** Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have two or three floors (levels). Various configurations fit this description, including walkup apartment, mansion apartment, and stacked townhouse.

*** Mid-rise multifamily housing includes apartments and condominiums located in a building that has between four and 10 floors of living space. Access to individual dwelling units is through an outside building entrance, a lobby, elevator, and a set of hallways.

NON-STANDARD IMPACT FEES

The City reserves the right under the Impact Fees Act to assess an adjusted fee that more closely matches the true impact that the land use will have upon public facilities.⁴ This adjustment could result in a different impact fee if the City determines that a particular user may create a different impact than what is standard for its land use. The City may also decrease the impact fee if the developer can provide documentation, evidence, or other credible analysis that the proposed impact will be lower than what is proposed in this analysis.

FORMULA FOR NON-STANDARD TRANSPORTATION IMPACT FEES:

Total Demand Units x Estimate Trips per Unit x Adjustment Factors x \$298.38 = Impact Fee per Unit

CONSIDERATION OF ALL REVENUE SOURCES

The Impact Fees Act requires this document to consider all revenue sources to finance the impacts on system improvements, including: (a) grants; (b) bonds; (c) interfund loans; (d) impact fees; and (e) anticipated or accepted dedications of system improvements. See **Section V** for further discussion regarding the consideration of revenue sources.

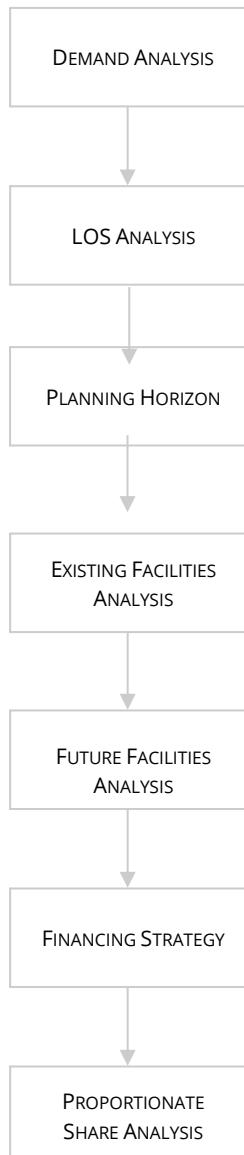
EXPENDITURE OF IMPACT FEES

The Impact Fee Act requires that impact fees should be spent or encumbered within six years after each impact fee is paid, indicating that there is a rolling timeline when identifying the impacts placed on public facilities by development activity. This plan addresses a 10-year planning horizon in order to account for the rolling timeline, while ensuring that the assumptions included in the analysis are relevant to new development activity, and accounting for the need for entities to update the impact fee analysis periodically. Impact fees collected in the IFFP planning horizon should be spent only on those projects outlined in the IFFP as growth related costs to maintain the LOS.

GROWTH-DRIVEN EXTRAORDINARY COSTS

The City does not anticipate any extraordinary costs necessary to provide services to future development.

SUMMARY OF TIME PRICE DIFFERENTIAL


The Impact Fees Act allows for the inclusion of a time price differential to ensure a fair comparison of amounts paid at different times. The LOS for this analysis is based on the original value of the transportation system when determining a buy-in component, while addressing the current and future cost when calculating the portion of the fee attributed to new construction.

⁴ 11-36a-402(1)(c)

SECTION II: GENERAL IMPACT FEE METHODOLOGY

FIGURE 2.1: IMPACT FEE METHODOLOGY

The purpose of this study is to fulfill the requirements of the Impact Fees Act regarding the establishment of an IFFP and IFA. The IFFP is designed to identify the demands placed upon existing facilities by future development and evaluate how these demands will be met. The IFFP is also intended to outline system improvements which are intended to be funded by impact fees.

The IFA is designed to proportionately allocate the cost of the new facilities and any excess capacity to new development, while ensuring that all methods of financing are considered. Each component must consider the existing level of service (LOS) provided to existing development and ensure that impact fees are not used to raise that level of service. The following elements are important considerations when completing an IFFP and IFA.

DEMAND ANALYSIS

The demand analysis serves as the foundation for the IFFP. This element focuses on a specific demand unit related to each public service – the existing demand on public facilities and the future demand as a result of new development that will impact public facilities.

LEVEL OF SERVICE ANALYSIS

The demand placed upon existing public facilities by existing development is known as the existing “Level of Service” (“LOS”). Through the inventory of existing facilities, combined with the growth assumptions, this analysis identifies the level of service which is provided to a community’s existing residents and ensures that future facilities maintain these standards. Any excess capacity identified within existing facilities can be apportioned to new development. Any demand generated from new development that overburdens the existing system beyond the existing capacity justifies the construction of new public facilities.

PLANNING HORIZON

The impact fee facilities plan, and impact fee analysis is based on a 10-year planning window. This ensures that the proportionate share of costs attributed to new development activity are related to the development activity’s impact on the system. In addition, this planning horizon facilitates the requirement to expend impact fees collected within the six-year expenditure period.

EXISTING FACILITY INVENTORY

In order to quantify the demands placed upon existing public facilities by new development activity, to the extent possible, the Impact Fee Facilities Plan provides an inventory of the existing public facilities. The inventory valuation should include the original construction cost and estimated useful life of each facility. The inventory of existing facilities is important to properly determine the excess capacity of existing facilities and the utilization of excess capacity by new development.

FUTURE CAPITAL FACILITIES ANALYSIS

The demand analysis, existing facilities inventory, and LOS analysis allow for the development of a list of capital projects necessary to serve new growth and to maintain the existing LOS. This list includes any excess capacity of existing facilities as well as future system improvements necessary to maintain the level of service.

FINANCING STRATEGY

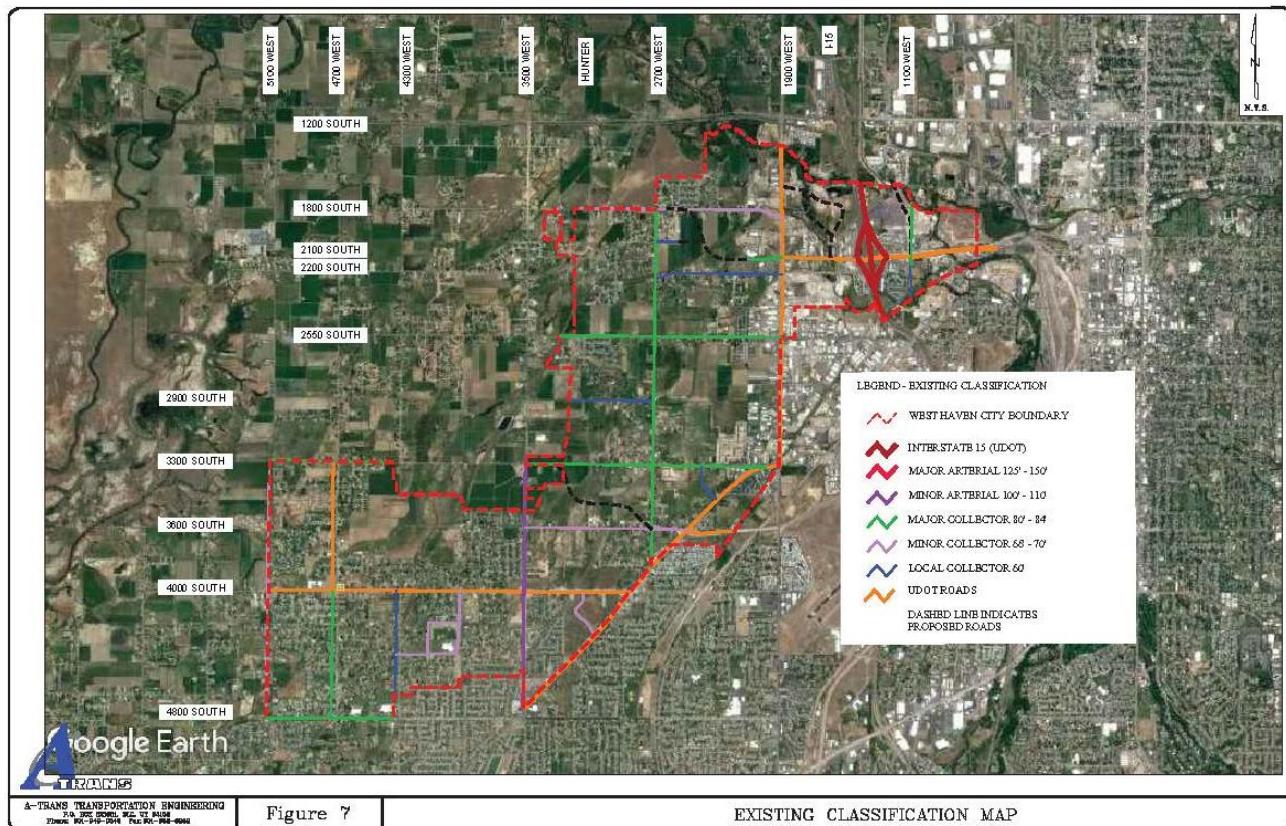
This analysis requires consideration of all revenue sources, including impact fees, future debt costs, alternative funding sources, and the dedication of system improvements, which may be used to finance system improvements.⁵ In conjunction with this revenue analysis, there must be a determination that impact fees are necessary to maintain the existing LOS.⁶

PROPORTIONATE SHARE ANALYSIS

The written impact fee analysis is required under the Impact Fees Act and must identify the impacts placed on the public facilities by development activity and how these impacts are reasonably related to the new development. The written impact fee analysis must include a proportionate share analysis, clearly detailing the cost of future or existing (that have excess capacity) public facilities improvements are roughly proportionate to the reasonably related to the service demands needed for any new development activity.

⁵ 11-36a-302(2)

⁶ 11-36a-302(3)



SECTION III: OVERVIEW OF SERVICE AREA, DEMAND AND LEVEL OF SERVICE

SERVICE AREA

Figure 3.1 illustrates the proposed impact fee service area, which incorporates the entire municipal boundary of the City and as amended through annexations. The impact fees related to transportation will be assessed within the proposed service area.

FIGURE 3.1: PROPOSED SERVICE AREA

DEMAND UNITS

The demand units utilized in this analysis are based on undeveloped residential and commercial land and the new trips generated from these land-use types once developed. As residential and commercial growth occurs within the City, additional trips will be generated on the City's roadways. The transportation system improvements identified in this study are based on maintaining the current level of service as defined by the City. The proposed impact fees are based upon the projected growth in demand units which are used as a means to quantify the impact that future users will have upon the City's system. The demand unit used in the calculation of the transportation impact fee is based upon each land use category's impact and road usage characteristics expressed in the number of trips generated. The existing and future trip statistics used in this analysis were prepared by A Trans Transportation Engineering based on existing modeling software.

To determine the proportionate impact from each land use type, the existing trips are allocated to the different land use types based on trip statistics as presented in the Institute of Traffic Engineers (ITE) Trip Generation Manual, 11th Edition. The most common method of determining growth is measuring the number of trips within a community based on the differences between existing and future land uses. Appropriate adjustment factors

are applied to remove pass-by traffic. Based on the growth in trips, the City will need to expand its current facilities to accommodate new growth. Growth from new development will create an additional 39,695 (Projected 2033 Trips (120,705) – 2022 Trips (81,010)) trips by 2033, as shown in **Appendix A** and is the total demand units during this planning horizon.

LEVEL OF SERVICE

LOS assesses the level of congestion on a roadway segment or intersection and is a qualitative rating of traveler satisfaction from A to F. LOS A corresponds to a roadway that has the greatest excess capacity, and LOS F corresponds to a roadway that has far exceeded its reasonable operating capacity. Delay times and inconveniences on roadways gradually increase between these two operating points. When roadways reach their most efficient capacity, they operate at a LOS D. Generally, up to that point, traffic volumes have not commenced to decrease in spite of increased delays.

West Haven City has adopted an acceptable standard of LOS D for its street network and intersections⁷ providing for maximum volume while keeping delays and inconveniences within the limits of toleration. This LOS D rating is based on standard and recommended practices by national guidelines. This LOS D threshold would indicate the PM peak traffic hours operating at this level and then all other times are typically operating at a better LOS.

⁷ See West Haven Transportation Capital Facilities Plan and Impact Fee Facilities Plan, 2025 p.13

SECTION IV: EXISTING FACILITIES INVENTORY

EXCESS CAPACITY & BUY-IN

The City has determined that transportation impact fees are necessary to finance system improvements for trips generated by new development activity. Additionally, the City has determined that a buy-in component is necessary for the roadways that have sufficient capacity to accommodate new development activity while maintaining the existing level of service.

EXISTING TRANSPORTATION SYSTEM BUY-IN

The determination of a buy-in component related to existing roadways is based on a capacity utilization analysis of existing roadways. According to the analysis shown in **Table 4.1**, approximately 16.4 percent of the existing system roadways will be used by new demand in the IFFP planning horizon. This analysis excludes State or County owned road facilities, as well as project improvements (neighborhood roadways).

TABLE 4.1: ALLOCATION OF BUY-IN COMPONENT

ROADWAY	2023 AADT	EXISTING LOS D CAPACITY	EXISTING EXCESS CAPACITY	LINK LENGTH (FEET)	LENGTH AS % OF TOTAL	2033 AADT	NEW GROWTH	CAPACITY USED	% OF ROAD CAPACITY
4800 South	12,000	11,500	-	5,280	4.9%	13,000	1,000	-	0.0%
3600 South	2,700	10,500	7,800	5,270	4.9%	3,900	1,200	1,200	11.4%
3600 South	2,700	10,500	7,800	1,415	1.3%	3,900	1,200	1,200	11.4%
Connector 1800/2100	-				0.0%	10,500	10,500	-	0.0%
3300 South	1,700	10,500	8,800	10,550	9.8%	4,400	2,700	2,700	25.7%
3300 South	1,300	11,500	10,200		0.0%	9,700	8,400	8,400	73.0%
3300 South	1,300	11,500	10,200	9,580	8.9%	2,700	1,400	1,400	12.2%
2900 South	-	10,500		3,450	3.2%	0	-	-	0.0%
2550 South	6,200	11,500	5,300	3,450	3.2%	9,100	2,900	2,900	25.2%
2550 South	6,200	11,500	5,300	5,260	4.9%	9,100	2,900	2,900	25.2%
2200 South	-	10,500		5,250	4.9%	0	-	-	0.0%
Connector 3300/3600	-				0.0%	12,000	12,000	-	0.0%
Wilson Lane	-	10,500			0.0%	0	-	-	0.0%
1800 South	3,500	10,500	7,000		0.0%	5,300	1,800	1,800	17.1%
1800 South	3,500	10,500	7,000		0.0%	12,300	8,800	7,000	66.7%
1800 South	3,500	10,500	7,000	5,200	4.8%	4,300	800	800	7.6%
5100 West	1,900	10,500	8,600	10,900	10.1%	2,400	500	500	4.8%
4300 West	2,000	10,500	8,500	5,300	4.9%	4,000	2,000	2,000	19.0%

ROADWAY	2023 AADT	EXISTING LOS D CAPACITY	EXISTING EXCESS CAPACITY	LINK LENGTH (FEET)	LENGTH AS % OF TOTAL	2033 AADT	NEW GROWTH	CAPACITY USED	% OF ROAD CAPACITY
3500 West	5,300	13,000	7,700		0.0%	6,900	1,600	1,600	12.3%
3500 West	3,100	13,000	9,900	5,300	4.9%	4,300	1,200	1,200	9.2%
2700 West	1,900	10,500	8,600	14,740	13.7%	5,000	3,100	3,100	29.5%
1100 West	4,100	10,500	6,400	3,340	3.1%	8,100	4,000	4,000	38.1%
Total		230,500	126,100	94,285	100.0%				
Weighted% to Growth									15.8%

Source: CFP p. 19

City records indicate that the transportation system's actual costs were \$53M to construct. However, approximately \$17.166M is considered system improvements (eligible system value), with the remaining considered project improvements and therefore removed from the analysis. The eligible system value is used to determine the appropriate buy-in fee. New development activity will benefit from the existing roadways that are system improvements that have been constructed within the service area, and development activities proportionate share for buy-in to the existing system improvements is \$2.7M ($\$17.166M \times .158$).

SECTION V: PUBLIC FACILITY ANALYSIS

FUTURE CAPITAL PROJECTS

The IFFP has identified the growth-related projects needed within the next 10 years. Capital projects related to curing existing deficiencies were not included in the calculation of the impact fees. Total future projects applicable to new development are shown below. The percentage of costs related to this analysis is based on the 10 year demand as a percent of capacity added from the 2033 LOS D capacity. **Table 5.1** illustrates the estimated cost of future roadway system improvements within the Service Area, as identified in the IFFP. **Table 5.2** details the future cost of intersection improvements in the IFFP. Similar to roadway improvements, 42.8 percent is related to demand in the planning horizon (See **Table 5.1**).

TABLE 5.1: SUMMARY OF FUTURE ROADWAY SYSTEM IMPROVEMENTS WITHIN IFFP PLANNING HORIZON

PROJECT #	ROADWAY	FROM	TO	COST ESTIMATE	WACOG FUNDING	ESTIMATED CITY	ESTIMATED DATE	CONST. YR. COST	% TO IFA	COST TO IFA
1	3300 South	4700 West	5100 West	\$2,615,457	\$1,999,000	\$616,457	2026	\$653,999	100.0%	\$653,999
2	5100 West	3150 South	3800 South	\$3,787,721	\$2,799,000	\$988,721	2026	\$1,048,934	50.0%	\$524,467
3	2700 West	2050 South	2550 South	\$3,550,000	\$1,892,000	\$1,658,000	2025	\$1,707,740	100.0%	\$1,707,740
4	Connector	1800 South	2100 South	\$5,785,410	\$4,804,000	\$981,410	2026	\$1,041,178	39.3%	\$409,644
5	1800 South	2700 West	2300 West	\$5,513,418	\$3,479,360	\$2,034,058	2028	\$2,289,350	44.0%	\$1,007,314
6	3600 South	2700 West	Midland Drive	\$1,223,056	\$0	\$1,223,056	2029	\$1,417,857	6.0%	\$85,071
7	Connector	3300 South	3600 South	\$12,624,360	\$2,800,000	\$9,824,360	2027	\$10,735,343	34.4%	\$3,695,774
Total				\$35,099,422	\$17,773,360	\$17,326,062		\$18,894,402	42.8%	\$8,084,010

TABLE 5.2: SUMMARY OF FUTURE SIGNALIZATION SYSTEM IMPROVEMENTS WITHIN IFFP PLANNING HORIZON

PROJECT #	INTERSECTION		COST ESTIMATE	WACOG FUNDING	ESTIMATED DATE	CONST. YR. COST	% TO IFA	COST TO IFA
8 (part of #4)	1800 South	Connector Road	\$500,000	\$0	2026	\$530,450	42.8%	\$226,954
9	4000 South	5100 West	\$1,000,000	\$900,000	2026	\$106,090	42.8%	\$45,391
10	4000 South	4300 West	\$1,000,000	\$900,000	2026	\$106,090	42.8%	\$45,391
11	1800 South	1900 West	\$2,248,300	\$1,848,300	2027	\$437,091	42.8%	\$187,010
12 (part of #7)	3300 South	Connector Road	\$500,000	\$0	2029	\$579,637	42.8%	\$247,999
13	2700 West	3600 South	\$500,000	\$0	2029	\$579,637	42.8%	\$247,999
Total			\$5,748,300	\$3,648,300		\$2,338,995		\$1,000,744

Source: Appendix C Table 2: 2028/2033

SYSTEM VS. PROJECT IMPROVEMENTS

System improvements are defined as existing and future public facilities designed to provide services to service areas within the community at large.⁸ Project improvements are improvements and facilities that are planned and designed to provide service for a specific development (resulting from a development

⁸ 11-36a-102(21)

activity) and considered necessary for the use and convenience of the occupants or users of that development.⁹ The Impact Fee Analysis may only include the costs of impacts on system improvements related to new growth within the proportionate share analysis.

FUNDING OF FUTURE FACILITIES

The IFFP must also include a consideration of all revenue sources, including impact fees and developer dedication of system improvements, which may be used to finance system improvements.¹⁰ In conjunction with this revenue analysis, there must be a determination that impact fees are necessary to maintain the existing level of service.¹¹

GENERAL FUND REVENUES

In considering the funding of future facilities, the IFFP has identified the portion of each project that is intended to be funded by the City, as well as funding sources from other government agencies. It is anticipated that the capital projects that will be constructed to cure the existing system deficiencies or the portion that is not attributed to development activity within this IFA planning horizon will be funded through General Fund revenues. Impact fee revenues will be a continual source of revenue to fund growth related improvements. The City does not currently assess property tax. User charges may also be a funding source. For example, some entities in Utah employ a Transportation Utility Fee (TUF) to fund road infrastructure. Often this fee is used to help with repair and replacement of road infrastructure. The City does not currently assess a TUF.

GRANTS AND DONATIONS

The City does not anticipate any donations from new development for future system-wide improvements related to transportation facilities. Any donor in the future will be entitled to a reimbursement for the negotiated value of system improvements funded through impact fees if donations are made by new development activity. The impact fees should also be adjusted if additional grant monies are received. **Tables 5.1** and **5.2** identify existing grant funds provided by the Weber Area Council of Government (WACOG) grant funds and are removed from this analysis.

IMPACT FEE REVENUES

Impact fees are an ideal mechanism for funding growth-related infrastructure. Impact fees are currently charged to ensure that new growth pays its proportionate share of the costs for the development of public facilities. Impact fee revenues can also be attributed to the future expansion of public infrastructure if the revenues are used to maintain an existing LOS. Increases to an existing LOS cannot be funded with impact fee revenues. An impact fee analysis is required to accurately assess the true impact of a particular user upon the City facilities to mitigate the impact of new development on public facilities. The City has determined that assessing impact fees on development activities is necessary to maintain the existing LOS in the future.

DEBT FINANCING

In the event the City has not amassed sufficient impact fees in the future to pay for the construction of time sensitive or urgent public facilities needed to accommodate new growth, the City must look to revenue sources other than impact fees for funding. The Impact Fees Act allows for the costs related to the financing of future public facilities to be legally included in the impact fee. This allows the City to finance and quickly construct infrastructure for new development

⁹ 11-36a-102(14)

¹⁰ 11-36a-302(2)

¹¹ 11-36a-302(3)

and reimburse itself later from impact fee revenues for the costs of issuing debt (i.e., interest costs). Future debt has not been considered in the calculation of the transportation impact fee. If bonding is used in the future, this cost associated with issuance and debt service can be included in the analysis.

PROPOSED CREDITS OWED TO DEVELOPMENT

The Impact Fees Act requires a local political subdivision or private entity to ensure that the impact fee enactment allows a developer, including a school district or a charter school, to receive a credit against or proportionate reimbursement of an impact fee if the developer: (a) dedicates land for a system improvement; (b) builds and dedicates some or all of a system improvement; or (c) dedicates a public facility that the local political subdivision or private entity and the developer agree will reduce the need for a system improvement.¹²

The facilities must be considered system improvements or be dedicated to the public and offset the need for an improvement identified in the IFFP.

EQUITY OF IMPACT FEES

Impact fees are intended to recover the costs of system improvements that relate to future growth. The impact fee calculations are structured for impact fees to fund the cost of public facility improvements that are roughly proportionate and reasonably related to the service demands and needs for new development activity through a proportionate share analysis as presented in the impact fee analysis. Even so, there may be years that impact fee revenues cannot cover the annual growth-related expenses. In those years, other revenues such as general fund revenues will be used to make up any annual deficits. Any borrowed funds or General Fund revenues used to make up annual deficits will be repaid in their entirety through impact fees.

NECESSITY OF IMPACT FEES

An entity may only impose impact fees on development activity if the entity's plan for financing system improvements establishes that impact fees are necessary to perpetuate the existing LOS D into the future. This analysis has identified the improvements to public facilities and the funding mechanisms to complete the suggested improvements. Impact fees are identified as a necessary funding mechanism to help offset the costs of new capital improvements related to new growth.

¹² 11-36a-402(2)

SECTION VI: TRANSPORTATION IMPACT FEE CALCULATION

The transportation impact fees calculated in this analysis will be assessed to the Service Area as defined in **Section III**. The impact fee calculations include development activities' proportionate share of the costs of construction of existing and future transportation system improvements.

PROPOSED TRANSPORTATION IMPACT FEE

The proportionate share analysis determines the cost assignable to new development based on the existing and future system improvements and the new growth served by the proposed projects. Additionally, as allowed by UCA 11-36a-305(1), professional expenses associated with developing the IFFP and IFA are included. The impact fee per trip is **\$298.38** as shown in **Table 6.1** below.

TABLE 6.1: PROPORTIONATE SHARE ANALYSIS

	TOTAL COST	ALLOCATION TO IFFP	COST TO IFFP	TRIPS SERVED	COST PER TRIP*
Existing Facilities	\$17,166,110	15.8%	\$2,712,245	39,695	\$68.33
Future Roadways	\$18,894,402	42.8%	\$8,084,010	39,695	\$203.65
Future Intersections	\$2,338,995	42.8%	\$1,000,744	39,695	\$25.21
Professional Expense (IFFP/IFA)	\$47,150	100.0%	\$47,150	39,695	\$1.19
				Total	\$298.38

* A vehicle trip represents average daily trip with origin or destination (entering or exiting) within the Service Area. The Trips Served represent the total increase in average daily trips within the IFFP planning horizon that occur within the Service Area.

IMPACT FEE SUMMARY BY LAND USE TYPE

The impact fee by land use type is, is illustrated in **Table 6.2**.

TABLE 6.2: IMPACT FEE SUMMARY BY LAND USE TYPE

LAND USE CATEGORY	ITE CODE	DEMAND UNIT*	AVERAGE DAILY TRIPS	PASS BY REDUCTION	PASS BY TRIPS REDUCED	TOTAL TRIPS	PROPOSED IMPACT FEE
Cost per Trip							\$298.38
Single Family Residential	210	Unit	9.43	0%	-	9.43	\$2,814
Multi Family Low Rise**	220	Unit	6.74	0%	-	6.74	\$2,011
Multi Family Mid Rise***	221	Unit	4.54	0%	-	4.54	\$1,355
Senior Adult Housing-Detached	251	Unit	4.31	0%	-	4.31	\$1,286
Senior Adult Housing-Attached	252	Unit	3.24	0%	-	3.24	\$967
Assisted Living	254	Beds	2.60	0%	-	2.60	\$776
Hotel	310	Rooms	7.99	0%	-	7.99	\$2,384
Light Industrial	110	KSF	4.08	0%	-	4.08	\$1,217
Industrial Park	130	KSF	3.37	0%	-	3.37	\$1,006
Mini Warehouse	151	KSF	1.45	0%	-	1.45	\$433
Elementary School	520	Students	2.27	0%	-	2.27	\$677
Middle/Jr. High School	522	Students	2.10	0%	-	2.10	\$627
High School	525	Students	1.94	0%	-	1.94	\$579
Daycare Center	565	KSF	47.62	0%	-	47.62	\$14,209
Nursing Home	620	Beds	3.06	0%	-	3.06	\$913
Clinic	630	KSF	37.60	0%	-	37.60	\$11,219
Church	560	KSF	7.60	0%	-	7.60	\$2,268
General Office	710	KSF	10.84	0%	-	10.84	\$3,234

LAND USE CATEGORY	ITE CODE	DEMAND UNIT*	AVERAGE DAILY TRIPS	PASS BY REDUCTION	PASS BY TRIPS REDUCED	TOTAL TRIPS	PROPOSED IMPACT FEE
Medical Dental Office	720	KSF	36.00	0%	-	36.00	\$10,742
Free-Standing Discount Superstore	813	KSF	50.52	28%	14.15	36.37	\$10,853
Hardware/Paint Store	816	KSF	8.07	26%	2.10	5.97	\$1,782
Shopping Center/General Commercial	820	KSF	37.01	34%	12.58	24.43	\$7,288
New Car Sales	841	KSF	27.84	0%	-	27.84	\$8,307
Tire Store	848	KSF	27.69	0%	-	27.69	\$8,262
Supermarket	850	KSF	93.84	36%	33.78	60.06	\$17,920
Convenience Market w/ Gas Pumps	853	KSF	624.20	66%	411.97	212.23	\$63,324
Discount Club	857	KSF	42.26	23%	9.72	32.54	\$9,709
Home Improvement Superstore	862	KSF	30.74	48%	14.76	15.98	\$4,770
Department Store	875	KSF	22.88	0%	-	22.88	\$6,827
Pharmacy/Drugstore w/ Drive Thru	881	KSF	108.40	49%	53.12	55.28	\$16,496
Drive-In Bank	912	KSF	100.35	47%	47.16	53.19	\$15,869
Quality Restaurant	931	KSF	83.84	44%	36.89	46.95	\$14,009
High Turnover/Sit Down Restaurant	932	KSF	107.20	43%	46.10	61.10	\$18,232
Fast Food with Drive Thru	934	KSF	467.48	50%	233.74	233.74	\$69,743
Quick Lube	941	KSF	69.57	0%	-	69.57	\$20,758
Self-Service Car Wash	947	Wash Stalls	108.00	0%	-	108.00	\$32,225

Source for trip statistics is the Institute of Traffic Engineers (ITE) Manual, 11th Edition. Adjustment factors can be found using the "List of Land Uses with Vehicle Pass-By Rates and Data." Land use categories indicated are not all inclusive. Refer to ITE manual for appropriate category and adjustment factors if not found in this report. For non-standard uses, the non-standard formula can be used. Each land use within proposed development will be evaluated.

* KSF: 1,000 Square Feet

** Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have two or three floors (levels). Various configurations fit this description, including walkup apartment, mansion apartment, and stacked townhouse.

*** Mid-rise multifamily housing includes apartments and condominiums located in a building that has between four and 10 floors of living space. Access to individual dwelling units is through an outside building entrance, a lobby, elevator, and a set of hallways.

NON-STANDARD IMPACT FEES

The City reserves the right under the Impact Fees Act to assess an adjusted fee to fairly assess the impact that a non-standard land use will have upon public facilities.¹³ This adjustment could result in a different impact fee if the City determines that a particular user may create a different impact than what is standard for its land use. The City may also decrease the impact fee if the developer can provide documentation, evidence, or other credible analysis that the proposed impact will be lower than what is proposed in this analysis.

FORMULA FOR NON-STANDARD TRANSPORTATION IMPACT FEES:

Total Demand Units x Estimate Trips per Unit x Adjustment Factors x \$298.38 = Impact Fee per Unit

The formula for a non-standard impact fee should be included in the impact fee enactment (by resolution or ordinance). In addition, the impact fee enactment should contain the following elements:

- A provision establishing one or more service areas within which the local political subdivision or private entity calculates and imposes impact fees for various land use categories.
- A schedule of impact fees for each type of development activity that specifies the amount of the impact fee to be imposed for each type of system improvement or the formula that the local political subdivision or private entity will use to calculate each impact fee.
- A provision authorizing the local political subdivision or private entity to adjust the standard impact fee at the time the fee is charged to:

¹³ 11-36a-402(1)(c)

- Respond to unusual circumstances in specific cases or a request for a prompt and individualized impact fee review for the development activity of the state, a school district, or a charter school and an offset or credit for a public facility for which an impact fee has been or will be collected.
- Ensure that the impact fees are imposed fairly.
- A provision governing calculation of the amount of the impact fee to be imposed on a particular development that permits adjustment of the amount of the impact fee based upon studies and data submitted by the developer.
- A provision that allows a developer, including a school district or a charter school, to receive a credit against or proportionate reimbursement of an impact fee if the developer:
 - Dedicates land for a system improvement.
 - Builds and dedicates some or all of a system improvement.
 - Dedications a public facility that the local political subdivision or private entity and the developer agree will reduce the need for a system improvement.
- A provision that requires a credit against impact fees for any dedication of land for, improvement to, or new construction of, any system improvements provided by the developer if the facilities:
 - Are system improvements; or,
 - Dedicated to the public and offset the need for an identified system improvement.

Other provisions of the impact fee enactment include exemption of fees for development activity attributable to low-income housing, the state, a school district, or a charter school. Exemptions may also include other development activities with a broad public purpose. If an exemption is provided, the entity should establish one or more sources of funds other than impact fees to pay for that development activity. The impact fee exemption for development activity attributable to a school district or charter school should be applied equally to either scenario.

CONSIDERATION OF ALL REVENUE SOURCES

The Impact Fees Act requires this document to consider all revenue sources to finance the impacts on system improvements, including: (a) grants; (b) bonds; (c) interfund loans; (d) impact fees; and (e) anticipated or accepted dedications of system improvements. See **Section V** for further discussion regarding the consideration of revenue sources.

EXPENDITURE OF IMPACT FEES

The Impact Fee Act requires that impact fees should be spent or encumbered within six years after each impact fee is paid, indicating that there is a rolling timeline when identifying the impacts placed on public facilities by development activity. This plan addresses a 10-year planning horizon in order to account for the rolling timeline, while ensuring that the assumptions included in the analysis are relevant to new development activity, and accounting for the need for entities to update the impact fee analysis periodically. Impact fees collected in the IFFP planning horizon should be spent only on those projects outlined in the IFFP as growth related costs to maintain the LOS.

GROWTH-DRIVEN EXTRAORDINARY COSTS

The City does not anticipate any extraordinary costs necessary to provide services to future development.

SUMMARY OF TIME PRICE DIFFERENTIAL

The Impact Fees Act allows for the inclusion of a time price differential to ensure a fair comparison of amounts paid at different times. The LOS for this analysis is based on the original value of the transportation system when determining a buy-in component, while addressing the current and future cost when calculating the portion of the fee attributed to new construction.

IMPACT FEE ENACTMENT

According to Utah Code 11-36A Section 402, the impact fee enactment should contain the following elements:

- A provision establishing one or more service areas within which the local political subdivision or private entity calculates and imposes impact fees for various land use categories.
- A schedule of impact fees for each type of development activity that specifies the amount of the impact fee to be imposed for each type of system improvement or the formula that the local political subdivision or private entity will use to calculate each impact fee.
- A provision authorizing the local political subdivision or private entity to adjust the standard impact fee at the time the fee is charged to:
 - Respond to unusual circumstances in specific cases or a request for a prompt and individualized impact fee review for the development activity of the state, a school district, or a charter school and an offset or credit for a public facility for which an impact fee has been or will be collected.
 - Ensure that the impact fees are imposed fairly.
- A provision governing calculation of the amount of the impact fee to be imposed on a particular development that permits adjustment of the amount of the impact fee based upon studies and data submitted by the developer.
- A provision that allows a developer, including a school district or a charter school, to receive a credit against or proportionate reimbursement of an impact fee if the developer:
 - Dedicates land for a system improvement.
 - Builds and dedicates some or all of a system improvement.
 - Dedicates a public facility that the local political subdivision or private entity and the developer agree will reduce the need for a system improvement.
- A provision that requires a credit against impact fees for any dedication of land for, improvement to, or new construction of, any system improvements provided by the developer if the facilities:
 - Are system improvements; or,
 - Dedicated to the public and offset the need for an identified system improvement.

Other provisions of the impact fee enactment include exemption of fees for development activity attributable to low-income housing, the State, a school district, or a charter school. Exemptions may also include other development activities with a broad public purpose. If an exemption is provided, the entity should establish one or more sources of funds other than impact fees to pay for that development activity. The impact fee exemption for development activity attributable to a school district or charter school should be applied equally to either scenario.

APPENDIX A: WEST HAVEN TRIP GENERATION ESTIMATE MEMO

March 18, 2024

RE: West Haven Trip Generation Estimate

The purpose of this memo is to determine the trips generated within West Haven City between now and 2033 for use in the Impact Fee Analysis. The traffic growth in the city was based on the growth from the existing AADT compared to 2050 WFRC long range forecasts. This yielded an average growth of 2.3% per year. Population estimates indicate that the city will experience higher growth over the next 10 years and then taper off. It was assumed that 50% of the growth would occur by 2033 (10 year horizon). This yielded a growth rate of over the next 10 years of 4.09%. This is a 10 year growth factor of 1.49.

Typically the number of units and the ITE trip generation manual would be used to generate trips from residential homes. However, the number of single family vs multi-family units is unknown along with the density and projected densities of commercial or industrial related land uses. Therefore a different methodology was implemented. Trips per Utah household were calculated based on the Utah Travel Study from January 2013 and this methodology was applied to West Haven demographics specifically. Table 1 shows the estimated trips per household and person for Wasatch Front and West Haven. The existing and future projections for population and homes are shown in Table 2.

Table 1: Trips Per Household and Person

Wasatch Front		West Haven	
Trips per Unit Table 1.9	11.23	Trips per Unit based on 3.75 People per Household Table 1.11	13.57
People Per Household Calculated	3.09	People Per Household Assumed	3.75
Trips per Person Table 1.9	3.63	Trips per Person Calculated	3.62

Table 2: Existing and Future Homes and Populations Projections

	2018	2022	2030	2033	2040
Homes	4129	5972	6957	8898	9065
				7589	
Population	15155	22395	26087	33369	33995
Household Size	3.67	3.75	3.75	3.75	3.75
Legend					
Calculated Based on WH General Plan	datacommons.org	Calculated	West Haven City General Plan	1.49 growth factor for Traffic in 2033	Assumed

There are a projected 2,926 residential units proposed between 2022 and 2033. The trips per household rate for West Haven is 13.57 trips. New trips generated by residential units between 2022 and 2033 is 39,695 trips. The residential trips account for all types of trips within the city, i.e. home-based work, home-based retail, non-home-based work etc. A complete list of trip types is available in table 1.6 of the Utah Travel Study. The total trips projected to be generated by 2033 is shown in Table 3.

Table 3: Total Trips

	Trips in 2022	Trips in 2033
Total Trips	81010	120705
New Trips	39695	

The current IFA assumes 27,093 new trips from 2018-2029 and \$6,104,499 in improvements yielding an impact fee of \$225.32. The new proposed costs are \$17,605,483 (after other funding sources are considered as provided by Gardner Engineering) divided by 39,695 new trips yielding an impact fee of \$443.52. This is shown in Table 4.

Table 4: Impact Fee Comparison

	2018 – Current IFA	2023 – Proposed IFA
New Trips over 10 Years	27,093	39,695
Improvement Cost	\$6,104,499	\$17,605,483 ^a
Cost per Trip	\$225.32	\$443.52

a – the total costs for improvements after funding sources are subtracted per Gardner Engineering

Note: Calculation was done previously using an alternate method, calculating trips based on ITE for residential and commercial uses. The 2018 calculations are shown in Table 5. If land use information is provided, this methodology can be implemented.

Table 5: Existing IFA Trip Calculations

LAND USE	2018	2024	2029	2040
Residential	37,741	47,755	58,102	89,447
Commercial	171,385	186,108	198,565	225,368
Industrial	6,470	6,673	6,875	7,246
Raw Trip Gen Total	215,596	240,536	263,542	322,061
34% Commercial Reduction for Pass-by	(58,271)	(63,277)	(67,512)	(76,625)
30% Reduction for Double Count	(47,198)	(53,178)	(58,809)	(73,631)
Projected Total City Trips	110,128	124,081	137,221	171,805
New Trips		13,953	27,093	61,677

Table 3.1 of existing IFA

Summary:

39,695 new trips are projected between 2022 and 2033 based on the projected West Haven population change and the Utah Travel Study.

Please let me know if you have any questions.

Sincerely,
A-Trans Engineering

A handwritten signature in black ink that reads "Joseph Perrin, Jr." The signature is fluid and cursive, with "Joseph" and "Perrin" being the most prominent parts.

Joseph Perrin, PhD, PE, PTOE
Principal

I. Main Household Diary

5.1.1 Trip Generation

Smaller households, and older people, tend to travel less. This trend is easily visible in the 2012 data, and when comparing data for Dixie to the other regions. Washington County is home to the largest segment of retirees in the State, and has the smallest average household size, and therefore work trip rates and overall trip rates are lower than the rest of the State.

In addition to demographic shifts that would lead to reduced travel, it is important to note that the 2012 survey data processing for this summary excluded external trips (outside the MPO boundary).

Table 1.10 presents a comparison of trip productions per household (and per person) by trip purpose. In this comparison, and others below, WFRC and MAG are combined since their model is the same. The UDOT numbers in this table and others below represent data for the remainder of the State not covered by one of the MPO models (i.e. every county except Cache, Weber, Davis, Salt Lake, Utah and Washington).

It is interesting to consider the way that demographics affect travel behavior. The following series of tables present trip generation rates for different types of household and people. The patterns are generally intuitive, and should be considered when deciding how to incorporate demographic data into demand modeling. Some interesting aspects of the data summary include the stark differences in trip rates by the type of household (life cycle), the importance of income on overall trip making, and how trip-making seems to increase and then decrease with age.

Table 1.9: Daily Trip Production Rates

MPO	WASATCH FRONT 2012	CACHE 2012	DIXIE 2012	UDOT 2012	STATEWIDE 2012
Trips per HH	11.23	11.88	10.90	11.34	11.26
Trips per Person	3.63	3.77	3.77	3.76	3.67

Table 1.10: 2012 Trip Productions per Household

REGION/ GEOGRAPHY	TRIPS/HOUSEHOLD				TRIPS/PERSON			
	HBW	HBO	NHB	TOTAL	HBW	HBO	NHB	TOTAL
Wasatch Front 2012	1.69	6.53	3.01	11.2	0.55	2.11	0.97	3.63
Cache 2012	1.84	6.55	3.49	11.9	0.58	2.08	1.11	3.77
Dixie 2012	1.30	6.34	3.27	10.9	0.45	2.19	1.13	3.77
UDOT 2012	1.63	6.23	3.48	11.3	0.54	2.07	1.16	3.76

Table 1.11: 2012 Daily Trip Rates by Household Size

HOUSEHOLD SIZE	WASATCH FRONT	CACHE	DIXIE	UDOT	STATEWIDE
1 Person	4.08	3.52	3.99	4.18	4.07
2 Person	7.60	8.32	7.47	7.57	7.62
3 Person	10.73	10.56	11.03	10.08	10.63
4 Person	14.51	14.69	13.18	14.23	14.42
5 Person	17.96	19.62	19.95	20.98	18.59
6+ Person	22.53	23.93	25.92	24.89	23.10

Exhibit F – Storm Water Impact Fee Analysis

DRAFT

Zions Public Finance, Inc
for
West Haven City

DRAFT
Amended Storm Water
Impact Fee Analysis

September 2025

**Z | P
F | I**

Table of Contents

Table of Contents.....	2
Executive Summary of Impact Fee Analysis.....	3
Background Information	3
Impact on Consumption of Existing Capacity	4
Impact on System Improvements by Anticipated New Development.....	4
Proportionate Share Analysis and Impact Fee Calculation	4
Utah Code Legal Requirements.....	6
Notice of Intent to Prepare Impact Fee Analysis.....	6
Preparation of Impact Fee Analysis	6
Calculating Impact Fees.....	7
Certification of Impact Fee Analysis	7
Impact Fee Enactment	7
Consumption of Existing Capacity, Impact on System Improvements and How Impacts are Related to Anticipated Development Activity.....	8
Growth in Demand	8
Consumption of Existing Capacity by Anticipated New Development	8
Impact on System Improvements by Anticipated New Development.....	8
Relation of Anticipated Development Activity to Impacts on Existing Capacity and System Improvements	9
Proportionate Share Analysis	9
Costs of System Improvements Related to New Development Activity	9
Impact Fee Calculation	10
Manner of Financing, Credits, Etc.	10
Maximum Impact Fee Schedule	11
Certification.....	11

Executive Summary of Impact Fee Analysis

Background Information

West Haven City (the “City”) retained Gardner Engineering to prepare an Revised Impact Fee Facilities Plan (IFFP) for storm water, and retained Zions Public Finance, Inc. to prepare this Revised Impact Fee Analysis (IFA) for the calculation of appropriate storm water impact fees. This IFA relies on the information provided in the Revised IFFP regarding current system capacity and future stormwater Public Facility needs, cost, and timing.

Service Areas. There is one service area in West Haven for the purpose of calculating storm water impact fees, which includes the City’s incorporated limits and as amended by annexation.

Level of Service. The IFFP identifies the existing level of service as follows.

TABLE 1: EXISTING SERVICE LEVELS

Description	Standard
Allowable Runoff	Development within the City is required to detain storm water with a release rate of 0.2 cfs/acre. This release rate is intended to maintain predevelopment runoff rates.
Detention	Volume required to hold the 100-year design storm with at least 1 ft of freeboard. Release rate per allowable runoff.
Storm Drain Conveyance	Pipes shall be designed to carry the minor 10-year storm. The major 100-year storm is planned to be conveyed in detention ponds, pipes, and within road right of ways. Minimum pipe size is 15" RCP with adequate slope to carry necessary flows.

Source: West Haven City Storm Drain Impact Fee Facilities Plan Amended September 2025

The proposed level of service during this impact fee collection period is the same as the existing level of service.

Growth Projections.

The City is projected to grow by an average of 100 acres per year, or 37.81 impervious acres per year, based on historic development data gathered from the Weber County Assessor and existing development impervious areas sampled throughout the City. See *Appendix E- Development Projection and Impervious Area Estimates* in the Revised IFFP for additional information on this projection.

TABLE 2: PROJECTED GROWTH IN DEVELOPED ACRES

Year	Developed Acres	Impervious Acres
2022	4,888	1,848
2023	4,988	1,886
2024	5,088	1,924
2025	5,188	1,962
2026	5,288	1,999

Year	Developed Acres	Impervious Acres
2027	5,388	2,037
2028	5,488	2,075

Source: West Haven Storm Water Impact Fee Facilities Plan, September 2022; Revised IFFP dated September 2025, Table 1

Impact on Consumption of Existing Capacity

Utah Code 11-36a-304(1)(a)

The IFFP does not identify any existing excess capacity, for which new development activities would benefit or to which it would “Buy-In”.¹

Impact on System Improvements by Anticipated New Development

Utah Code 11-36a-304(1)(b)

The City has determined that, to maintain its current level of stormwater service, additional stormwater improvements will be required at a total cost of \$4,518,540. These improvements are listed in detail in the IFFP; however, the improvements listed also contain improvements necessary to cure existing deficiencies. These deficiencies cannot be, and are not, included in the calculation of impact fees. The cost of new system improvements necessitated by new development activity and eligible for impact fees within the impact fee collection period is \$2,137,857.

Proportionate Share Analysis and Impact Fee Calculation

Utah Code 11-36a-304(1)(d) and (e) and (2)(a) and (b)

The impact fee calculation includes costs for the construction of new system improvements, consultant costs in preparing the IFFP and IFA, and credits for projects that will cure existing deficiencies and thereby benefit new development activity. The maximum allowable impact fee is \$9,327.39 per impervious acre, which equates to \$0.21 per impervious square foot.²

TABLE 3: PER IMPERVIOUS ACRE IMPACT FEE CALCULATION

Summary	
New Construction	\$9,423.68
Consultant Costs	\$158.69
Impact Fee Fund Balance	\$0.00
Credits for Deficiencies	(\$254.98)
Max Fee per Impervious Acre	\$9,327.39

All single-family homes within a given range of each lot size will be charged the maximum impact fee for that category.

¹ West Haven City Storm Water IFFP, Amended September 2025, p. 11

² This number is rounded from \$0.2141

TABLE 4: MAXIMUM IMPACT FEE SCHEDULE BY SINGLE FAMILY LOT SIZE

Single-Family Lot Categories	Average Impervious SF*	Average Impervious % of Category	Impact Fee for Lot Category
¼ acre and Less	4,281	39.3%	\$916.68
Greater than ¼ acre up to ½ acre	6,108	28.0%	\$1,307.89
Greater than ½ acre up to 1 acre	7,626	17.5%	\$1,632.94
Greater than 1 acre up to 2 acres	8,962	10.3%	\$1,919.01
Greater than 2 acres up to 3 acres	9,563	7.3%	\$2,047.70
Greater than 3 acres up to 4 acres	11,454	6.6%	\$2,452.61
Greater than 4 acres	13,027		\$2,789.44

*Amended IFFP July 2025

All other development including multi-family housing will be charged \$0.21 per impervious square foot.

Utah Code Legal Requirements

Utah law requires that cities prepare an Impact Fee Analysis (IFA) based on the information presented in the Impact Fee Facilities Plan (IFFP) before enacting an impact fee. Utah law also requires that cities give notice of their intent to prepare and adopt an IFA. This IFA follows all legal requirements as outlined below.

Notice of Intent to Prepare Impact Fee Analysis

A local political subdivision must provide written notice of its intent to prepare an IFA before preparing the Analysis (Utah Code 11-36a-503(1)). This notice must be posted on the Utah Public Notice website. The City has complied with this noticing requirement for the IFA by posting notice.

Preparation of Impact Fee Analysis

Utah Code requires that “each local political subdivision... intending to impose an impact fee shall prepare a written analysis of each impact fee” (Utah Code 11-36a-303).

Section 11-36a-304 of the Utah Code outlines the requirements of an impact fee analysis, which is required to identify the following:

- (a) identify the anticipated impact on or consumption of any existing capacity of a public facility by the anticipated development activity;
- (b) identify the anticipated impact on system improvements required by the anticipated development activity to maintain the established level of service for each public facility;
- (c) demonstrate how anticipated impacts are reasonably related to the anticipated development activity;
- (d) estimate the proportionate share of:
 - (i) The costs for existing capacity that will be recouped (buy-in); and
 - (ii) The costs of impacts on system improvement that are reasonably related to the new development activity; and
- (e) based on the requirements of this chapter (in Utah Code), identify how the impact fee was calculated.

Further, in analyzing whether or not the proportionate share of the costs of public facilities is reasonably related to the new development activity, the local political subdivision or private entity, as the case may be, shall identify, if applicable:

- (a) the cost of each existing public facility that has excess capacity to serve the anticipated development resulting from the new development activity;
- (b) the cost of system improvements for each public facility;
- (c) other than impact fees, the manner of financing for each public facility such as user charges, special assessments, bonded indebtedness, general taxes, or federal grants;
- (d) the relative extent to which development activity will contribute to financing the excess capacity of and system improvements for each existing public facility, by means such as user charges, special assessments, or payment from the proceeds of general taxes;
- (e) the relative extent to which development activity will contribute to the cost of existing public facilities and system improvements in the future;
- (f) the extent to which the development activity is entitled to a credit against impact fees because the development activity will dedicate system improvements or public facilities

that will offset the demand for system improvements, inside or outside the proposed development;

(g) extraordinary costs, if any in servicing the newly developed properties; and

(h) the time-price differential inherent in fair comparisons of amounts paid at different times.

Calculating Impact Fees

Utah Code states that for purposes of calculating an impact fee, a local political subdivision or private entity may include:

- (a) the construction contract price;
- (b) the cost of acquiring land, improvements, materials, and fixtures;
- (c) the cost for planning, surveying, and engineering fees for services provided for and directly related to the construction of the system improvements; and
- (d) for political subdivision, debt service charges, if the political subdivision might use impact fees as a revenue stream to pay the principal and interest on bonds, notes, or other obligations issued to finance the costs of the system improvements.

Additionally, the Code states that each political subdivision or private entity shall base impact fee amounts on realistic estimates, and the assumptions underlying those estimates shall be disclosed in the impact fee analysis.

Certification of Impact Fee Analysis

Utah Code states that an impact fee analysis shall include a written certification from the person or entity that prepares the impact fee facilities analysis. This certification is included as part of this Impact Fees Analysis.

Impact Fee Enactment

Utah Code states that a local political subdivision or private entity wishing to impose impact fees shall pass an impact fee enactment in accordance with Section 11-36a-402. Additionally, an impact fee imposed by an impact fee enactment may not exceed the highest fee justified by the impact fee analysis. An impact fee enactment may not take effect until 90 days after the day on which the impact fee enactment is approved.

Consumption of Existing Capacity, Impact on System Improvements, and How Impacts are Related to Anticipated Development Activity

Utah Code 11-36a-304(1)(a), (b), and (c)

Growth in Demand

Growth in impervious acres will generate demand for stormwater facilities. Table 5 shows the projected growth in the City.

TABLE 5: PROJECTED GROWTH IN DEVELOPED ACRES

Year	Developed Acres	Impervious Acres
2022	4,888	1,848
2023	4,988	1,886
2024	5,088	1,924
2025	5,188	1,962
2026	5,288	1,999
2027	5,388	2,037
2028	5,488	2,075

Source: West Haven Storm Water Impact Fee Facilities Plan, Amended September 2025; ZPFI

The IFFP (p. 3) states that there will be an estimated 37.81 impervious acres per 100 developed acres

Consumption of Existing Capacity by Anticipated New Development

According to Gardner Engineering, the City's stormwater engineers, there is no existing, excess capacity in the stormwater system.

Impact on System Improvements by Anticipated New Development

The City has determined to maintain its current level of stormwater service. Therefore, additional stormwater improvements will be required to maintain the existing stormwater level of service. The IFFP identifies the level of service as follows:

TABLE 6: EXISTING AND PROPOSED SERVICE LEVELS

Description	Standard
Allowable Runoff	Development within the City is required to detain storm water with a release rate of 0.2 cfs/acre. This release rate is intended to maintain predevelopment runoff rates.
Detention	Volume required to hold the 100-year design storm with at least 1 ft of freeboard. Release rate per allowable runoff.
Storm Drain Conveyance	Pipes shall be designed to carry the minor 10-year storm. The major 100-year storm is planned to be conveyed in detention ponds, pipes, and within road right of ways. Minimum pipe size is 15" RCP with adequate slope to carry necessary flows.

Description	Standard
<i>Source: West Haven City Storm Drain Impact Fee Facilities Plan Amended September 2025</i>	

The following projects have been identified in the IFFP as necessary for existing and new development activity to maintain the existing level of service.

TABLE 7: NEW SYSTEM IMPROVEMENTS NECESSITATED BY EXISTING AND NEW DEVELOPMENT

	% of Project Cost Attributable to Existing Development	% of Project Cost Attributed to Future Development Current Planning Window	% of Project Cost Attributed to Future Development after Planning Window	TOTAL Project Cost	Cost Attributed to Future Development during Planning Window	Project Cost Attributed to Existing Development
P1	Storm Drain Siphon under Hooper Canal	75%	25%	0%	\$106,473.70	\$26,618.43
P2	New Storm Drain Pipe - 2700 west	0%	60%	40%	\$307,150.80	\$184,290.48
P3	New Storm Drain East of 2700 West - Hooper Slough	0%	60%	40%	\$797,221.12	\$478,332.67
P10	New Storm Drain East of 2700 West to Siphon under Layton Canal	0%	60%	40%	\$363,593.04	\$218,155.82
P16	New Storm Drain Pipe - 5100 West	0%	60%	40%	\$638,783.91	\$383,270.35
P17	New Storm Drain Pipe - 3300 South	0%	60%	40%	\$290,925.13	\$174,555.08
P18A	New Storm Drain Pipe - 3300 South	0%	60%	40%	\$186,390.66	\$111,834.40
P18B	New Storm Drain Pipe - 3300 South	0%	60%	40%	\$382,666.14	\$229,599.68
P20	Pipe the Howard Slough behind Ellie's Landing	100%	0%	0%	\$367,357.58	\$0.00
P22	Regional Detention	0%	60%	40%	\$552,000.00	\$331,200.00
P26	Replace Storm Drain Pipe - 1800 South	100%	0%	0%	\$525,978.03	\$0.00
TOTAL				\$4,518,540.11	\$2,137,856.91	\$973,190.89

Relation of Anticipated Development Activity to Impacts on Existing Capacity and System Improvements

Based on information provided in the IFFP and shown in Table 7 above, new development activity's share of the new system improvements, over the planning window (6 years), is \$2,137,856.91.

Proportionate Share Analysis

Utah Code 11-36a-304(1)(d)(i) and (ii), (e)

Costs of System Improvements Related to New Development Activity

The City intends to maintain its existing level of service for stormwater services through adding the new system improvements described in the Impact Fee Facilities Plan and previously in this Impact Fee Analysis. In addition, engineering and consultant fees are considered a legitimate cost in calculating impact fees. These costs are also summarized below.

Total impact-fee eligible costs for new system improvements, attributable to new development activity over 6 years, are \$2,137,867. Consultant costs for the IFFP and IFA were \$36,000 in order to prepare the engineering plans, impact fee facility plans and impact fee analysis that were necessary in order to calculate defensible impact fees.

TABLE 8: PER ACRE COST FOR NEW SYSTEM IMPROVEMENTS

New Construction	
Cost in Planning Window	\$2,137,856.91
Growth in Impervious Acres	226.9
Cost per Impervious Acre	\$9,423.68

Impact Fee Calculation

The maximum impact fee allowable under law includes new system costs of \$9,423.68 per impervious acre, plus consultant costs of \$158.69 per impervious acre, minus \$254.98 for credits for deficiencies, resulting in a total maximum impact fee of \$9,327.39 per impervious acre.

TABLE 9: PROPORTIONATE SHARE IMPACT FEE CALCULATION

Description	Amount
New Construction	\$9,423.68
Consultant Costs	\$158.69
Impact Fee Fund Balance	\$0.00
Credits for Deficiencies	(\$254.98)
Max Fee per Impervious Acre	\$9,327.39

The maximum fee per impervious acre is \$9,327.39 and the maximum fee per impervious square foot is \$0.21.

The credits for deficiencies are discussed in the following section.

Manner of Financing, Credits, Etc.

Utah Code 11-36a-304(2)

Credits must be made for the deficiency amounts of the new construction projects, as these amounts will likely later be funded through increased user rates. The annual deficiency credit per impervious acre is shown below with a 6-year average credit of \$254.98.

TABLE 10: IMPACT FEE CREDITS BY YEAR FOR FUTURE USER RATE INCREASES TO PAY FOR EXISTING DEFICIENCIES

Years	Payment per Year	Impervious Acres	Payment per Acre	NPV* per Acre
2023	\$162,198.48	1,886	\$86.01	\$430.73
2024	\$162,198.48	1,924	\$84.31	\$361.95
2025	\$162,198.48	1,962	\$82.69	\$292.12
2026	\$162,198.48	1,999	\$81.13	\$221.11
2027	\$162,198.48	2,037	\$79.62	\$148.83
2028	\$162,198.48	2,075	\$78.17	\$75.16

*NPV = net present value discounted at 4 percent

Other than impact fees, the City has not identified any other means (such as user charges, special assessments, bonded indebtedness, general taxes, or federal grants) of financing system improvements created by new development activity.

Maximum Impact Fee Schedule

All development within a given single-family lot category would be charged the maximum impact fee for that category.

TABLE 11: MAXIMUM IMPACT FEE SCHEDULE BY LOT SIZE

Single-Family Lot Categories	Average Impervious SF*	Average Impervious % of Category	Impact Fee for Lot Category
¼ acre and less	4,281	39.3%	\$916.68
Greater than ¼ acre up to ½ acre	6,108	28.0%	\$1,307.89
Greater than ½ acre up to 1 acre	7,626	17.5%	\$1,632.94
Greater than 1 acre up to 2 acres	8,962	10.3%	\$1,919.01
Greater than 2 acres up to 3 acres	9,563	7.3%	\$2,047.70
Greater than 3 acres up to 4 acres	11,454	6.6%	\$2,452.61
Greater than 4 acres	13,027		\$2,789.44

*Amended IFFP July 2025

All other development including multi-family housing will be charged \$0.21 per impervious square foot.

Certification

Zions Public Finance, Inc. certifies that the attached impact fee analysis:

1. includes only the cost of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. does not include:
 - a. costs of operation and maintenance of public facilities; or
 - b. cost for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by existing residents;
3. offset costs with grants or other alternate sources of payment; and
4. complies in each and every relevant respect with the Impact Fees Act.

