

2025 Water Conservation Plan

Grand Water & Sewer Service Agency

APPROVAL DATE

Table of Contents

CONTENTS

INTRODUCTION	2
System profile & Supply Information	3
Service	4
Current Water Supply	5
Future Water Sources:	7
Water Use and Measurement	8
Gallons Per Capita Daily Use	10
Billing	11
System Water Loss	12
Water Conservation Practices	14
Best Management Practices – New Implementation	14
Progress Made	14
Current Best Management Practices	15
Grand County Land Use Code	16
Grand County General Plan 2030 "Small Town Adventurous Spirit"	17
Contact	
APPENDIX	20

INTRODUCTION

To promote responsible water usage and safeguard resources for the future of Spanish Valley, the Grand Water & Sewer Service Agency (GWSSA) presents the 2025 Water Conservation Plan, which replaces the 2020 Water Conservation Plan. This plan is designed to address the concerns of citizens, local leaders, and the State of Utah, while also ensuring compliance with the Utah Water Conservation Plan Act. GWSSA represents the Grand County Water Conservancy District, Grand County Special Service Water District, and the Spanish Valley Water & Sewer Improvement District through an interlocal agreement. This plan serves as the official Water Conservation Plan for the districts. Our Mission Statement:

"To utilize our expertise, knowledge, experience, and long-range planning to secure and maximize the resources to protect our community's health and welfare by providing culinary water, irrigation water and wastewater collection services with a commitment to efficiency, sustainability, safety, and public awareness."

With our unique location in Utah's desert, we understand the need to maintain and protect our precious water source for current and future residents. The new regional goal for our area, which has been set by the Division of Water Resources, is to have a 267 gallons per capita day (GPCD) use by our service area population. The Grand Water & Sewer Service Agency has set its own goal to reduce water consumption to 214 gallons per capita day (GCPD, which represents a 20% decrease from the current recommended target. With initiatives already in place, combined with the introduction of new water conservation practices, we are confident that we can achieve this goal by 2030.

SYSTEM PROFILE & SUPPLY INFORMATION

The Grand Water & Sewer Service Agency (GWSSA/AGENCY) is located in Grand County, Utah. Primarily, GWSSA provides culinary and agricultural water service in the unincorporated area of Spanish Valley, which is south of the City of Moab, and just North of the San Juan County line.

The climate of Spanish Valley is high desert with a mean annual precipitation of approximately 10 inches. Little of the precipitation that falls on Spanish Valley enters the groundwater system. The main contributor to groundwater and surface streams is snowfall in the La Sal Mountains. Average annual water-year precipitation at the La Sal Mountain SNOTEL Site #572, at elevation 9560 ft., is 13 inches.

Spanish Valley is a mix of, suburban, industrial, and rural development. Population is most dense near the Moab City limits. Population density thins as one moves south through the valley. This area of lower density has experienced the most growth in the system over the past decade, with new construction of single-family homes, apartment buildings, condominiums, and affordable housing projects. Agricultural land is mostly to the south, however, there are farms and fields scattered the length of the entire valley.

The drinking water distribution system, source wells, and storage facilities that serve Spanish Valley were initially installed in 1981, with additional structures and sources added in 2002 and between the years of 2018-2020. The <u>source</u> of water is from four wells which are adjacent to the base of Johnson's Up-on-Top mesa –*Table 1.0 – Grand Water & Sewer Service Agency Area Map)*. The wells draw from the Glen Canyon aquifer which is recharged by La Sal Mountain snowmelt and is an EPA designated Sole Source Aquifer. The current production capacity is 3,280 gallons per minute. We have approximately 4,500,000 gallons of drinking water storage, which is provided by a one-million-gallon concrete reinforced tank, a three-million-gallon steel tank, and a five hundred-thousand-gallon reinforced concrete tank. GWSSA has not experienced a groundwater depletion event; we have the potential ability to recharge our aquifer during heavy moisture seasons via well injection.

In 2024, the Agency withdrew approximately 322,083,258 Gallons (988.44 acre-feet) of culinary water from its wells. This supplies the total water required to meet the demands of the culinary system providing for both indoor and outdoor water uses. Also in 2024, irrigation and secondary water withdrew 1490.34 acre-feet for Grand County customers and 72.85 acre-feet for San Juan County customers through the Ken's Lake Pressurized irrigation system. This irrigation system also allows us to pull water in drought seasons from shallow wells.

SERVICE

The Grand Water & Sewer Service Agency serves culinary water to approximately **4099** residents. The Agency maintains its own water system, which includes **2133** residential connections, **106** commercial connections, **8** industrial connections, and **18** institutional connections. GWSSA provides water through four well sites, which all produce water from the Glen Canyon Aquifer. Our water passes through a chlorinator facility before being pumped into our three storage tanks for holding, which have a combined total capacity of **4.5** million gallons of storage space.

All connections in our system are metered

GWSSA also provides a secondary water source that is used for irrigation purposes. This water is collected at Ken's Lake Reservoir, where water is diverted from Mill Creek via the Sheley Tunnel. Ken's Lake has a maximum storage capacity of 2610 Acre Feet of water.

Table 1.1 – Grand County Culinary Water Customers in 2024

CULINARY CONNECTION TYPE	NUMBER OF CONNECTIONS*
RESIDENTIAL	2133
COMMERCIAL	106
INDUSTRIAL	8
INSTITUTIONAL	18
TOTAL COMBINED:	2265

*Connections reported in 2024 Utah Culinary Water Use Report

Table 1.2 - Grand County Irrigation Customers in 2024

IRRIGATION CONNECTION TYPE	NUMBER OF CONNECTIONS*
AGRICULTURE	49
COMMERCIAL	5
INSITUTIONAL	5
RESIDENTIAL	217
INDUSTRIAL	4
TOTAL COMBINED:	280

*Connections reported in 2024 Utah Secondary Water Use Report

CURRENT WATER SUPPLY

The following tables detail GWSSA's current water rights in Acre Feet.

Table 1.3 – Culinary Water Supply

SOURCE	VOLUME	TOTAL	TYPE
Wells	3631.17 AF	3631.17 AF	Culinary
Springs	0	0	
Surface	0	0	
Purchased	0	0	
Exchanged	0	0	
Total		3631.17 AF	

Table 1.4 – Irrigation Water Supply in Acre Feet

SOURCE	VOLUME	TOTAL	TYPE
Wells	2877.35	2877.35	
Springs	0	0	
Surface	4945.73	4945.73	Mill Creek/Ken's Lake
Purchased	0	0	
Exchanged	0	0	
Total	7823.10	7823.10	

Table 1.5 – Water Rights Inventory – Current Water Supply by Source

CULINARY WATER

Water Right Number	AF/YEAR	SOURCE(S)
05-3345	50.4000	2 - Underground Wells (George White #4/5)
05-148	24.0000	2 - Underground Wells (George White #4/5)
05-3343	516.2040	2 - Underground Wells (George White #4/5)
05-492	24.0000	2 - Underground Wells (George White #4/5)
05-3344	(See 05-3343)	2 - Underground Wells (George White #4/5)
05-681	92.2960	2 - Underground Wells (George White #4/5)
05-1062	28.3500	5 - Underground Wells GW4 / GW5 / Andrea / Chapman / SV
05-906	1355.9400	2 - Underground Wells Chapman / SV
05-3656	816.0000	2 - Underground Wells Chapman / SV
05-475	723.9800	2 - Underground Wells Chapman / SV
TOTAL CULINARY RIGHTS:	3631.17 AF	

IRRIGATION WATER

Water Right Number	AF/YEAR	SOURCE(S)
05-2511	75.0000	3 - Underground Wells Andrea / Chapman
05-2700	0.9800	Underground Well
05-740	382.6200	2 - Underground Wells Beeman / Corbin
05-3486	142.4400	1 - Underground Well Beeman
05-1285	2144.3180	6 - Underground Wells Cem / Deloy / Howard / Schumaker / Corbin / Beeman
05-2802	132.0000	1 - Underground Well Cemetery
05-1523	4945.7380	Mill Creek / Kens Lake

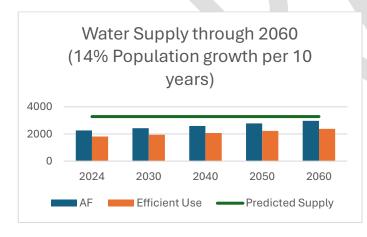
TOTAL CULINARY RIGHTS:

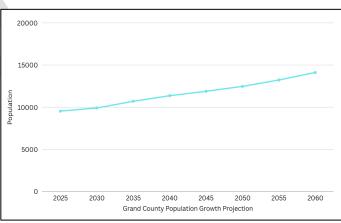
7823.10 AF

FUTURE WATER SOURCES:

The Grand Water & Sewer Service Agency is currently trying to install a diversion in the Colorado River, which will be used to bring water to Ken's Lake Reservoir. This will be done to utilize our water rights. The Agency is also currently trying to obtain the Green River Pipeline (currently owned by the DOE), so it can expand its services to the Thompson Springs area. The Agency is also investigating future groundwater sources and is in the process of identifying the proper areas.

GWSSA pulls Culinary Water from four separate wells. The most current pump data was provided to the agency to produce the following measurements seen in Table 1.6:


Table 1.6 – Safe Yield of Existing Sources


Well Name	Well Logs
Chapman Well	1100 gpm
George White #4	1000 gpm
George White #5	950 gpm
Spanish Valley Well	230 gpm
Total gpm (safe yield)	3280 gpm

The current pumping rate is within sustainable limits, meaning the volume extracted does not exceed the natural recharge rate of the aquifer. This ensures long term stability. The System is currently pumping at this rate of the time, which demonstrates significant remaining capacity.

Table 1.7 – Predicted Water Supply Through 2060 Baseline**

Table 1.8 - Population Projection –

An estimate of Grand County expected future population growth vs Water Supply through the year 2060 is shown in Table 1.7. Many factors influence this projection, and the estimates shown may vary substantially from the actual population growth experienced. The Grand Water & Sewer Service Agency serves less customers than what is represented in this graph but will continue to use the County's Growth as its measuring method.

**Data taken from the Kem C. Gardner Policy Institute, who provides the State of Utah with long-term projections for growth. This information includes all of Grand County, which includes the towns of Castle Valley, Thompson Springs, and Moab City. *The population of the Agency's Service area is slightly less*.

Data can be found at https://gardner.utah.edu/demographics/population-projections/

WATER USE AND MEASUREMENT

100 % of GWSSA's connections are metered. The meters are read monthly. Flow meters are installed at each source, at the chlorination facilities (inflow to tanks) and the outflow from all tanks. Meters are replaced as needed and comparisons of sold vs. pumped water are made monthly. Any discrepancies are investigated and addressed immediately.

The following graphs will outline our water use by year, our inflow/outflow measurements, and irrigation use.

Table 2.0 – Record of Culinary Water Use (by year)

Year	Pop. Est.	Residential	Commercial	Industrial	Institutional	Other	Total (ACFT)
2024	4099	844.49	117.65	9.65	16.64	0	988.43
2023	3690	814.69	130.61	10.18	19.03	0	974.51
2022	4431	761.98	110.51	16.91	20.98	0	910.38
2021	4450	821.19	121.43	26.387	14.19	0	983.68
2020	4400	886.49	101.90	16.49	11.31	0	1016.19
2019	4280	792.59	119.87	116	10.17	0	1,038.63
2018	4009	848.65	122.24	27.16	21.56	0	1,019.61
2017	3950	798.92	122.64	23.47	15.48	0	960.51
2016	3750	757.66	102.47	15.38	12.65	0	888.16
2015	3750	693.59	92.49	15.38	35.49	0	836.95
2014	3750	706.17	106.72	12.27	0	3.66	828.82
2013	3750	718.19	98.67	7.59	0	5.31	829.76
2012	3750	789.29	108.26	5.99	0	4.69	908.23
2011	3750	675.2	106.41	5.13	0	4.26	791.00
2010	3300	666.43	120.73	0.89	0	0	788.05
2009	3600	703.14	121.75	0	0	0	824.89
2008	3600	729.88	135.14	0	0	0	865.02
2007	3581	740.34	174.64	0	0	51.43	966.41
2006	3581	699.71	113.55	0	0	0	813.26
2005	3404	661.51	112.92	0	0	0	774.43

(Table 2.0 data pulled from Utah Division of Water Rights)

Table 2.1 – Inflow/Outflow measurements

INFLOW (AF)		OUTFLOW (AF)
Year	Total	Total	% Diff.
2015	910	837	8.02
2016	1,010	888	12.08
2017	1,069	961	10.10
2018	1,095	1,020	6.85
2019	1,103	1,039	5.80
2020	1169.01	1016.19	13.07
2021	1233.90	983.68	20.28
2022	1062.19	910.38	14.29
2023	1055.73	974.51	7.69
2024	1071.49	988.44	7.75

Table 2.2 - Culinary Water Graph showing acre feet of usage by year

Culinary Water Use

Table 2.3 – Record of Irrigation Water Use (by year)

<u>Year</u>	Residential	<u>Industrial</u>	Commercial	Institutional	<u>Agriculture</u>	Total (ACFT)
2024	313.34	0.00	332.00	92.00	753.00	1490.34
2023	668.00	0.00	469.00	89.00	870.00	2096
2022	248.42	0.00	435.00	88.00	744.00	1515.42
2021	262.08	0.00	348.00	80.00	447.00	1137.08
2020	462.69	0.00	407.00	91.00	970.00	1930.69
2019	238.36	22.82	22.80	443.46	1115.21	1842.67

(Non-potable water use was not tracked by customer type until 2019.)

GALLONS PER CAPITA DAILY USE

GWSSA has calculated our current Gallons Per Capita Daily (GCPD) usage for each customer in our service area. We also were able to take this same data and apply it to the number of connections that we have. Currently, GWSSA customers only use 183.93 GPCD, which currently meets our future goal of less than 214 GPCD. We believe that with our current rate tiers and education, we will be able to keep our GPCD use below the goal of 214 GPCD.

Table 2.4 - 2024 Gallons Per Capita Daily (GPCD)

USE TYPE	# of CONNECTIONS	GALLONS DELIVERD IN 2024	GPCD (by connection)	*GPCD (by population)
Residential	2133	275,178,000.00	353.45	183.93
Commercial	106	38,338,000.00	990.90	-
Industrial	8	3,145,000.00	1077.05	-
Institutional	18	5,422,258.00	825.31	-
TOTALS:	2265	322,083,258		

*2024 Service Area Population: 4099

BILLING

The ascending or increasing block rate is designed to encourage conservation by increasing the cost per thousand gallons as usage increases. The Agency board has consistently increased the upper usage tiers to encourage outdoor water conservation.

Table 3.0 – Culinary Water Monthly Base Rates

CULINARY WATER MONTHLY BASE RATES		
Residential Base Rate	\$23.50/month	
San Juan Residential Base Rate	\$24.60/month	
2 on 1 Residential Base Rate	\$47.00/month	
3 on 1 Residential Base Rate	\$67.25/month	
Commercial Base Rate 5/8" meter	\$28.90/month	
Commercial/MDU Base Rate 1" meter	\$72.40/month	
Commercial/MDU Base Rate 1.5" meter	\$144.45/month	
Commercial/MDU Base Rate 2" meter	\$231.15/month	
Commercial/MDU Base Rate 3" meter	\$462.25/month	
Commercial/MDU Base Rate 4" meter	\$722.25/month	
ADU Base Rate	\$11.10/month per ADU	

PER RATE AND FEE SCHEDULE 2025

A complete culinary billing rate, by tier and type, can be found in **Appendix A**.

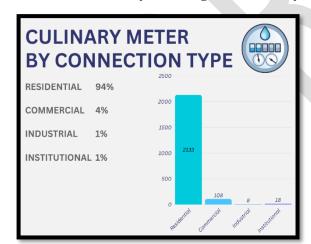
Table 3.1 – Irrigation Water Monthly Base Rates

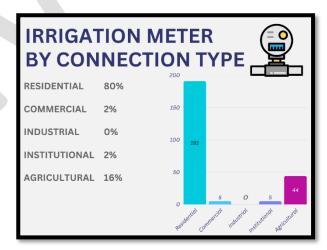
IRRIGATION WATER MONTHLY BASE RATES		
Irrigation Annual Meter Fee		\$25.00/year/meter
Irrigation Yearly Water Rates	0-4.9 AF	\$50.16 /AF Minimum Bill \$143.33
	5-14.9 AF	\$44.08/AF
	15-24.9 AF	\$41.00/AF
	25-49.9 AF	\$39.62/AF
	50-124.9 AF	\$31.75/AF
	125 + AF	\$29.77/AF
	Overuse / AF	\$144.49/AF

Irrigation is set up with agriculture in mind, with reduced rates for larger shareholders.

SYSTEM WATER LOSS

In 2024, the Grand Water and Sewer Service Agency reported an Estimated Water Loss of 27,061,948 gallons (83.05 acre feet), representing a 7.75% loss of the total culinary water produced. This metric encompasses water that was either lost due to leaks, fire flows, inaccurate readings, or unbilled.


Such water loss can also significantly impact both operational efficiency and revenue, highlighting the importance of regular monitoring and proactive maintenance of water infrastructure. In 2024, GWSSA had an estimated \$20,000.00 loss in revenue due to Culinary Water Loss. By identifying and addressing the sources of water loss—whether through improved leak detection, better metering technology, or more accurate billing practices, the Agency can work towards reducing the loss percentage, ultimately improving system sustainability and fiscal responsibility.


Water Use and Measurement

To accurately monitor usage, GWSSA measures most customer connections using its NEPTUNE 360 reporting system, which provides real-time meter readings. While the system continuously collects data, the Agency pulls usage reports monthly to determine the final volume of water used for billing purposes. By leveraging this technology, GWSSA is better equipped to track water distribution, identify discrepancies, and work toward reducing water loss through improved accuracy and oversight.

All master meters are calibrated annually and replaced when unable to be calibrated to specifications. All culinary metered hookups are required to have backflow prevention. All outflow irrigation measurements are taken at the customer's meter, therefore, there is no calculated loss.

Table 4.0 - Culinary and Irrigation Meter by Connection Types

All connections, both culinary and irrigation, are metered.

Water Loss Leak Detection and Control

Currently, GWSSA uses two methods to measure water loss.

The first method is applied during the End of Month reports, when inflow measurements are taken from all active wells. These measurements are then compared to the total number of gallons billed during the same period. This comparison helps GWSSA gauge how much water was used. If the amount pumped exceeds the amount billed, it signals a potential issue, such as a leak in the system. In such cases, operators are tasked with investigating to identify and resolve any leaks, ensuring that water usage and billing are accurate.

The second method uses our Neptune 360 water monitoring system, which collects daily readings from all meters. If the system detects Continuous Consumption—an indicator of constant water flow—it alerts us to properties that may be experiencing a leak. Once identified, our staff investigates these properties to determine whether a leak is present and needs to be addressed.

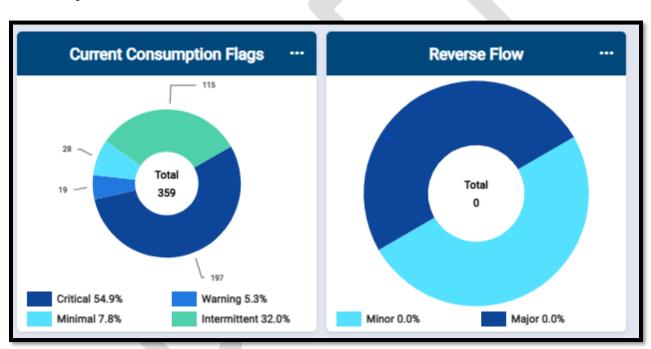


Table 4.1 - Neptune 360

A screenshot of Neptune 360 in action.

Neptune 360 also provides 'Reverse Flow' readings, which occur when water back-pressures into the system from system connections. Our operators can monitor these readings and immediately shut down any reverse flows in real time, preventing potential issues in the system.

GWSSA has strategically installed shut-off valves throughout our system, allowing us to isolate specific lines for repairs without disrupting water service to customers outside of the affected area. This capability ensures that we can perform maintenance on smaller sections of the system without the need to drain the entire water network, minimizing service interruptions and improving efficiency.

WATER CONSERVATION PRACTICES

BEST MANAGEMENT PRACTICES - NEW IMPLEMENTATION

Newly implemented means of Water Conservation, which will help us to achieve a 214 GPCD use for all of our customers:

- Rate Tier Increase: To encourage water conservation, GWSSA has increased the top three tiers of its culinary water.
- Water Conservation Committee: A newly created Water Conservation Committee will continue to meet and explore new and future water conservation practices.
- Pursue new source of water: Currently, GWSSA is seeking a diversion in the Colorado River to eventually use Agency owned water rights to bring water to the Ken's Lake Reservoir. This is being done with the intention of creating a permanent source of surface water, which will be utilized for landscape and agricultural purposes. This will also give us the ability to install new secondary water infrastructure in areas where there are none, requiring our customers to connect to it for outdoor water (which will save culinary ground water). This could also allow for system recharge, as the Ken's Lake Reservoir's water source may be kept in Mill Creek, which provides recharge as it flows toward the Colorado River.
- **Education:** With the passing of this 2025 Water Conservation Plan, the goal of 214 GPCD will be pushed via digital messaging and physical mailers.

PROGRESS MADE

The Grand Water & Sewer Service Agency has made significant steps towards the conservation of our water. Below is a list of those steps made since the 2020 Water Conservation Plan:

- Since implementation of our 2020 Water Conservation Plan, we have seen a decrease in overall water use. We have also successfully purchased water rights, which we are holding for conservation purposes.
- We have implemented the NEPTUNE 360 system, which provides real-time leak detection capabilities. This also allows us to monitor reverse-flow and increase-use.
- We have purchased agriculture Water Rights and keep them banked.
- Enacted a Rate Tier Increase for higher culinary water users to encourage conservation. This new tier structure has a sliding scale, with the higher tier rates increasing each year until 2030.
- We utilize a notification system called YOPPIFY, which allows us to send messages in the form of either texts
 or emails, notifying customers of their higher use. This also sends out links to educational videos and websites
 to help with conservation.
- We installed a metered filling station on our property. This allows for a completely accurate measurement of
 water. It also conserves water by requiring our customers to enter in the exact number of gallons of water
 needed to fill their tanks, limiting overflow situations.

CURRENT BEST MANAGEMENT PRACTICES

A list of our current Best Management Practices that we have implemented and maintained:

Education: We use our website and social media to provide educational materials for customers. This information is sent out via our messaging system, so our customers know where to find this material.

Water Conservation Committee: This committee consists of representatives from the GCSSWD, SVW&SID, GCWCD, and GWSSA, Grand County Commission representative, and citizen representatives, who are tasked to explore new ways to conserve water and educate the populace.

Community Education: We participate in statewide and countywide water workshops. This allows us to present information and best water management practices that teach our community about our current water supply, how it's distributed, and ways to conserve water.

Purchase Irrigation Water Wells: Continue to purchase irrigation water wells for use in the Residential Secondary Irrigation (RSI) system. This goal is ongoing.

Increased Leak Detection: Continue to utilize NEPTUNE 360 and YOPPIFY in an effort to pursue aggressive leak detection. Perform AWWA water audit. Continue to act quickly when leaks are detected. Progress will be tracked monthly by comparing pumped vs. sold water. It will be reported annually in the Water Use Report. We believe this is the most impactful way to lower our per capita numbers.

Education Training Practices: Continue to offer presentations, including elementary and middle school workshops, to inform of better water use practices and the impacts of wasteful water.

Rebates/incentives/rewards: Our website directs customers to Utah Water Savers for rebates and incentives.

Conservations Ordinances & Standards: Continue to review water data and then recommend new standards for conservation.

Model Landscape Ordinances: GWSSA is in a coordinated effort with Grand County to create a "preferred landscape plan" for future and current homeowners. This will only be a recommendation to the customer but will coincide with any future ordinances that the County implements. We aim to have this implemented within two years.

Drought Contingency Plan: Our Agency will create a drought contingency plan that correlates with future safe yield and population growth. We have set a timeline to have this completed within three years.

Public Awareness/PR: GWSSA has educational information on its website, Facebook, billing messages, and new customer mailing packets. Work with Moab City and Grand County to distribute messages to the public.

GRAND COUNTY LAND USE CODE

The Grand County Government currently has Land Use Code Ordinances in place to help protect our watershed.

The creation of the Water Source Protection Overlay District

4.5 - WSPO, Water Source Protection Overlay District

4.5.1 Purpose

The -WSPO, Water Source Protection Overlay District is an overlay district intended to protect ground water and the recharge basin for current and future public, culinary water supplies in Grand County. To this end, the –WSPO district shall be applied to recharge areas designated according to U.S. EPA Sole Source Aquifer recharge area and approved by the Utah Division of Drinking Water, or other resource specific study approved by the state engineer. Land uses within the –WSPO district are strictly limited and subject to conditions designed to prevent chemical or pathogen contamination of culinary water supplies.

Watershed Protection for preapplication lot design in our community:

4.5.3 Lot Design Standards

All development in the -WSPO district shall comply with the Lot Design Standards of the underlying zoning district; provided that the density of uses may be further limited as necessary to protect culinary water supplies from chemical and/or pathogenic contamination, and to ensure compliance with the Drinking Water Source Protection Rules of the Drinking Water Division of the State of Utah.

Watershed Protection in Overnight Accommodations Overlay Districts:

4.6.5 Design Standards in -OAO Districts

B. Water

1. OAO developments shall install the largest feasible rainwater catchment system based on rooftop size, layout, and an analysis of average storm events, as demonstrated by a stamped engineering plan; provided, however, that developers shall not be required to install systems that would generate more water than is needed to satisfy a development's outdoor water/landscaping irrigation needs.

4.4.11 Master Plan Requirement Revised 12/23

In approving a -PUD district development in accordance with this section, the County Commission shall require a master plan of the development. A comparison of the proposed development with the standards of underlying zoning district and a statement by the applicant describing how the proposed development provides greater benefits to the County than would a development carried out in accordance with otherwise applicable zoning and development regulations.

B. Identification of lands that include public drinking water supply watersheds (recharge areas for the aquifer in the Glen Canyon formation); floodplains and riparian habitats; slopes in excess of 30 percent, and significant geological, biological, and archeological sites (not all of these will apply to every parcel);

GRAND COUNTY GENERAL PLAN 2030 "SMALL TOWN ADVENTUROUS SPIRIT"

The Grand County Government included water protection goals in its newly implemented General Plan 2030.

GENERAL PLAN:

Goals: Enhance, promote and protect the Colorado River watershed, its banks, groundwater sources, aquifers and adjacent natural bodies of water. Conserve and protect the natural, historical, and recreational functions and features of the Watershed and its riparian areas.

- **ii.** Establish aquifer protection zones conforming to best practices, and ensure water source protection is enshrined in regulation and policy;
- **iv.** Buffer the watershed through natural habitat, stormwater filtering techniques and restoration projects while considering quality development that enhances land value;
- **vi.** Treat and reuse stormwater, managing source contaminants through rain gardens, retention basins, filtration beds and other best management practices;
- **x.** Upgrade, in partnership, water and wastewater treatment facilities to reduce contaminant sources and impacts.

17.3 - STORMWATER MANAGEMENT

Specific guidelines for stormwater management as directed by The Environmental Protection Act (EPA).

STORMWATER QUALITY

Numerous studies have indicated that there can be significant pollution in receiving waters due to stormwater runoff. The pollutant loading from urban/rural runoff may be similar to that of wastewater effluent and industrial discharges and have significant impacts on potable water supply, aquatic habitat, recreation, agriculture and aesthetics. Stormwater runoff is usually high in suspended solids and organic matter that exert oxygen demand in the receiving waters. Other pollutants or physical conditions associated with urban/rural runoff that are harmful to receiving waters include nitrogen/phosphorus, temperature, pathogens, metals, hydrocarbons, organics and salt. Significant impacts on receiving waters associated with stormwater discharges include:

- water quality changes (short-term) during and after storm events including temporary increases in the concentration of one or more pollutants, toxins or bacteria levels;
- long-term water quality impacts caused by the cumulative effects associated with repeated stormwater discharges from a number of sources; and
- physical impacts due to erosion, scour and deposition associated with the increased frequency and volume of runoff that alters aquatic habitat.

CONTACT

A list of those responsible for meeting efficiency goals:

Ben Musselman: Agency Manager

435-259-8121

Josh Green: Agency Operations Assistant

435-259-8121

Gary Wilson: GWSSA President

435-259-8121

Kevin Clyde: GWSSA Vice President

435-259-8121

Visit our website for more information:

WWW.GRANDWATERSEWERUT.GOV

APPENDIX A. – CULINARY WATER MONTHLY USAGE RATES

CULINARY WATER MONTHLY USAGE RATES		
RESIDENTIAL AND COMMERC		
	\$0.75/1,000 gallons from 0-6,000	
	\$1.75/1,000 gallons from 6,001-10,000	
	\$2.25/1,000 gallons from 10,001-20,000	
	\$3.00 (2024), \$3.20 (2025), \$3.50 (2026-2028) /1,000 gallons from 20,001-30,000	
	\$3.70 (2024), \$4.00 (2025), \$4.40 (2026-2028) /1,000 gallons from 30,001-50,000	
	\$6.75 (2024), \$7.25 (2025), \$8.00 (2026-2028) /1,000 gallons from 50,001-and up	
2 ON 1 RESIDENTIAL		
	\$0.75/1,000 gallons from 0-12,000	
	\$1.75/1,000 gallons from 12,001-20,000	
	\$2.25/1,000 gallons from 20,001-40,000	
	\$3.00 (2024), \$3.20 (2025), \$3.50 (2026-2028) /1,000 gallons from 40,001-60,000	
	\$3.70 (2024), \$4.00 (2025), \$4.40 (2026-2028) /1,000 gallons from 60,001-100,000	
	\$6.75 (2024), \$7.25 (2025), \$8.00 (2026-2028) /1,000 gallons from 100,001-and up	
3 ON 1 RESIDENTIAL		
	\$0.75/1,000 gallons from 0-18,000	
	\$1.75/1,000 gallons from 18,001-30,000	
	\$2.25/1,000 gallons from 30,001-60,000	
	\$3.00 (2024), \$3.20 (2025), \$3.50 (2026-2028) /1,000 gallons from 60,001-90,000	
	\$3.70 (2024), \$4.00 (2025), \$4.40 (2026-2028) /1,000 gallons from 90,001-150,000	
	\$6.75 (2024), \$7.25 (2025), \$8.00 (2026-2028) /1,000 gallons from 150,001-and up	
RESIDENTIAL PLUS ADU	40.77 (1.000 11.000 12.000	
	\$0.75/1,000 gallons from 0-10,000 \$1.75/1,000 gallons from 10,001-14,000	
	\$2.25/1,000 gallons from 14,001-24,000	
	\$3.00 (2024), \$3.20 (2025), \$3.50 (2026-2028) /1,000 gallons from 24,001-34,000	
	\$3.70 (2024), \$4.00 (2025), \$4.40 (2026-2028)/1,000 gallons from 34,000-54,000	
	\$6.75 (2024), \$7.25 (2025), \$8.00 (2026-2028) /1,000 gallons from 54,001-and up	
MULTIPLE DWELLING UNIT		
	\$0.75/1,000 gallons from 0-10,000	
	\$1.75/1,000 gallons from 10,001-20,000	
	\$6.75 (2024), \$7.25 (2025), \$8.00 (2026-2028) /1,000 gallons from 20,001-and up	
MULTIPLE DWELLING UNIT (ME	·	
	\$0.75/1,000 gallons from 0-30,000	
	\$1.75/1,000 gallons from 30,001-60,000	
	\$6.75 (2024), \$7.25 (2025), \$8.00 (2026-2028) /1,000 gallons from 60,001-and up	
STATIONARY HYDRANT	\$12.50/1,000 gallons	
	\$12.50/1,000 gallons	