

PERRY CITY COUNCIL MEETING AGENDA

Thursday, August 14, 2025

City Council Chambers, 1950 South Highway 89 (south entrance)

To view Zoom live meeting visit:

<http://www.perrycityut.gov/whats-new.htm.htm>

This is an “Electronic Meeting” Web/Teleconferencing may be used by officials to participate.

Agenda items may vary depending on length of discussion, cancellation of scheduled items, or agenda alteration. Numbers and/or times are estimates of when agenda items will be discussed. Action on public hearings will always be later in the same meeting or at a subsequent meeting. Every agenda item shall be a discussion and/or action item, unless otherwise indicated.

Approx. 7:00 PM – Regular City Council Meeting

1. Call to Order

2. Procedural Issues

- A. Conflicts of Interest Declaration(s), If Any

3. Public Hearings

Rules: (1) Please Speak Only Once (Maximum of 3 Minutes) per Agenda Item; (2) Please Speak in a Courteous and Professional Manner; (3) Do Not Speak to Specific Member(s) of the City Council, Staff, or Public (Please Speak to the Mayor or to the Council as a Group); (4) Please Present Possible Solutions for All Problems Identified; and (5) No Decision May Be Made During this Meeting if the Item Is Not Specifically on the Agenda (with Action on Public Hearings, if any, later in the Meeting)

- A. Ordinance 25-L Impact Fee Enactment
- B. Resolution 2025-14 Water Conservation Plan

4. Action Items

- A. Resolution 2025-14 Water Conservation Plan
- B. Resolution 2025-17 Interlocal Agreement for Inspection Services
- C. Ordinance 25-L Amending PMC 13.05 Impact Fee Enactment

5. Minutes & Council/Mayor Reports (Including Council Assignments)

No Council Action May be Taken if an Item is not specifically on the Agenda

A. Approval of Consent Items

- July 10, 2025 City Council Meeting Minutes

B. Mayor’s Report

C. Council Reports

D. Staff Comments

E. Planning Commission Report

6. Closed Session (if needed)

- A. Discussion of the purchase, exchange, lease, or sale of real property, when public discussion would disclose the value of the property or prevent the authority from completing the transaction on the best possible terms.
- B. Strategy session to discuss the character, professional competence, or physical or mental health of an individual.
- C. Strategy session to discuss collective bargaining.
- D. Strategy session regarding pending, or reasonably imminent litigation.
- E. Strategy session to discuss the deployment of security personnel, devices, or systems.
- F. Discussion of investigative proceedings regarding allegations of criminal misconduct.

7. Approx. 8:30 PM - Adjournment

Certificate of Posting

The undersigned duly appointed official hereby certifies that a copy of the foregoing agenda was sent to each member of the City Council and was posted in three locations: Perry City Hall; Centennial Park, Perry City Park; and was emailed to the Ogden Standard-Examiner, Box Elder News Journal; and posted on the State Public Meeting Notice Website on this 8th day of August, 2025. Any individual requiring auxiliary services should contact the City Offices at least 3 days in advance (435-723-6461).

Shanna S. Johnson, City Recorder

**PERRY CITY
ORDINANCE NO. 25-L**

IMPACT FEE ENACTMENT

**AN ORDINANCE OF PERRY CITY, UTAH, AMENDING CHAPTER 13.05 OF
THE PERRY CITY MUNICIPAL CODE AS THE “IMPACT FEE ENACTMENT”
AS PROVIDED HEREIN; ADOPTING THE IFFP, CFP AND IFA PREPARED
BY THIRD PARTIES; PROVIDE FOR THE CALCULATION AND
COLLECTION OF CULINARY WATER IMPACT FEES; AND PROVIDE FOR
APPEAL, ACCOUNTING, AND SEVERABILITY.**

WHEREAS, Perry City (hereinafter “City”) is a municipal corporation duly organized and existing under the laws of the State of Utah;

WHEREAS, Title 11, Chapter 36a of the *Utah Code Annotated* authorizes municipalities in the State of Utah to adopt an impact fee enactment;

WHEREAS, in accordance state law, the appropriate notices have been given;

WHEREAS, the City retained a qualified engineer to prepare or update the required Impact Fee Facilities Plan and retained an independent consultant to prepare or update the required Impact Fee Analysis on the impact fees imposed;

WHEREAS, the City desires to impose its impact fees in compliance with state law;

WHEREAS, the City Council held its public hearing on August 14, 2025, on this Impact Fee Enactment;

WHEREAS, the Council deems it to be in the best interest of the health, safety, and welfare of the community to enact impact fees;

NOW, THEREFORE, be it Ordained by City Council of Perry City, Utah, as follows:

Section 1: Amendment. Chapter 13.05 is hereby adopted to read as follows:

**Chapter 15.05
IMPACT FEE ENACTMENT**

- 13.05.010.** **Findings, authority, and purpose.**
- 13.05.020.** **Definitions.**
- 13.05.030.** **Pre-existing impact fee unaffected.**
- 13.05.040.** **Exemption from impact fee facilities plan.**
- 13.05.050.** **Adoption of Impact Fee Analysis.**
- 13.05.060.** **Impact fee enactment and calculations.**
- 13.05.070.** **Service area.**
- 13.05.080.** **Adjustment of impact fee.**
- 13.05.090.** **Administrative challenges and appeals.**
- 13.05.100.** **Accounting, expenditure, and refund.**
- 13.05.110.** **Severability.**

13.05.010. Findings, authority, and purpose.

The City Council finds that growth and development activity in Perry City will create additional demand and need for public infrastructure facilities in the City, and City Council finds that persons responsible for growth and development activity should pay a proportionate share of the cost of such planned facilities needed to serve the growth and development activity. The City Council further finds that impact fees are necessary to achieve an equitable allocation to the costs borne in the past and to be borne in the future, in comparison to the benefits already received and yet to be received. Therefore, in accordance with Title 11, Chapter 36a, of the *Utah Code Annotated*, the City Council adopts this Chapter and enacts the impact fees as provided herein, except those impact fees already adopted shall remain in full force and effect and are continued to be administered under this Chapter. The provisions of this Chapter shall be liberally construed in order to carry out the purposes of the impact fee program.

13.05.020. Definitions.

In addition to the definition provided in *Utah Code Annotated* §11-36a-102, 1953, as amended, the following definitions apply to this chapter:

1. “Administrator” means the City Administrator of Perry City, Utah, or his designee.
2. “Building permit” means any permit required for new construction and additions pursuant to state law and the municipal code.
3. “City” means the municipality of Perry City, Utah.
4. “Unit of measure” means that basic gauging unit which can be quantified for measuring impact of development on the public facilities in question, and provides a fair and equitable method of assessing the demands for expanded public facilities, or the inflow/outflow of people, products, or waste, depending on the particular type of public facility; and may include, but shall not be limited to, the following measuring methods: Plumbing fixture units, gallons per day, size of water meter or pipeline, or number of Equivalent Residential Units (ERUs).

13.05.030. Pre-existing impact fees unaffected.

Any impact fee imposed that predates this enactment is not repealed and shall continue in full force and effect and shall be applied by the City Administrator accordingly under this Chapter.

13.05.040. Adoption of Impact Fee Facilities Plan.

Any prior IFFP not superseded by the IFFP adopted in this Section shall continue.

1. Parks. The Parks Impact Fee Facilities Plan (IFFP) prepared by Lewis Robertson Birmingham dated April 2023, ~~and the Water IFFP prepared by Lewis Robertson Birmingham dated February 2024, are is hereby adopted and incorporated herein by this reference. Any prior IFFP not superseded by the IFFP adopted in this section shall continue.~~
2. Culinary Water. The Culinary Water Capital Facilities Plan (CFP) prepared by Jones & Associated Consulting Engineers dated June, 2025, is hereby adopted and incorporated herein by this reference. Also, the Culinary Water Impact Fee Facilities Plan (IFFP) prepared by LRB Public Finance Advisors dated July 2025, is hereby adopted and incorporated herein by this reference.

13.05.050. Adoption of Impact Fee Analysis.

Any prior IFA not superseded by the IFA adopted in this Section shall continue. The following Impact Fees Analysis (IFA) also constitute the “reasonable plan” required by state law and are hereby adopted and incorporated by reference with the impact fee rates as specified in each IFA:

1. Parks. The Parks IFA prepared by Lewis Robertson Birmingham dated April 2023, and the Water IFA prepared by Lewis Robertson Birmingham dated February 2024 are is hereby adopted and incorporated herein by this reference.
2. Culinary Water. The Culinary Water Impact Fee Analysis (IFA) prepared by LRB Public Finance Advisors dated July 2025, is hereby adopted and incorporated herein by this reference.

3. Any prior IFA not superseded by the IFA adopted in this section shall continue.

13.05.060. Impact fee enactment and calculations.

The City Administrator shall implement this Chapter. The impact fees adopted herein are hereby enacted as a condition of the issuance of a building permit by the City or for any development activity which creates additional demand and need for public facilities. This Chapter serves as the impact fee enactment required by *Utah Code Annotated* §11-36a-401, 1953, as amended. In accordance with *Utah Code Annotated* §11-36a-401(1)(b), 1953, as amended, impact fees enacted by this Chapter are hereby specified in the City's Fee Schedule and may not exceed the highest fee justified by the IFA.

13.05.070. Service area.

In accordance with *Utah Code Annotated* §11-36a-402, 1953, as amended, the service area for all impact fees provided in this Chapter constitutes the city limits of Perry City, Utah, and also includes any applicable overlay designated in the City's General Plan, and includes any area outside of the city limits serviced in any way by the City for the impact fee being imposed.

13.05.080. Adjustment of impact fee.

The City Administrator may adjust impact fees enacted by this Chapter as allowed by *Utah Code Annotated* §11-36a-402, 1953, as amended, as provided by statute or fairness. If an applicant is not satisfied with the decision under this section, an appeal may be made as set forth in this Chapter.

Adjustments may be granted to adjust the calculation of the amount of the fee based upon:

1. Studies and Data. Studies and data submitted by an applicant as approved by the City Administrator in order to ensure that the impact fee represents the proportionate share of the costs of providing such public facilities which are reasonably related to and necessary in order to provide the services in question to anticipated future growth and development activities.
2. Credits. Credits against impact fees for dedication of land for, improvements to or new construction of, any system improvements provided by that developer that relate to the reasonable plan and required as a condition of development. No credits shall be given for project improvements that service only the development.
3. Information. The City Administrator shall have the authority to make such adjustments based upon creditable information submitted by an applicant, recommendation from the City Engineer, or as provided by law.

13.05.090. Administrative challenges and appeals.

4. Challenges. Any challenge to this Chapter shall be in accordance with *Utah Code Annotated* §11-36a-701, 1953, as amended.
5. Time limitations. The time limitations for challenging any impact fee is set forth in *Utah Code Annotated* §11-36a-702, 1953 as amended.
6. Administrative Appeal Procedure. In accordance with *Utah Code Annotated* § 11-36-703, 1953, as amended, the appeal procedure for challenging an impact fees is as follows:
 - a. Any person subject to an impact fee may challenge the impact fee imposed by filing a written request for information as provided in this section.
 - b. After receiving a copy of the written analysis if such person still believes an impact fee does not meet the requirements of the law, the person they may file a written notice of challenge. A notice of challenge shall state:
 - i. The name and contact information of appellant.
 - ii. The legal basis for appellant's challenge of the impact fee.

- c. All appeals shall be conducted according to the general administrative appeal procedures in the municipal code.
- d. The City may adjust the impact fee in the course of the appeal proceeding to either:
 - i. Respond to unusual circumstances.
 - ii. Ensure that impact fees are fairly imposed.
- e. Within thirty (30) calendar days ~~time~~ of the filing of the notice of challenge provided in this part, a decision shall be rendered by the City.

13.05.100. Accounting, expenditure, and refund.

- 7. Accounting. All impact fees collected by the municipality shall be accounted in accordance with *Utah Code Annotated* §11-36a-601, 1953, as amended.
- 8. Expenditure. All impact fees expended by the municipality shall be in accordance with *Utah Code Annotated* §11-36a-602, 1953, as amended.
- 9. Refund. Any refund of impact fees by the municipality shall proceed according to *Utah Code Annotated* §11-36a-603, 1953, as amended.

13.05.110. Severability.

If any section, paragraph, sentence, clause or phrase of this chapter is declared invalid by a court of competent jurisdiction, the remainder shall not be affected thereby and shall remain in full force and effect.

Section 2: Effective Date. This Ordinance is effective ninety (90) days from the date of posting.

PASSED AND ADOPTED by the City Council on this _____ day of _____, 2025.

Mayor

ATTEST:

City Recorder

RECORDED this _____ day of _____, 2025.
PUBLISHED OR POSTED this _____ day of _____, 2025.

CERTIFICATE OF PASSAGE AND PUBLICATION OR POSTING

In accordance with Utah Code Annotated §10-3-713, 1953 as amended, I, the City Recorder, hereby certify that foregoing Ordinance was duly passed and published or posted as provided in State Law.

City Recorder DATE: _____

PERRY CITY,
UTAH

JULY 2025

IMPACT FEE FACILITIES PLAN (IFFP)
& IMPACT FEE ANALYSIS (IFA)
CULINARY WATER **AMENDMENT**

PREPARED BY:

LRB PUBLIC FINANCE ADVISORS
FORMERLY LEWIS YOUNG ROBERTSON & BURNINGHAM INC.

TABLE OF CONTENTS

IMPACT FEE CERTIFICATION 3

IFFP AMENDMENT CERTIFICATION	3
IFA AMENDMENT CERTIFICATION.....	3

SECTION 1: CULINARY WATER AMENDMENT 4

SUMMARY	4
EXPLANATION.....	4
AMENDED CULINARY WATER IMPACT FEE SCHEDULE	5
NON-STANDARD CULINARY WATER IMPACT FEES.....	6

DRAFT

IMPACT FEE CERTIFICATION

IFFP AMENDMENT CERTIFICATION

LRB Public Finance Advisors (formerly Lewis Young Robertson & Burningham, Inc.) and Perry City jointly certify that the Impact Fee Facilities Plan (IFFP) amendment prepared for culinary water:

1. includes only the costs of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. does not include:
 - a. costs of operation and maintenance of public facilities;
 - b. costs for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by existing residents;
 - c. an expense for overhead, unless the expense is calculated pursuant to a methodology that is consistent with generally accepted cost accounting practices and the methodological standards set forth by the federal Office of Management and Budget for federal grant reimbursement; and
3. complies in every relevant respect with the Impact Fees Act.

LRB PUBLIC FINANCE ADVISORS & WEST VALLEY CITY

IFA AMENDMENT CERTIFICATION

LRB Public Finance Advisors certifies that the Impact Fee Analysis (IFA) amendment prepared for culinary water:

1. includes only the costs of public facilities that are:
 - a. allowed under the Impact Fees Act; and
 - b. actually incurred; or
 - c. projected to be incurred or encumbered within six years after the day on which each impact fee is paid;
2. does not include:
 - a. costs of operation and maintenance of public facilities;
 - b. costs for qualifying public facilities that will raise the level of service for the facilities, through impact fees, above the level of service that is supported by existing residents;
 - c. an expense for overhead, unless the expense is calculated pursuant to a methodology that is consistent with generally accepted cost accounting practices and the methodological standards set forth by the federal Office of Management and Budget for federal grant reimbursement;
 - d. offsets costs with grants or other alternate sources of payment; and
3. complies in every relevant respect with the Impact Fees Act.

LRB Public Finance Advisors makes this certification with the following caveats:

1. All the recommendations for implementation of the IFFP made in the IFFP documents or in the IFA documents are followed by City Staff and elected officials.
2. If all or a portion of the IFFP or IFA is modified or amended, this certification is no longer valid.
3. All information provided to LRB is assumed to be correct, complete, and accurate. This includes information provided by the City as well as outside sources.

LRB PUBLIC FINANCE ADVISORS

SECTION 1: CULINARY WATER AMENDMENT

SUMMARY

The Perry City culinary water Impact Fee Facilities Plan (IFFP) and Impact Fee Analysis (IFA), dated February 2024, is being amended to account for changes to capital improvements and estimated future facility costs, based on updated capital plans and revised cost estimates.

EXPLANATION

The City reviewed the capital cost assumptions included in the 2024 IFFP and IFA. This plan reevaluated future facility costs, prioritization, and timing based on current market conditions. As a result, IFFP and IFA **Table 5.4** is amended to reflect these changes.

AMENDED TABLE 5.4: FUTURE DISTRIBUTION FACILITIES

#	YEAR	PROJECT DESCRIPTION	TOTAL COST	CONST. YEAR COST	IMPACT FEE ELIGIBLE	TOTAL IMPACT FEE COST	% TO IFFP DEMAND	COST TO IFA
1	2024	Replace 2" Crossing Pipe with 6" PRV	\$201,292	\$211,357	75%	\$158,517	70%	\$110,962
2	2024	Replace 2" Crossing Pipe with 6" PRV	\$198,156	\$208,064	75%	\$156,047	80%	\$124,837
2a1	2026	Southern Water Reservoir Overflow Drainage Basin	\$186,358	\$195,675	100%	\$215,732	100%	\$195,675
2b1	2026	Replace 2" Waterline with 8" – 1700 South	\$595,446	\$625,218	100%	\$689,303	100%	\$625,218
2c1	2026	8" Waterline – 1200 South to 1425 South (Mace Street)	\$486,980	\$511,329	100%	\$563,740	100%	\$511,329
3	2026	10" Water Main on 3000 South	\$447,374	\$517,891	50%	\$258,946	100%	\$258,946
5	2030	8" Water Main on 2700 S	\$389,903	\$548,632	0%	\$0	100%	\$0
7	2026	16" Water Main on 3200 S	\$351,130	\$406,477	100%	\$406,477	60%	\$243,886
9	2027	12" Water Main	\$852,878	\$1,036,679	100%	\$1,036,679	80%	\$829,343
10	2028	8" Water Main on 2700 South	\$705,315	\$900,181	0%	\$0	100%	\$0
11	2030	10" Water Main HWY	\$1,069,250	\$1,504,542	50%	\$752,271	60%	\$451,363
12	2033	10" Water Main HWY 89	\$1,021,898	\$1,664,563	50%	\$832,284	70%	\$582,599
13	2033	10" Water Main on West Side HWY 89	\$1,039,350	\$1,692,992	36%	\$609,484	60%	\$365,690
TOTALS			\$7,545,328	\$10,023,599	55%	\$5,542,926	78%	\$4,299,848

Source: 2025 Perry City Culinary Water CFP, Table 6.2.2, Appendix D

The Construction Year Costs for the original project list is based on 2023 base year cost. The Construction Year Cost for the amended projects is based on 2025 base year cost.

The City amended its capital facilities plan (CFP) in June 2025. This CFP identifies the projects included in this analysis using demand modeling, planning analysis, and other engineering data. The accuracy and correctness of the IFFP and IFA is contingent upon the accuracy of the CFP data and assumptions. Any deviations or changes in the assumptions due to changes in the economy or other relevant information used by the City for this study may cause this plan to be inaccurate and may require further modifications.

AMENDED CULINARY WATER IMPACT FEE SCHEDULE

The amended culinary water impact fees proposed in this amendment will be assessed in a manner described in the 2024 IFFP and IFA. Perry City's culinary water system is not used for irrigation, as irrigation needs are presently met by Pineview Irrigation Company's secondary water system. The City's impact fee schedule includes two scenarios:

- Scenario 1 (Indoor Use Only):** All consumption is assumed to be indoor use only as no irrigation is provided within the City's culinary system.
- Scenario 2 (Indoor and Outdoor Use):** Assumes new development will have access to irrigation which will be provided within the City's culinary system.

The culinary water impact fees will be assessed within the Service Area. The tables below illustrate the amended impact fee to maintain the existing level of service, based on the assumptions within this amendment and the 2024 IFFP and IFA. The fee below represents the maximum allowable impact fee assignable to new development. The amended total fee per ERC is **\$12,338** under Scenario 1 and **\$23,352** under Scenario 2.

AMENDED TABLE 6.1: SCENARIO 1 — BASE IMPACT FEE PER ERC

	ORIGINAL VALUE	% TO GROWTH	COST TO GROWTH	ERCs SERVED	Fee Per ERC
BUY-IN					
Source Excess Capacity	\$483,841	4%	\$21,175	866	\$24
Storage Excess Capacity	\$1,261,352	24%	\$301,333	866	\$348
Distribution Excess Capacity	\$3,105,231	9%	\$290,090	866	\$335
FUTURE FACILITIES					
Source Future Improvements	\$9,597,650	60%	\$5,765,255	866	\$6,657
Storage Future Improvements	\$3,265,660	0%	\$0	866	\$0
Distribution Future Improvements	\$5,542,926	78%	\$4,299,848	866	\$4,965
OTHER					
Professional Expense	\$7,500	100%	\$7,500	866	\$9
TOTAL IMPACT FEE	\$23,264,160		\$10,685,200		\$12,338

AMENDED TABLE 6.2: SCENARIO 2 — BASE IMPACT FEE PER ERC

	ORIGINAL VALUE	% TO GROWTH	COST TO GROWTH	ERCs SERVED	Fee Per ERC
BUY-IN					
Source Excess Capacity	\$483,841	4%	\$21,175	866	\$24
Storage Excess Capacity	\$1,261,352	52%	\$655,903	866	\$757
Distribution Excess Capacity	\$3,105,231	9%	\$290,090	866	\$335
FUTURE FACILITIES					
Source Future Improvements	\$16,880,269	82%	\$13,851,081	866	\$15,994
Storage Future Improvements	\$3,265,660	34%	\$1,098,416	866	\$1,268
Distribution Future Improvements	\$5,542,926	78%	\$4,299,848	866	\$4,965
OTHER					
Professional Expense	\$7,500	100%	\$7,500	866	\$9
TOTAL IMPACT FEE	\$30,546,779		\$20,224,013		\$23,352

NON-STANDARD CULINARY WATER IMPACT FEES

The City reserves the right under the Impact Fees Act to assess an adjusted fee that more closely matches the true impact that the land-use will have upon water facilities.¹ This adjustment could result in a higher fee if the City determines that a particular user may create a greater impact than is standard for its land use. The City may also decrease the impact fee if the developer can provide documentation, evidence, or other credible analysis that the proposed impact will be lower than what is proposed in this analysis. The formula for determining a non-standard impact fee is found below.

AMENDED FORMULA FOR NON-STANDARD WATER IMPACT FEES:


ERCs x Impact Fee per ERC (\$12,338) = Indoor Only Impact Fee

ERCs x Impact Fee per ERC (\$23,352) = Indoor+Outdoor Impact Fee

DRAFT

¹ UC 11-36a-402(l)(c)

Culinary Water Capital Facilities Plan

June 2025

Prepared By:

6080 Fashion Point Drive
South Ogden, UT 84403
801.476.9767

TABLE OF CONTENTS

EXECUTIVE SUMMARY	iv
Table ES.1. Summary of Compliance	iv
1. INTRODUCTION.....	1
1.1 Background	1
1.2 Study Area.....	1
1.3 Water System Overview	2
2. MINIMUM SIZING REQUIREMENTS, ERCs, GROWTH ESTIMATES	3
2.1 Minimum Sizing Requirements and the Division of Drinking Water (DDW)	3
2.2 Equivalent Residential Connections (ERCs).....	4
2.3 Sizing Demand Requirements	5
2.4 Summary of Perry City ERC (2023).....	5
2.5 Consumption vs. Production.....	6
2.6 Growth Estimates.....	7
3. WATER SOURCES.....	10
3.1 Water Source Requirements.....	10
3.2 Existing Water Sources.....	11
3.3 Peak Day Demand	13
3.4 Average Yearly Demand.....	15
3.5 Other Water Source Needs.....	17
3.6 Future Water Sources	18
3.7 Projects	19
4. WATER STORAGE	22
4.1 Water Storage Requirements	22
4.2 Existing Water Storage.....	23
4.3 Existing Requirements	24
4.4 Future Requirements	24
4.5 Projects	26
5. WATER DISTRIBUTION SYSTEM REQUIREMENTS.....	28
5.1 Pressure Zones	28
5.2 Minimum Sizing.....	28
5.3 Fire Flow Requirements	28
5.4 Existing Water Distribution System	29
5.5 Future Water Distribution System Needs.....	33
5.6 Projects	34
6. ASSET MANAGEMENT, PROJECTS, AND COST ESTIMATES	36
6.1 Asset Management System	36
6.2 Projects and Cost Estimates.....	36

TABLES

Table ES.1. Summary of Compliance	iv
Table 2.1. Component Sizing Requirements (Indoor Use Only)	3
Table 2.1.2. Component Sizing Requirements (Indoor/Outdoor Use) *	4
Table 2.4. Annual Average ERCs.....	6
Table 2.5. Consumption versus Production per ERC	6
Table 2.6.1a. Historic Population Data and Growth Rate	7
Table 2.6.1b. Population Projections	8
Table 2.6.2. Population and ERC Projections	8
Table 3.2a - Well #3 Excluded System Capacity.....	10
Table 3.2b Well #3 Excluded System Capacity.....	11
Table 3.3a. Existing Water Source Capacity.....	11
Table 3.3. Existing Water Source Production.....	12
Table 3.4.1. Existing Peak Day Demand and Supply	13
Table 3.4.2. Projected Peak Day Demand and Supply	14
Table 3.4.3. Projected Peak Day Demand and Supply	15
Table 3.5.1. Existing Water Source Required Capacity	15
Table 3.5.2. Projected Average Yearly Demand and Supply	16
Table 3.5.3. Projected Average Yearly Demand and Supply	17
Table 3.6.1. Indoor Use Only Additional Water Right and Capacity	18
Table 3.6.2. Indoor/Outdoor Use Additional Water Right and Capacity	18
Table 4.2. Existing Emergency Water Storage Analysis	23
Table 4.2.1. Projected Emergency Storage Analysis (Indoor Use Only).....	23
Table 4.2.2. Projected Required Storage Capacity (Outdoor/Indoor)	23
Table 4.2. Existing Water Storage	24
Table 4.3. Existing Water Storage Required Capacity	24
Table 4.4.1. Projected Required Storage Capacity (Indoor Use Only)	25
Table 4.4.2. Projected Required Storage Capacity (Outdoor/Indoor)	26
Table 5.3.2. Existing Distribution System Deficiencies	30
Table 6.2. Project Ratings-Indoor Use Only.....	37
Table 6.2.1 Additional Indoor/Outdoor Use Projects	38
Table 6.2.2. Projects Cost Summary	39
Table 6.2.3. Additional Indoor/Outdoor Projects Cost Summary	41

EXHIBITS

- 2.1 General Plan Land Use and Boundaries
- 2.2 Existing Water System
- 2.3 Irrigated Areas Exhibit

- 3.1 Developable Ground and Associated ERCs
- 7.1 Projects Map

APPENDICES

- A International Fire Code, Table B105.1
- B Existing Water System Model and Output
- C Future Water System Model
- D Cost Estimates

ACRONYMS

ac-ft	acre-feet
AF	acre-feet
CFP	Capital Facilities Plan
cfs	cubic feet per second
DDW	Division of Drinking Water
ERC	Equivalent Residential Connection
gal	gallon
gpd	gallons per day
gpm	gallons per minute
IFA	Impact Fee Analysis
IFFP	Impact Fee Facilities Plan
LOS	Level of Service
MG	million gallons
MGD	million gallons per day
PDD	peak day demand
PID	peak instantaneous demand
psi	pounds per square inch
UAC	Utah Administrative Code
UDEQ	Utah Department of Environmental Quality
WBWCD	Weber Basin Water Conservancy District

EXECUTIVE SUMMARY

Perry City's potable water system was analyzed for source capacity, storage capacity, and distribution system adequacy. The existing system's supply and storage was found to be compliant with the Utah Administrative Code; however, the existing system's ability to meet fire flow was deficient in some areas, mostly along the East Bench foothills. The projected build-out of the City will require additional source capacity and distribution system upgrades. Storage capacity buildout is dependent on the size and type of buildings constructed. The system's elements and their current and future compliance with State Code are summarized in Table ES.1.

Table ES.1. Summary of Compliance

Element	Demand Requirement	Compliant with State Code	
		Current	Projected Build-Out
Source Flow Rate	Peak Day Demand	Y	Y
Source Annual Volume	Average Yearly Demand	Y	Y
Storage Capacity		Y	Depends
Distribution System		N	Y

Current compliance does not eliminate the immediate need for projects, as other factors contribute to the relevancy of the projects, such as problematic conditions (leaks, accessibility, etc.) and emergency preparedness. Advanced planning for the replacement of ageing infrastructure approaching its life expectancy is also recommended.

A full list of recommended projects is provided in Section 6 of this Plan. These projects are a summary of deficiencies and potential problems in the existing system and future deficiencies based on projected growth.

1. INTRODUCTION

1.1 Background

According to Utah History Encyclopedia (Lois, 1994), Perry was settled by American Pioneers in 1851. Most of the settlements were used for agricultural purposes, until suffering water shortages. The lack of water in the area caused many settlers to migrate out of the City, leaving much of the land abandoned. In 1902, irrigation water became readily available when the Three Mile Creek Irrigation Company began piping water from the mouth of the canyon, causing a growth in population. Soon after, the Pineview canal was completed, bringing irrigation water from Ogden to Perry, resulting in another growth in population.

Perry was officially incorporated in 1911, and the construction of the City's culinary water system was completed to every single home soon after incorporation. Culinary water came from mountain springs and then later from wells. Today, Perry continues to maintain its own water system, while also preparing for future growth.

The City of Perry is in Box Elder County and is generally surrounded by Brigham City to the North and Willard to the South. US 89 highway and Interstate 15 are the two major transportation corridors that pass through the City. The 2020 census determined a population of 5,555 people.

This report independently analyzes and reviews the culinary water system for consumption and irrigation uses (in some areas). It identifies projects necessary to bring the current system into full compliance with regulations; update and/or repair infrastructure based on known needs and age; and plan for future growth. It also evaluates projects based on the infrastructure's condition and its importance to the overall system.

Section 7 contains the Impact Fee Facility Plan (IFFP) and identifies projects that are needed in the next five (5) to seven (7) years. The costs of these projects are then used by the City's financial consultant in preparation of the Impact Fee Analysis, which determines the impact fees.

Information for this Plan was gathered from previous reports and plans, Perry City personnel, and other sources. The most recent Culinary Water Capital Facilities Plan was adopted in 2015. Several of the projects identified in the 2015 plan have been completed or are under design and/or construction, many are still needed, and additional projects have since been identified.

1.2 Study Area

Perry City currently serves all areas within the City boundaries with culinary water. The current City boundary encompasses approximately 7.7 square miles. Land use is primarily residential with agricultural and commercial/industrial uses. The City's vision for future land use remains primarily residential; however, the City would like to increase the percentage of commercial development in the future. For the purposes of this Plan, future needs have been estimated based on Perry City's 2019 General Plan. It is understood that the service boundary and/or the proposed land use may change depending on development. These factors may require periodic adjustments to this Plan and the

recommended projects. Exhibit 2.1 Future Land use, shows the proposed future land uses from the General Plan.

1.3 Water System Overview

Currently, the City owns and maintains all the culinary water storage and distribution facilities needed to serve its customers. Perry City's water infrastructure includes pump lines, transmission lines, and distribution lines, and three (3) storage reservoirs. The City also owns and operates three (3) potable water wells and one (1) natural spring. The City's current water system is illustrated in Exhibit 2.2 Existing Water System.

In recent years, the wells & spring have provided 100% of the drinking water needed to meet current demands. The City intends to continue using and maintaining the wells and spring in the future. It is anticipated that the current demand can be met by the existing water sources. Future water demand will need to be appropriated to the City as needed.

Perry's current culinary water system is not used for irrigation. Most of the City's irrigation needs are met by the Pineview Irrigation Company's secondary water system. However, due to the request of the City, this report will investigate the impacts of irrigation use and demand on the existing and future culinary water systems by modeling future outdoor use and indoor use demands in comparison to indoor use only demands. This report will elaborate further on the feasibility and possible costs of upgrading the current system to meet irrigation demand for new development areas and maintain a high level of service for the rest of Perry City's residential indoor use.

This Plan evaluates a worst-case scenario in which all future water users will necessitate irrigation as a demand on the water system for the projected build out of the City. As a comparison, an indoor use only scenario is also evaluated as a comparison scenario in which no irrigation demand is imposed upon the projected build out of the City. These two scenarios provide a minimum impact and maximum impact to the City's current and future water system's infrastructure.

2. MINIMUM SIZING REQUIREMENTS, ERCs, GROWTH ESTIMATES

2.1 Minimum Sizing Requirements and the Division of Drinking Water (DDW)

In 2018, the Utah Legislature passed a bill that requires “the [DDW] director shall establish system-specific source and storage minimum sizing requirements for a community water system serving a population of more than 3,300 based on at least the most recent three years of a community water system's actual water use data submitted.”¹ Submittal of data was required by March 1, 2019.

Due to the lack of data at the time it was required by the DDW, Perry City opted to enter into a Corrective Action Agreement allowing them to submit an engineering study which would be submitted in lieu of the data. The engineering study for sizing requirements is being conducted concurrently with this Capital Facilities Plan. This Plan reflects the sizing requirement recommendations that will also be submitted within the engineering study provided to the DDW. If any of the values change during the approval process of the engineering study then the recommendations provided by the DDW will then be used, and this report will be updated.

Data for monthly residential and commercial indoor use and annual source production was provided by Perry City, for the years 2019 through 2022. From the data, an average and peak monthly use per residential connection was established. Since Perry City does not currently collect daily water use data, peaking factors were researched, tested, and established to produce values for the Peak Day Demand (PDD) and Peak Hour Demand (PHD).

A summary of system component requirements and their determined demand values for Peak Day Demand (PPD), Average Day Demand (ADD), Peak Hour Demand (PHD) are provided in Table 2.1.

Table 2.1. Component Sizing Requirements (Indoor Use Only)

Component	Measurement	Requirement
Sources	<ul style="list-style-type: none">• Flowrate• Volume	<ul style="list-style-type: none">• 550 gpd/ERC for Peak Day Demand• 87,600 gallons/ERC (0.269 ac-ft/ERC) for Average Yearly Demand (at 240 gpd/ERC)
Storage Facilities	<ul style="list-style-type: none">• Volume	<ul style="list-style-type: none">• 87,600 gallons/ERC
Distribution System	<ul style="list-style-type: none">• Pressure	<ul style="list-style-type: none">• 20 psi during conditions of fire flow and fire demand experienced during peak day demand.• 30 psi during peak hour demand• 40 psi during peak day demand

¹ From Utah Code 19-4-114

Additionally, due to the rising demand of irrigation connection requests by proposed developments, Perry City has also opted to evaluate additional system requirements needed to allow for future irrigation connections within the City. An irrigation demand per residential connection was established by taking a sample of an existing developed quarter acre lot subdivision and determining area quantities for landscape. These quantities were then multiplied by a predetermined amount of 3.1 acre-ft per acre volume over a six-month period to produce an outdoor use flow rate and volume per residential connection. Only future users were considered for the tabulation of source and storage required as existing connections will not have a separate irrigation connection. Table 2.1.2 illustrates the values used during this study period to consider source/storage requirements.

*Table 2.1.2. Component Sizing Requirements (Indoor/Outdoor Use) **

Component	Measurement	Requirement
Sources	<ul style="list-style-type: none"> • Flowrate • Volume 	<ul style="list-style-type: none"> • 1415 gpd/ERC for Peak Day Demand • 403,325 gallons /ERC (1.26 ac-ft/ERC) for Average Yearly Demand
Storage Facilities	<ul style="list-style-type: none"> • Volume 	<ul style="list-style-type: none"> • 403,325 gallons / Future ERC • Not including current residents
Distribution System	<ul style="list-style-type: none"> • Pressure 	<ul style="list-style-type: none"> • 20 psi during conditions of fire flow and fire demand experienced during peak day demand. • 30 psi during peak hour demand • 40 psi during peak day demand

**Note: 3.1 acre-ft per acre over a 6-month period is the value determined by local irrigation companies as the average use per acre flow rate among their users.*

In summary, this Capital Facilities Plan will evaluate the current and future needs of the culinary water system in two scenarios. The first scenario, in which all consumption will be indoor use only, and the second, where consumption will comprise of indoor use all year long and outdoor use for 6 months out of the year. The values in table 3.1 and table 3.1.2 will be used to compare the two scenarios. The goal of this comparison is to differentiate the individual infrastructure needs of each scenario and determine what infrastructural needs would need to be constructed in either.

2.2 Equivalent Residential Connections (ERCs)

Water use varies from connection to connection throughout a water system. To avoid the complexity of analyzing each connection, a simple basic unit of water use can be defined for the purposes of comparison. This basic unit is called an Equivalent Residential Connection or ERC. An ERC quantifies the typical daily water needed for one single family residential connection within the system, the most common type of connection in the City, and is then applied to non-residential users based on water usage. This unit is needed to compare non-residential users and evaluate the system with one single equalizing unit of measure.

“Equivalent Residential Connection (ERC) is a term used to evaluate service connections to consumers other than the typical residential domicile. Public water system management is expected to review annual metered drinking water volumes delivered to non-residential connections and estimate the equivalent number of residential connections that these represent based upon the average of annual metered drinking water volumes delivered to true single family residential connections. This information is utilized in [the] evaluation of the system's source and storage capacities (refer to R309-510).” Utah Administrative Code R309-110-4

2.3 Sizing Demand Requirements

The system-specific minimum sizing requirements for indoor use is an average flow rate of 240 gpd per ERC, which quantifies one ERC to be equal 240 gpd. Since irrigation use data is currently not available, an estimate of 3.1 acre-ft per irrigated acre for six-months was used on a sample City block from quarter acre lots in Perry (See Exhibit 2.3 – Landscape Area). The landscape area from this sample was then tabulated and multiplied by this flow rate. Next, the total block flow rate was divided by the number of quarter acre lots, the flow/ERC was determined to be approximately 865 gpd. The outdoor use system-specific minimum sizing requirement is the sum of the average day indoor and average day outdoor use for six months of the year, which is 865 gpd (outdoor) plus 240 gpd (indoor use), for a total of 1105 gpd, the other six months of the year maintain a flow rate of 240 gpd.

However, due to Utah’s climate, outdoor use is most prevalent in the spring/summer season ranging from April to September and should be evaluated during this timeframe. Indoor use follows a similar peak pattern to outdoor use in summer months. An evaluation of the sum of the peak day demand for indoor use and the average day demand outdoor use is more reflective of a high-water use day than the average day scenario (flow = 1425 gpd).

This study considers the sum of the peak day indoor use and the average day outdoor use as a factor for the system’s source requirements sizing. Storage requirements are based upon the average day scenario of 1105 gpd since this number more accurately reflects the amount of water needed in both peak and non-peak scenarios annually.

2.4 Summary of Perry City ERC (2023)

As part of this Capital Facilities Plan, an evaluation of Perry City’s annual culinary use for the entire city was evaluated to determine total ERC for the years of 2019 through 2022. The average values for monthly and annual use were calculated and a tally of the total number of physical single family residential connections was recorded. The single-family average was then used as the dividing factor for the non-residential ERC connections conversion for each year. Non-single-family ERC was found by dividing each non-single-family connection usage by the single-family average use value for each respective year. The amount of ERC for single family residences and non-single-family residences is shown in Table 2.4.

Table 2.4. Annual Average ERCs

Year	Single Family Residences	ERCs for Non-Single-Family Residences	Total ERCs
2019	1,132	92	1,224
2020	1,276	153	1,429
2021	1,364	171	1,535
2022	1,432	308	1,740

As a result of this evaluation, it was determined that, even though there were only 1,464 physical connections (residential and non-residential) to the system in 2022, the City provided water in a quantity equivalent to 1,740 single family dwellings.

2.5 Consumption vs. Production

Various factors within a water system drive the water production to be higher than consumption. In Perry, production includes water pumped from the wells and springs. Consumption, or metered water delivered to the consumer, can be significantly less than what is produced. Factors that cause this difference include non-metered connections or uses, inaccurate or old customer meters, water main breaks, leaks, reservoir overflows, firefighting activities, and water line flushing. These items are typically referred to as system losses.

$$\text{Production} = \text{Consumption} + \text{Losses}$$

Table 2.5 below compares consumption per ERC versus production per ERC.

Table 2.5. Consumption versus Production per ERC

Year	Production Per ERC (gpd)	Consumption Per ERC (gpd)	Losses Per ERC (gpd)
2019	523	443	80
2020	448	337	111
2021	417	277	139
2022	361	223	139
Average	438	320	118

2.6 Growth Estimates

2.6.1 Population Projections

Historical population data was gathered from official US Census Bureau data. The last 70 years of census data and the average yearly growth rate are shown in Table 2.6.1a.

Table 2.6.1a. Historic Population Data and Growth Rate

Year	Census	Average Growth Rate per Year
1960	587	30.7%
1970	909	54.9%
1980	1,084	19.3%
1990	1,211	11.7%
2000	2,383	96.8%
2010	4,512	89.3%
2020	5,555	23.1%

One way to project the population is by plotting the historic population and mathematically estimating a curve to best fit the data. The following figure displays the findings:

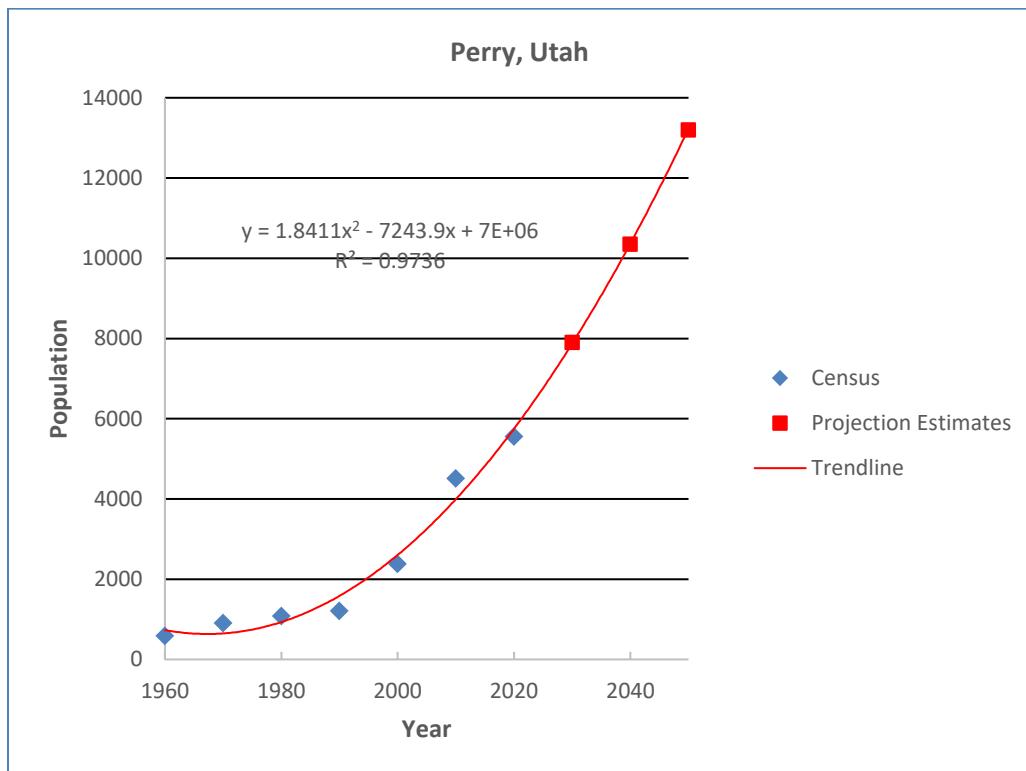


Figure 1. Historic and Projected Population

The regression equation for the growth trendline is shown in the figure. The R^2 value, shown below the equation, represents how well the trendline fits the data, with an R^2 value of 1.0 being a perfect fit. The trendline was found to be extremely accurate with an R^2 value of 0.974. Using the regression equation, the following projected populations were calculated. The projected growth rate is also shown in Table 2.6.1b.

Table 2.6.1b. Population Projections

Year	Projected Population	Growth Rate
2030	7,900	42.2%
2040	10,350	31.0%
2050	13,200	27.5%

2.6.2 ERC Projections and Build-Out

Starting with population and ERCs from 2020 and applying the population growth described above, projected residential and non-residential ERCs, and the projected total ERCs can be estimated.

Perry City served 1,740 residential ERCs in 2022. Based on the projected growth, the City will add approximately 7,500 residential ERCs by 2093.

$$\text{Residential Build-out} = 1740 \text{ existing ERCs} + 7500 \text{ future ERCs} = 9270 \text{ total residential ERCs}$$

Non-residential water varies greatly and can be difficult to estimate; therefore, assumptions were made to estimate the ERC values in these areas. Using the Projected Land Use Map, projected ERCs have been assigned to the developable land in the City. All the expected future ERCs are shown in Exhibit 3.1 Projected ERC.

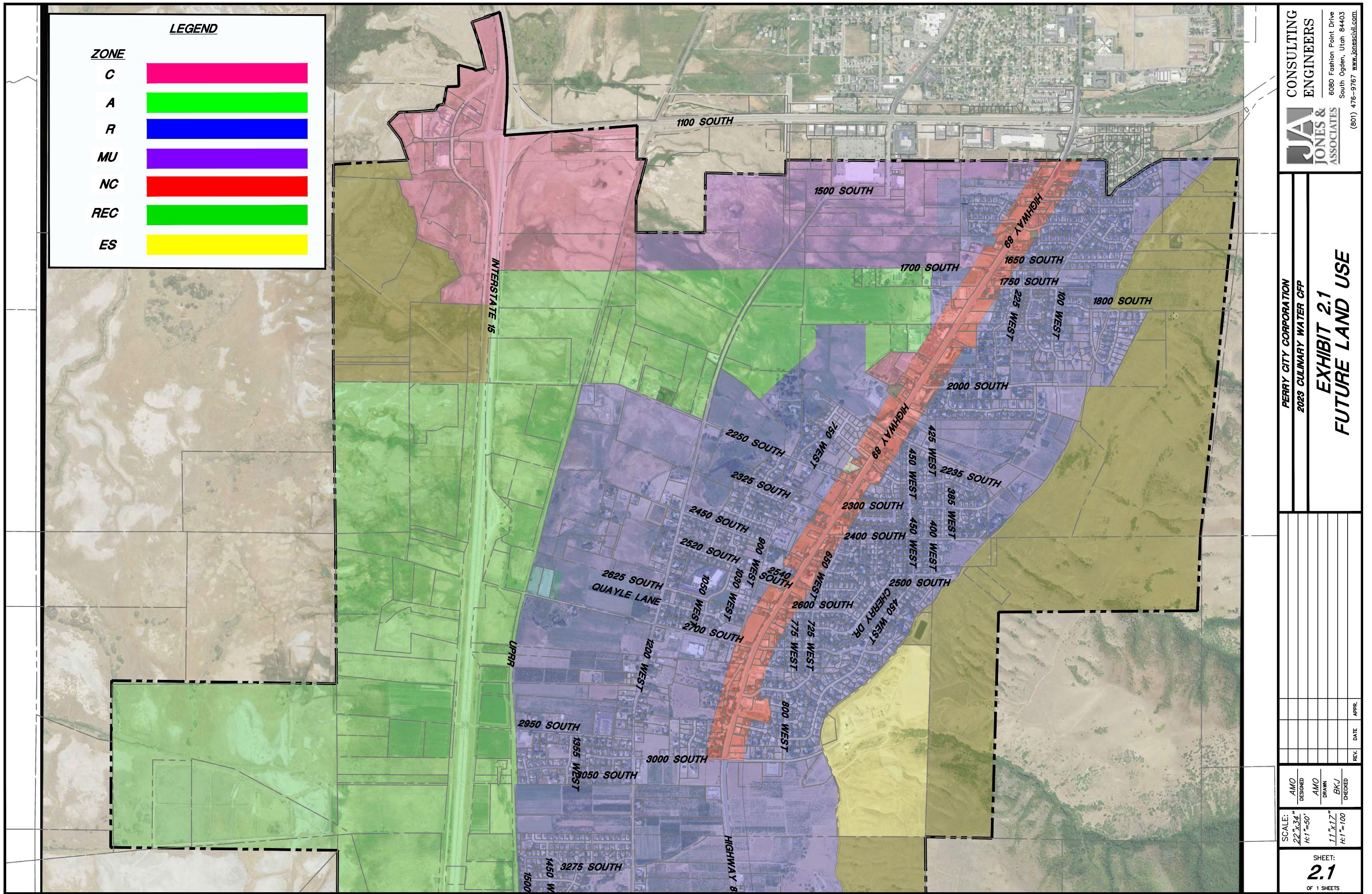
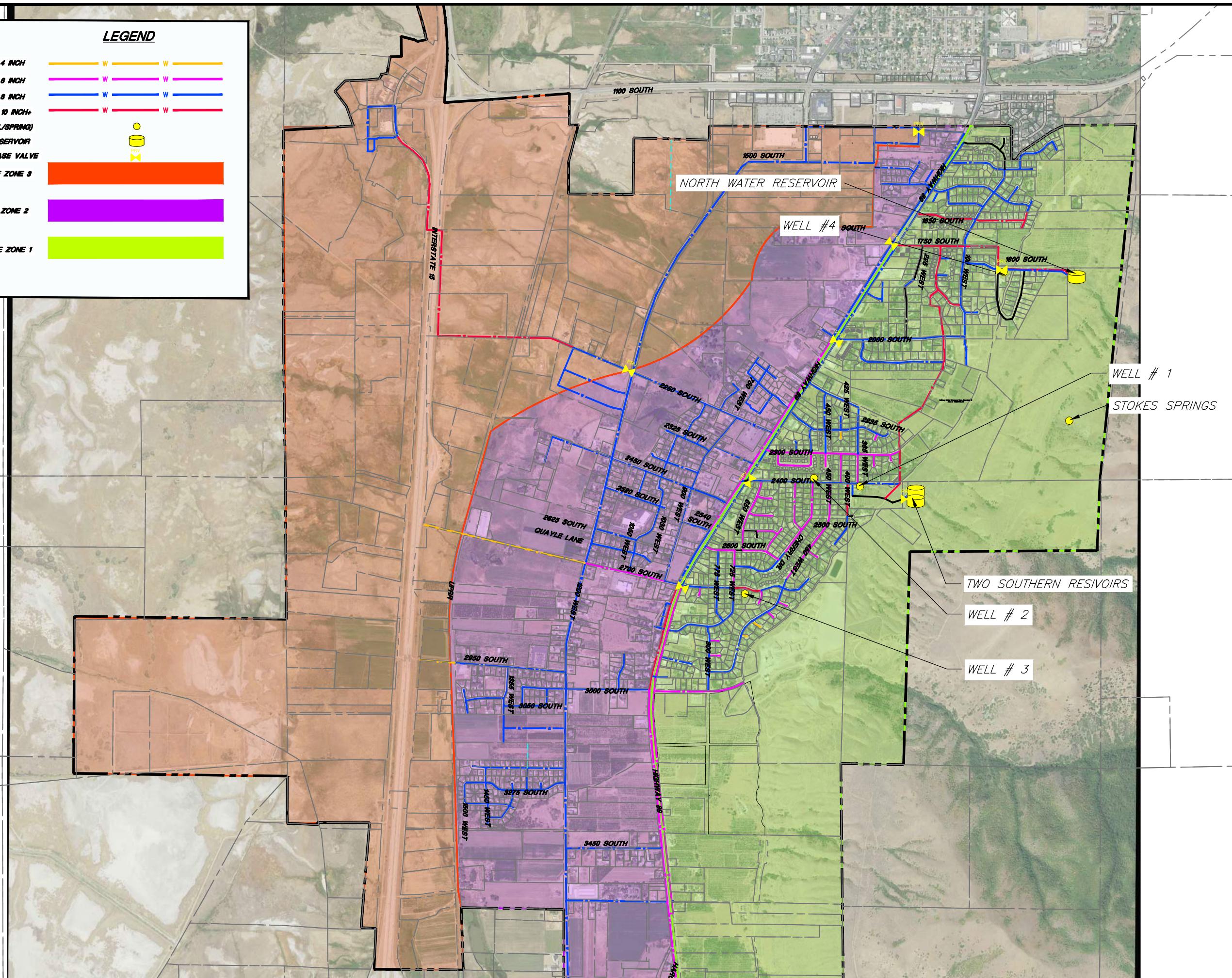

A summary of these projections is shown in Table 2.6.2.

Table 2.6.2. Population and ERC Projections

Year	Population Projection	Annual Growth Rate	Projected Total ERCs
2020*	5,555*	-	1,740*
2030	7,900	42.2%	2,469
2040	10,350	31.0%	3,234
2050	13,200	27.5%	4,125
2060	16,400	24.2%	5,125
2070	20,100	22.6%	6,281
2080	24,150	20.1%	7,547
2093 (Build Out)	29,680	22.9%	9,275

*Actual data


Based on the projections, the City will reach its “build-out” condition around 2093, meaning that no more land is available for development. (This does not take into consideration higher density redevelopment.) **Total build-out of 9,270 ERCs is estimated in 2093**, as commercial growth can be quite slow. Due to changes in the economy, land use, and growth rate, it is recommended that this Plan be reviewed and updated every five (5) to seven (7) years.

LEGEND

4 INCH	W W W
6 INCH	W W W
8 INCH	W W W
10 INCH	W W W
SOURCE (WELL/SPRING)	●
RESERVOIR	●
PRESSURE RELEASE VALVE	■
PRESSURE ZONE 3	■
PRESSURE ZONE 2	■
PRESSURE ZONE 1	■

EXISTING WATER SYSTEM EXHIBIT 2.2

JONES & ASSOCIATES
CONSULTING
ENGINEERS

6000 Fashion Point Drive
South Ogden, Utah 84403
(801) 476-9767 www.jonescivil.com

PERRY CITY CORPORATION

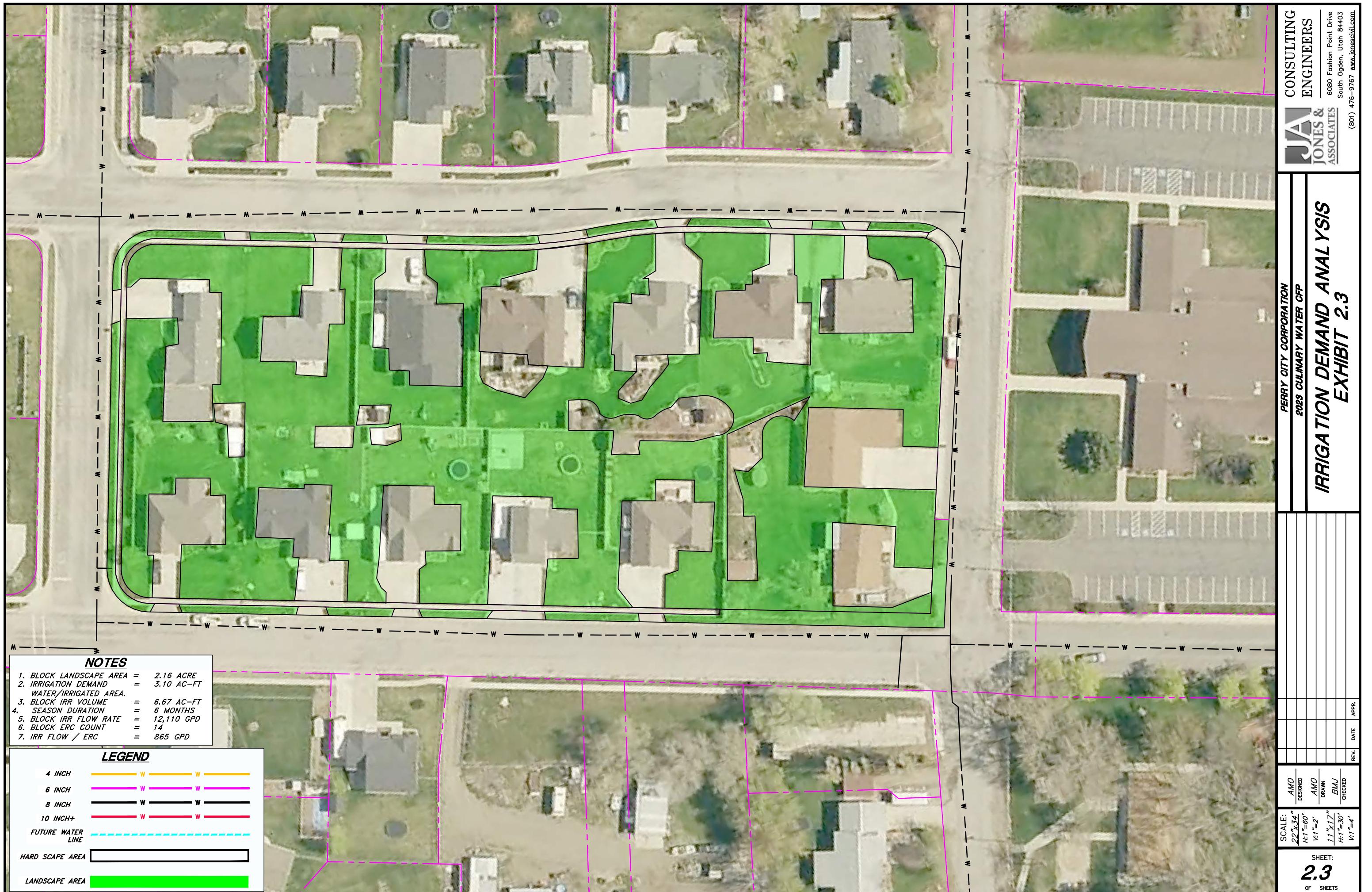

2023 CULINARY WATER OFF

EXHIBIT 2.2

SCALE: 22" x 34" H:1" = 50'	AMO DESIGNED	AMO DRAWN BY	AMO CHECKED	REV. DATE APR.
1.1" x 17" H:1" = 100				

2.2

OF 1 SHEETS

3. WATER SOURCES

3.1 Water Source Requirements

In this section, Perry's water sources will be evaluated per the average day, peak day, and irrigation values mentioned in the Tables 3.2 and 3.2.5. Values will be used concurrently with the *Utah Administrative Code R309-510-7* which states that sources shall legally and physically meet water demands under two conditions:

- (a) *The water system's source capacity shall be able to meet the anticipated water demand on the day of highest water consumption, which is the peak day demand (550 gpd/ERC).*
- (b) *The water system's source capacity shall also be able to provide one year's supply of water, which is the average yearly demand (87,600 gal/ERC).*

The values shown are the sizing requirements used for determining the adequacy of water sources.

3.2 Emergency Water Source

In recent years, Perry City has become familiar with the need for source emergency preparation due to unexpected source contamination, source reliability, and pump failure interruptions of service. Due to these experiences, it is in good judgement that emergency source procedures also be considered in this Capital Facilities Plan. Due to the vastly different system conditions from city to city, the State allows for each city to determine an emergency plan for their system. Perry City's approach to ensure system reliability in the event of an emergency is to consider system requirements in the event in which the highest producing source is not able to contribute to the system capacity and physically meet water demands under two conditions:

- (a) *The water system's source capacity shall be able to meet the anticipated water demand on the day of highest water consumption, which is the peak day demand (550 gpd/ERC).*
- (b) *The water system's source capacity shall also be able to provide one year's supply of water, which is the average yearly demand (87,600 gal/ERC)*

Well #3 is Perry City's highest contributing water source. To account for the emergency scenario, Well #3 will be removed as a contributor for the analysis of both peak day demand and average day demand. Table 3.2 shows the capacity information of Well #3, all other tables in this report will reflect Well #3 as a non-contributing source of physical water. The well's water right quantity is still reflected as a contributor since the city can still rely on the approved quantity when replacing a malfunctioning well.

Table 3.2a - Well #3 Excluded System Capacity

Name of Source	Priority Date	Water Right Use	Water Right No.	Certificate No.	Flow (cfs)	Approved Quantity (ac-ft/yr)	Actual Production (ac-ft/yr)
Well #3	7-8-1950	Municipal	29-1017	-	0.96	695	726

Table 3.2b Well #3 Excluded System Capacity

Source	Maximum Source Production Rate		Allowable Source Production Rate	
	GPM ²	MGD ¹	GPM	MGD
Well #3	900	0.65	430	0.62

3.3 Existing Water Source Available Capacity

Perry obtains its water from five (5) sources: four (4) potable water wells and one (1) spring. Table 3.2 shows a breakdown of the current culinary water sources as of July 2023 and their respective state recorded water right quantity. The water right quantity is only a reflection of a source's legal permissible water amount determined by the Division of Drinking Water. Table 3.2b shows a breakdown of the maximum production of each source based on recently recorded data. Maximum production is an accurate reflection of the City's system capacity of water physically available for consumption.

The following subsections provide a more in-depth description of each source and their contribution potential to Perry City's culinary water system.

Distribution of water in the city is done by pipe, and excess water is stored in three (3) storage tanks located along the East Bench foothills. Due to variations of elevation throughout the system it is divided into three (3) pressure zones separated by seven (7) PRVs' providing a minimum level of service as described in section 5.

Table 3.3a. Existing Water Source Capacity

Name of Source	Priority Date	Water Right Use	Water Right No.	Certificate No.	Flow (cfs)	Approved Quantity (ac-ft/yr)	Maximum Production (ac-ft/yr)
Well #1	1929	Municipal	29-162	251564	0.55	398	0
Well #2	3/7/1936	Municipal	29-1192	251563	0.89	644	363
Well #3	7/8/1950	Municipal	29-1017	-	0.96	695	**0
Well #4	6/30/1996	Municipal	29-3728	-	2.00	*500	726
Stokes Springs	1897	Municipal	29-2869	-	0.29	210	32
						TOTAL	2,447
¹ As of 2023							

²*Limited Water Right Quantity

³ **Emergency condition applied (see section 3.2)

Table 3.3. Existing Water Source Production

Source	** Maximum Source Production Rate		*Allowable Source Production Rate	
	GPM ²	MGD ^{1,3}	GPM	MGD
Well #1	0	0	247	0.36
Well #2	450	0.32	400	0.58
Well #3	***0	***0	430	0.62
Well #4	900	0.65	310	0.45
Stokes Spring	40	0.03	130	0.19
Totals	1390	1.00	1,517	2.18

¹ *Water Right Capacity.

² **Production Capacity.

³ Runtime of Pump Estimation = 12-hr/day

⁴ ***Emergency condition applied (See section 3.2).

3.3.1 Well # 1

Well #1 is located at the intersection of 380 West and 2400 South and pumps directly into Zone 1 of the distribution system. Ownership of the water rights of this well was provided in 1935 and the well was in operation until 2022. The well was originally rated to pump at a maximum flow rate of approximately 373 gpm. The annual production for the well is limited by the water right, which allows an annual withdrawal from the well of 398-acre feet (0.355 MG/year or 247 gpm if pumped continuously). Historically, the city has only been using about 161 ac-ft from the well annually. Currently Well #1 has a source contamination and Perry is in the planning stage of relocating the well.

3.3.2 Well #2

Well #2 is located at the intersection of Cherry Drive and 2400 south and pumps directly into Zone 1 of the distribution system. Water rights were appropriated to Perry in 1956, for a pump rate of 700 gpm. The allowable annual flow rate for the well is approximately 644-acre ft (0.575 MG/year or 400 gpm). In recent years, Perry has been using about 363 acre-ft (0.324 MG/year or 225 gpm.)

3.3.3 Well #3

Well #3 is the highest producing well in the city. It is located at the intersection of 725 West and 2700 South. The well was originally appropriated in 1950 for a pump rate of approximately 3 acre-ft per acre irrigated, originally intended for agricultural use. Today the City maintains water rights for the well for 695 acre-ft (0.575 MG/year or 430 gallons/minute). On average, Perry City pumped 726 ac-ft/year of physical water to meet current demands. The overall allowable withdrawal flow rate allowed by the well's water right is exceeded by the production use of the well but is balanced using other municipal water rights associated with other city owned well not exceeding their water right allowable flow.

3.3.4 Well #4

Well #4 is the second highest production well in the City. Well #4 is located at 100 West and 1800 South. Originally appropriated in the year 1996 for a total allowable volume of 500 acre-ft. On average, Perry pumps to 726-ac-ft/year, exceeding the water right's allowable use but is balanced using other municipal water rights associated with other city owned wells not exceeding their water right allowable flow.

3.3.5 Stokes Spring

Stokes Spring is located on the Eash Bench foothill of Perry. The spring is a small contributor to the overall water production in Perry. The water right for the Spring was appropriated in 1897 for an overall value of 0.29 cubic foot per second which equates to approximately 210 acre-ft/year. On average, the spring contributes a quantity of 32 acre-ft/year to the city culinary system (0.0288 MGD or 20 gpm.)

3.4 Peak Day Demand

3.4.1 Existing Conditions

As described in Section 3.1 and 3.2, the water system's source capacity must be able to meet the anticipated water demand on the day of highest water consumption, which is the peak day demand (550 gpd/ERC) with the consideration of an emergency condition, in which, the highest producing source is not available at the time of the peak day period. With this consideration Well #3 has been reflected as a non-contributing water source of physical water to the water system.

The city is currently compliant in providing enough source for current connections to meet peak day demand, See Table 3.4.1.

Table 3.4.1. Existing Peak Day Demand and Supply

Year	Existing ERCs	Source Requirement (GPD/ERC)	Peak Day Demand ² (MGD)	Maximum Source Production Rate ¹ (MGD)
2022	1,740	550	0.956	1.00*

¹As of December 2023

²ERCs x 550 gpd/ERC ÷ 1,000,000 gal/MG

³Emergency Source Condition applied (see section 3.2)

3.4.2 Future Indoor Only Scenario

When Perry progresses to build-out, the system will require approximately 5.10 MGD of source capacity to meet the peak day demand, as shown in Table 3.4.2. The current maximum source production rate is 1.00 MGD. The future need will require an additional 4.10 MGD to meet the build-out peak day demand in 2093. The City's growth will require the construction of at least six (6) additional wells (500 gpm minimum with a runtime time of 24 hours) to meet build-out peak day demands. In the next ten years, if population growth trends continue, the peak day demand will require an additional well. The city is currently taking steps toward securing an additional well to meet the growing demand.

Table 3.4.2. Projected Peak Day Demand and Supply

Year	Projected ERCs	Projected Peak Day Demand ¹ (MGD)	Maximum Source Production Rate ² (MGD)
2030	2,469	1.36	1.72
2040	3,234	1.78	2.44
2050	4,125	2.27	2.44
2060	5,125	2.82	3.16
2070	6,281	3.45	3.88
2080	7,547	4.15	4.60
2093 (Build Out)	9,275	5.10	5.32

¹ERCs x 550 gpd/ERC ÷ 1,000,000 gal/MG

²Includes 3 Existing Sources & 6 Future Wells @ 500 GPM

3.4.3 Future Outdoor/Indoor Use Scenario

Perry City currently limits irrigation off the culinary water system to a few of their users. Due to this condition, this study only considers irrigation demand for future development. This study evaluated the number of single-family ERC and the non-single family ERC equivalents connected to the water system. The analysis determined that the city provides indoor use water supply to approximately 1,740 ERCs as of the year 2022.

Thus, if all the additional connections to the culinary water system to build out included irrigation on the peak day, then total system peak day demand at build out would be 11.8 MGD. At this demand, the construction of at least fifteen (15) additional wells with a minimum production capacity of 500 gpm at a runtime of 24 hours would be required to sustain the peak daily demand. Table 3.4.3 provides a breakdown of the peak day demand as population grows and how much source production the city will need to provide to meet the peak day demand use.

It is anticipated that not all developers and home builders opt to use culinary water as a source for irrigation use. However, for the purpose of this analysis it is conservatively assumed that all future connections will include outdoor use.

Table 3.4.3. Projected Peak Day Demand and Supply

Year	Current ERC No Irrigation	Projected ERCS	Peak Day Demand No Irrigation	Peak Day Demand w/ Irrigation (MGD)	Projected Peak Day Demand ¹ (MGD)	Maximum Source Production Rate ² (MGD)
2030	1,740	729	1.0	1.0	2.0	2.4
2040	1,740	1,494	1.0	2.1	3.1	3.2
2050	1,740	2,385	1.0	3.4	4.4	4.6
2060	1,740	3,385	1.0	4.8	5.8	6.0
2070	1,740	4,451	1.0	6.4	7.4	7.5
2080	1,740	5,807	1.0	8.2	9.2	9.6
2093 (Build Out)	1,740	7,535	1.0	10.6	11.6	11.8

¹ERCS x 1425 gpd/ERC ÷ 1,000,000 gal/MG

²Includes 3 Existing Sources & 15 Future Wells @ 500 GPM

3.5 Average Yearly Demand

3.5.1 Existing Conditions

Another system requirement for compliance is that the water source maximum capacity must be able to provide for the average yearly demand of the City. The system's sources were evaluated by determining if the maximum source production capacity meets the existing water demand. Table 3.5.1 below shows the tabulation of average yearly demand based on the criteria in section 1, which shows a demand rate of 87,600 gal/ERC/yr (0.269 ac-ft/ERC) multiplied by the total number of existing ERC's. Based on the evaluation, it was determined that the City has approximately 1,980 ac-ft of excess capacity in its annual source. Thus, the City is currently compliant in meeting the average day demand.

Table 3.5.1. Existing Water Source Required Capacity

Year	¹ Existing ERCS	Average Day Requirement (ac-ft/ERC/yr)	Required Source Capacity (ac-ft/yr)	Maximum Source Capacity (ac-ft/yr)
2022	1,740	0.269	468	1121

¹ As of December 2022

3.5.2 Future Indoor Use Only Scenario

As the City grows, the current source capacity for indoor average yearly demand must be evaluated for projected ERC. The system was evaluated by multiplying the average yearly demand of 0.269 ac-

ft/ERC/YR to the projected ERCs as estimated. This calculation shows that the system build-out demand is approximately 2494 ac-ft/yr.

The City's current water right allowable capacity is 2447 acre-ft. The projected build out system demand requires an additional 53 acre-ft of water right to be attained by the City prior to the year 2093.

To estimate the total water right requirement schedule for build out, an evaluation of the proposed future wells system capacity contribution was completed. The analysis evaluates the proposed wells required to sustain the peak day demand. Each future well added to the system has an anticipated maximum capacity for instantaneous flow of 500 gpm see section 3.4. However, for the average day demand, the required daily pump runtime for each additional well is 6.8 hours a day. Table 3.5.2 reflects the contribution of each well to the overall system average day capacity through the years they are proposed and scheduled in section 3.4.

Table 3.5.2. Projected Average Yearly Demand and Supply

Year	Projected ERC	Source Req (ac/ft/yr)	Projected Source (ac-ft/yr)						
			Well #1	Well #2	Well #3	Well #4	Stokes Spring	Future Wells	Total
2030	2,469	664	0	363	0*	726	32	230	1,351
2040	3,234	869	0	363	0*	726	32	230	1,351
2050	4,125	1,109	0	363	0*	726	32	460	1,581
2060	5,125	1,378	0	363	0*	726	32	690	1,811
2070	6,281	1,689	0	363	0*	726	32	920	2,040
2080	7,547	2,029	0	363	0*	726	32	920	2,040
2093 (Build Out)	9,270	2,494	0	363	0*	726	32	1,380	2,500

3.5.3 Future Indoor/Outdoor Use Scenario

System evaluation of an indoor/outdoor use for projected ERC demand considered that outdoor use would be limited to a six-month season from April to September. Indoor use would be consistent all year long. Therefore, demand for the months of April to September

Demand was tabulated by summing the demand needed for twelve months of indoor use (0.269 ac-ft/ERC/yr) and six months of outdoor use (1.24 ac-ft/ERC/yr.). Only future ERC irrigation demand was placed upon the system. The results of this analysis for the years 2030 to 2093 (build out) are provided in Table 3.5.3.

The scenario to build out results in an overall irrigation demand requirement of an additional 5,059-acre ft.

This evaluation provides a comparison of “paper water”/water rights and future water needs and does not speak to the true capacity of the wells’ system. If the wells are unable to provide the water yield needed to meet system compliance, then new water source will need to be acquired.

Table 3.5.3. Projected Average Yearly Demand and Supply

Year	Current ERCs'	Project ERC	Projected Demand (ac-ft/year)	Projected Source (ac-ft/yr)						
				Well #1	Well #2	Well #3	Well #4	Stokes Spring	Future Wells ¹	Total
2030	1,740	729	1,566	0	363	*0	726	32	807	1,928
2040	1,740	1,494	2,719	0	363	*0	726	32	2,420	3,541
2050	1,740	2,385	4,061	0	363	*0	726	32	3,226	4,347
2060	1,740	3,385	5,568	0	363	*0	726	32	4,839	5,960
2070	1,740	4,541	7,309	0	363	*0	726	32	6,452	7,573
2080	1,740	5,807	9,217	0	363	*0	726	32	8,065	9,186
2093 (Build Out)	1,740	7,535	11,820	0	363	*0	726	32	12,098	13,219

¹. Water Rights Required for Future Growth

3.6 Other Water Source Needs

As described in Section 2.1, the State has mandated that water systems determine their own minimum sizing requirements either by submitting data to the State or by performing an engineering study. The city entered into a Corrective Action Agreement (CAA) with the Division of Drinking Water. The CAA specifies a March 2024 deadline to submit an engineering study for their review and approval.

Additional water source needs will be identified in the engineering study.

3.7 Future Water Sources

From the analysis provided in this section it is evident that Perry City's population growth will require additional water rights and water capacity to meet the City's needs. If the system provides water for indoor use only, future build out will require an additional six (6) wells / pump stations with an instantaneous flow rate of 0.72 MGD for the peak day required demand. Also, the City will need an additional 53 acre-ft to maintain their yearly average source capacity. Table 3.6.1 shows a breakdown of the required wells and water rights needed as the City grows.

Table 3.6.1. Indoor Use Only Additional Water Right and Capacity

Future Well #	Instantaneous Capacity (MGD)	Additional Water Rights Required (AC-FT / YR)	Total Water Rights Cumulative (AC-FT/YR)	Year Required
5	0.72	0	2447	2030
6	0.72	0	2447	2040
7	0.72	0	2447	2060
8	0.72	0	2447	2070
9	0.72	0	2447	2080
10	0.72	53	2500	2093
Total	4.32	53		

The addition of irrigation to indoor use creates a significant increase in water need. Fifteen (15) additional wells/pump stations are required to meet the future peak day demand. An additional 2,612 acre-ft of water rights are also required. Table 3.6.2 1 shows a breakdown of the required wells and water rights needed as the City grows.

Table 3.6.2. Indoor/Outdoor Use Additional Water Right and Capacity

Future Well #	Instantaneous Capacity (MGD)	Additional Water Rights Required (AC-FT / YR)	Total Water Rights Cumulative (AC-FT/YR)	Year Required
5	0.72	0	2,447	2030
6	0.72	770	3,217	2030
7	0.72	770	3,987	2040
8	0.72	770	4,757	2050
9	0.72	770	5,527	2050
10	0.72	770	6,297	2060
11	0.72	770	7,067	2060
12	0.72	770	7,837	2070
13	0.72	770	8,607	2070
14	0.72	770	9,377	2080
15	0.72	770	10,147	2080

16	0.72	770	10,917	2080
17	0.72	770	11,687	2093
18	0.72	770	12,457	2093
19	0.72	762	13,219	2093
Total	10.8	10,772		

3.8 Projects

A summary of the projects needed for water source compliance is provided in this Section, Section 4, and Section 6.

3.8.1 Indoor Use Only

The following projects are the recommended projects for source capacity to build out in the indoor use only scenario and are in order of recommend priority:

Project #	Project	Description/Purpose	Year Required
1	Nielson Well Rehabilitation (Well # 5)	Rehabilitate well and connect back to the system.	2030
2	Anderson Well Relocation Well # 1 (Well #6)	Rehabilitate well and connect back to the system, or seek another well location to replace this well.	2040
3	South Bench Well #7 & Pump station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2060
4	Future Well # 8 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2070
5	Future Well # 9 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2080
6	Future Well #10 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2093

Outdoor/Indoor Use

The following projects are the recommended projects for source capacity to build out in the Indoor/Outdoor use scenario. Projects 1 through 4 are the same projects as found in Section 3.7.1 as each contributes to the source capacity deficiency.

Projects are in order of recommend priority:

Project #	Project	Description/Purpose	Year Required
1	Nielson Well Rehabilitation Well # 5	Rehabilitate well and connect back to the system.	2030
2	Anderson Well Relocation Well # 1 (Well #6)	Rehabilitate well and connect back to the system, or seek another well location to replace this well.	2030
3	South Bench Well #7 & Pump station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2040
4	Future Well # 8 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2050
5	Future Well #9 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2050
6	Future Well #10 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2060
7	Future Well #11 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2060
8	Future Well #12 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2070
9	Future Well #13 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2070
10	Future Well #14 & Pump Station	New well and pump station for future ERC use. (550 GPM instantaneous Demand Req for PDD)	2080
11	Future Well # 15 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2080
12	Future Well # 16 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2080

13	Future Well # 17 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2093
14	Future Well # 18 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2093
15	Future Well # 19 & Pump Station	New well and pump station for future ERC use. (500 GPM instantaneous Demand Req for PDD)	2093

4. WATER STORAGE

4.1 Water Storage Requirements

This Capital Facilities plan evaluates the City's storage requirements in correlation with the associated flow rates, and storage requirements, water data from 2018 through 2019 and Utah Administrative Code R309-510-8:

Each public water system, or storage facility serving connections within a specific area, shall provide:

- (a) equalization storage volume, to satisfy average day demands for water for indoor use and irrigation use,*
- (b) fire flow storage volume, if the water system is equipped with fire hydrants intended to provide fire suppression water or as required by the local fire code official, and*
- (c) emergency storage, if deemed appropriate by the water supplier or the Director.*

Based on Table 510-4 of the aforementioned rule, 240 gpd/ERC is the required indoor equalization storage flow rate for indoor use only water demand. The indoor/outdoor use scenario has an equalization storage flow rate of 1105 gpd/ERC for outdoor use and 240 gpd/ERC for indoor use.

Fire flow storage is equal to the largest fire flow demand as determined by the local fire authority. The largest fire flow need is at the Walmart facility (1200 South Commerce Way) with a requirement of 4,000 gpm for 60 minutes, which equates to 240,000 gallons. The rest of this Section evaluates the ability of current and future infrastructure to meet or exceed current and future needs.

4.2 Emergency Water Storage

Emergency water storage for a city is imperative due to the inherent unpredictability of natural and man-made disasters that can disrupt regular water supply systems. In Perry, being able to prevent water shortages is an essential part of the level of service the City aims to provide. Due to the unique challenges that City water systems face throughout the state, the State allows each city to determine the adequate emergency storage amount for their city. Perry City finds the most likely and worst-case scenario to be a major fire on a peak water use day. Due to this concern, this report will reflect the storage requirements of holding the peak day volume and maintaining the required fire flow storage as mentioned in section 4.1. Table 4.2 shows the current full amount of the Peak Day Storage plus fire flow. Emergency storage will be the difference between the full peak day and the required equalization storage as shown in sections 4.4 to 4.6.

Table 4.2. Existing Emergency Water Storage Analysis

Year	Existing ERCs	Peak Day Storage Volume (MG)	Required Storage - Equalization - (MG)	Required Storage - Fire Flow - (MG)	Total Emergency Storage (MG)
2022	1,740	0.96	0.425	0.24	0.54

Table 4.2.1. Projected Emergency Storage Analysis (Indoor Use Only)

Year	Projected ERCs	Peak Day Storage Volume (MG)	Required Storage - Equalization - (MG)	Required Storage - Fire Flow - (MG)	Total Emergency Storage (MG)
2030	2,469	1.36	0.59	0.24	0.77
2040	3,234	1.78	0.78	0.24	1.00
2050	4,125	2.27	0.99	0.24	1.28
2060	5,125	2.82	1.23	0.24	1.59
2070	6,181	3.45	1.51	0.24	1.95
2080	7,547	4.15	1.81	0.24	2.34
2093 (Build Out)	9,270	5.10	2.23	0.24	2.88

Table 4.2.2. Projected Required Storage Capacity (Outdoor/Indoor)

Year	Current ERC (Non-Irr)	Projected ERCs (W/ IRR)	Peak Day Storage Volume (MG)	Required Storage - Equalization - (MG)	Required Storage - Fire Flow - (MG)	Total Emergency Storage (MG)
2030	1,740	729	2.0	1.2	0.24	0.77
2040	1,740	1,494	3.1	2.1	0.24	1.00
2050	1,740	2,385	4.3	3.1	0.24	1.28
2060	1,740	3,385	5.8	1.2	0.24	1.59
2070	1,740	4,541	7.4	5.4	0.24	1.95
2080	1,740	5,807	9.2	6.8	0.24	2.34
2093 (Build Out)	1,740	7,535	11.6	8.7	0.24	2.88

4.3 Existing Water Storage

The water system operates three (3) pressure zones. Zones are provided so that pressure can be more evenly distributed. All of the tanks are located along the east bench foothills in Zone 1. The distribution

system is constructed in a way that tanks can provide pressure to Zone 2 and Zone 3 from the tanks along the bench in Zone 1. Reductions of pressure are made possible by pressure reducing valves (PRVs) strategically placed to maintain pressure zones.

Exhibit 2.2 Existing Water System, illustrates the locations of the City's water storage reservoirs. Table 4.2 below lists the reservoirs' capacities.

Table 4.2. Existing Water Storage

Name	Location	Capacity (gal)
East Bench Reservoir I (North)	Near 1800 South	1,000,000
East Bench Reservoir II (South)	Near Allen Street	300,000
East Bench Reservoir III (South)	Near Allen Street	350,000
Total		1,650,000

4.4 Existing Requirements

The water system must contain capacity for both equalization storage and fire storage. Currently, equalization storage is defined at 240 gpd/ERC. The fire demand is 4,000 gpm for 60 minutes, resulting in a fire storage volume of 240,000 gal. Table 4.3 below summarizes the total required storage of 0.54 MG. The City has 1.65 MG of storage capacity and is currently compliant in providing equalization and fire storage.

Table 4.3. Existing Water Storage Required Capacity

Year	Existing ERCs	Required Storage --Equalization -- (MG)	Required Storage -- Fire Flow -- (MG)	Emergency Storage (MG)	Total Required Storage (MG)
2022	1,740	0.425	0.24	0.54	1.20

4.5 Future Requirements

4.5.1 Indoor Use Only Scenario

As the City grows, the storage capacity must be able to accommodate the equalization, fire, and emergency storage water demands for all residents for one day. Fire storage is anticipated to remain constant throughout the years unless future attractions cause greater fire storage need, see section 4.1. The equalization demand for indoor use is the average day demand of 240 gpd/ERC for one day.

Emergency storage has been sized for the difference between the Peak Day demand (550 gpd /ERC) and average day demand for one day.

Table 4.4.1 shows the storage amount for equalization, fire, and emergency storage through the years as population is anticipated to increase. The summation of these storage demands is the total storage requirement for the City to provide its ideal level of service. Currently the city provides 1.65 MG of total storage. At Build out the the City will need to increase storage capacity from 1.65 MG to 5.34 MG.

Table 4.4.1. Projected Required Storage Capacity (Indoor Use Only)

Year	Projected ERCs	Required Storage - Equalization - (MG)	Required Storage - Fire Flow - (MG)	Emergency Storage (MG)	Total Required Storage (MG)
2030	2,469	0.59	0.24	0.77	1.60
2040	3,234	0.78	0.24	1.00	2.02
2050	4,125	0.99	0.24	1.28	2.51
2060	5,125	1.23	0.24	1.59	3.06
2070	6,181	1.51	0.24	1.95	3.69
2080	7,547	1.81	0.24	2.34	4.39
2093 (Build Out)	9,270	2.23	0.24	2.88	5.34

4.5.2 Outdoor/Indoor Use Scenario

As a comparison scenario, the evaluation of indoor/outdoor use requires storage capacity of City tanks to meet the State's requirements for equalization, fire, and emergency storage. Introducing outdoor use as a scenario increases the total storage requirement. The equalization demand for indoor/outdoor use is an average day demand of 1105 gpd/ERC.

The current residences of Perry are not considered for outdoor use since they are currently receiving irrigation water from the Pineview Water System. The total ERC count for non-outdoor use consideration is 1740 ERC, as of July 2023. The total storage amount needed to satisfy the demand at build out in this scenario is 11.84 MG of storage. The City currently has 1.65 MG of storage and needs **10.2 MG additional storage at the time of build out.**

Table 4.4.2. Projected Required Storage Capacity (Outdoor/Indoor)

Year	Current ERC	Projected ERCs	Required Storage - Equalization - (MG)	Required Storage - Fire Flow - (MG)	Emergency Storage (MG)	Total Required Storage (MG)
2030	1,740	729	1.2	0.24	0.8	2.24
2040	1,740	1,494	2.0	0.24	1.0	3.24
2050	1,740	2,385	3.0	0.24	1.3	4.54
2060	1,740	3,385	4.2	0.24	1.6	6.04
2070	1,740	4,541	5.4	0.24	2.0	7.64
2080	1,740	5,807	6.8	0.24	2.3	9.44
2093 (Build Out)	1,740	7,535	8.7	0.24	2.9	11.84

4.6 Projects

4.6.1 Indoor Use Only

The following projects are the recommended projects for storage capacity to build out in the indoor use only scenario and are in order of recommended priority:

Project #	Project	Description/Purpose
1	3200 S South Bench Tank (1.25 MG tank)	This tank will provide additional storage to meet build-out demand. Additionally, it can be built at a higher elevation to help with pressures of homes along the East Bench foothills.
2	1750 South Tank II (1.25 MG tank)	Additional tank located in the northeastern foothills of the City to provide pressure for build-out demand.
3	New Tank Project (1.25 MG tank)	Additional tank located in the City to provide pressure for build-out demand.

4.6.2 Outdoor Use / Indoor Use

The following projects are the recommended projects for storage capacity to build out in the Indoor/Outdoor use scenario. Project 1 and project 2 are the same projects as found in Section 4.5.1, however, the quantity of volume provided differs from those shown in the table below.

Projects are in order of recommend priority:

Project #	Project	Description/Purpose
1	3200 S South Bench Tank (0.85 MG tank)	This tank will provide additional storage to meet build-out demand. Additionally, it can be built at a higher elevation to help with pressures of homes along the East Bench foothills.
2	1750 South - Tank (1 MG)	Additional tank further Northeastern foothills of the City the needed storage for build-out demands and can provide pressure for home on the northeast foothills.
3	Southeast Bench Tank 1.5 MG)	New tank for future additional future storage.
4	New Tank Project (1.0 MG tank)	Additional tank located in the city to provide pressure for build-out demand.
5	New Tank Project (2 MG tank)	Additional tank located in the City to provide pressure for build-out demand.
6	New Tank Project (1.5 MG tank)	Additional tank located in the City to provide pressure for build-out demand.
7	New Tank Project (2.5 MG tank)	Additional tank located in the City to provide pressure for build-out demand.

5. WATER DISTRIBUTION SYSTEM REQUIREMENTS

5.1 Pressure Zones

Pressure zones play a vital role in maintaining the water distribution system, providing water quality, fire protection, system efficiency, and customer satisfaction. Perry City maintains three (3) pressure zones, with three (3) water tanks, and seven (7) pressure release valves (PRV). All three of the City's water tanks are in Zone 1 along the East Bench Foothills. Water is distributed from Zone 1 to Zones 2 and 3 respectively and circulated with water lines looping throughout the City. In this report, service pressure will be evaluated for scenarios of high demand like peak day, peak hour, and peak day plus a fire scenario. Each scenario will require a minimum pressure service for all residents within each demand requirement.

5.2 Minimum Sizing

Utah Administrative Code sections R309-105 and R309-510-9 describe the minimum requirements that a public water distribution system must meet.

Specifically, R309-105-9 discusses minimum water pressures under specific conditions:

- (1) *Unless otherwise specifically approved by the Director, no water supplier shall allow any connection to the water system where the dynamic water pressure at the point of connection will fall below 20 psi during the normal operation of the water system. Water systems approved prior to January 1, 2007, are required to maintain the above minimum dynamic water pressure at all locations within their distribution system. Existing public drinking water systems, approved prior to January 1, 2007, which expand their service into new areas or supply new subdivisions shall meet the minimum dynamic water pressure requirements in R309-105-9(2) at any point of connection in the new service areas or new subdivisions.*
- (2) *Unless otherwise specifically approved by the Director, new public drinking water systems constructed after January 1, 2007 shall be designed and shall meet the following minimum water pressures at points of connection:*
 - (a) *20 psi during conditions of fire flow and fire demand experienced during peak day demand.*
 - (b) *30 psi during peak instantaneous demand; and*
 - (c) *40 psi during peak day demand.*
- (3) *Individual home booster pumps are not allowed as indicated in R309-540-5(4)(c).*

R309-510-9 references the above and goes on to discuss the peak instantaneous demand for indoor and irrigation use and fire flow.

5.3 Fire Flow Requirements

As of the date of this study, Perry City has adopted the 2018 International Fire Code. The Fire Code states:

SECTION B105 FIRE-FLOW REQUIREMENTS FOR BUILDINGS

B105.1 One- and two-family dwellings.

The minimum fire-flow requirements for one- and two-family dwellings having a fire-flow calculation area which does not exceed 3,600 square feet (344.5 m^2) shall be 1,000 gallons per minute (3785.4 L/min). Fire-flow and flow duration for dwellings having a fire-flow calculation area in excess of 3,600 square feet (344.5 m^2) shall not be less than that specified in Table B105.1.²

Generally, residences are under 3,600 square feet and require a fire flow of 1,500 gpm to provide two hours of firefighting capability. Residences larger than 3,600 square feet shall be evaluated by the Fire Marshall and the flow established on a case-by-case basis.

5.4 Existing Water Distribution System

Using EPANet, the existing water system model was updated based on recent development and projects and new usage data for some of the non-residential users. The analysis section provides an explanation of the modeling requirements and procedures that were used to determine system deficiencies as they are today. This analysis was then used in comparison with the future water distribution system's analysis in Section 5.4, to determine which projects, if any, might be completed by future development.

5.4.1 Analysis

The model was run for average day demand ($240\text{ gpd}/\text{ERC} = 0.27\text{ gpm}/\text{ERC}$). The results showed that the pressure does not fall below 60 psi anywhere in the distribution system, except for model demand nodes located on the east bench foothills.

Next, the model analysis was run for each of the following scenarios as listed in R309-105-9(2):

- 1. Fire flow (1,500 gpm) in conjunction with peak day demand (550 gpd = 0.3819 gpm).** The result of the model showed several areas unable to meet the required fire flow at the minimum pressure (20 psi). The table below provides deficiency information for these areas.
- 2. Peak instantaneous demand was applied using a factor of 2 times peak monthly demand (2 x 360 gpd = 720 gpd = 0.500 gpm).** The only nodes that do not meet the minimum 30 psi pressure requirements were model nodes on the East Bench foothills in Perry, mainly nodes on 400 West.
- 3. Peak day demand was then applied to the model.** Like peak instantaneous demand, the nodes in the water model that reflect a pressure lower than the minimum value were found on the east bench foothills. Additionally, a few homes on Chateau Drive and Valley View Dr. were also unable to meet the 40-psi minimum required.

² * Table B105.1 of the International Fire Code shows that for a typical wooden frame construction type home that is 0 – 3600 square feet, a fire flow of 1,500 gpm for 2 hours is required. Table B105.1 is included in Appendix B.

5.4.2 Results

The results of the model showed that the worst-case scenario is fire flow plus peak day demand. This is because when the model is run, water demand nodes are set for peak day use (550 gpd) and applied to all applicable ERCs in conjunction with a 1,500-gpm fire flow. This scenario is modeled, in effect, to find where the system may fail below the minimum required pressure of 20 psi during a fire event. For Perry's model, distribution lines larger than 8" in diameter, that are looped, don't have any issues with providing the required amount of fire flow required by code. However, there are some areas of the City that do not sufficiently provide fire flow due to smaller diameter pipe sizes, dead ends, or low-pressure areas that reach the 20-psi minimum soon after flows start to increase limiting high flow amounts.

Appendix C contains a schematic of the water model as well as the output of the results of the peak day demand combined with a 1,500-gpm fire flow. The table below describes the areas which failed to meet the minimum pressure or fire flow:

Table 5.3.2. Existing Distribution System Deficiencies

Project #	Location	Failing Node(s)	Reason
1	2500 S (Cul-de-sac)	n495	FF = 640 gpm. Dead End 6" Line
3	2600 S	n97	FF = 1270 gpm. Update 6" Line.
4	2700 S (East Side Bench)	n32, n33, n92, n93, n94, n96, n212, n357	950<FF<1150 gpm. Homes in this location have substantially low pressure. They tend to reach 20 psi minimum before fire flow can be provided, this is due to their elevation in relation with the HGL of existing water tanks.
5	2700 S (West Side of 1200 West)	n212, n357	300<FF<310 gpm. Dead End 4" line.
6	2875 South Cul-de sac	n36, n73	FF = 1150 gpm. Dead end 8" line.
7	2950 S (West side of 1200 West)	n205, j24	600<FF<1200 gpm. Dead End 4" Line.
8	3000 S (East Side of 1200 West)	n430, n494, n516,	910<FF<1240 gpm. 6" Distribution line & PRV install needed across HWY 89.
9	3600S (Between HWY 89 & 1200 West)	n429	FF = 910 gpm. 6" Distribution loop and PRV install needed across HWY 89.
10	3600 S (East Side of HWY 89)	n449	FF = 870 gpm. 6" line and PRV install needed across HWY 89.

11	400 WEST (East Bench – Cul de Sac)	n26, n336	580<FF<640 gpm. Dead End 8" Line.
12	450 West (East Bench homes)	n30, n31, n46, n47, n48, n332, n333, n334, 1,2,3	330>FF>1200 gpm. Homes in this location have substantially low pressure. They tend to reach 20 psi minimum before fire flow can be provided, this is due to their elevation in relation with the HGL of existing water tanks.
13	725 West (East Bench Homes)	n88, n100, n192, n193	1150<FF<1270 gpm. 6" line loop. However, the greater issue is likely the low-pressure nodes in the area.
14	800 West (Cul de Sac)	n42, n44	FF = 1010 6" Dead end line and existing low pressure.
15	800 West (East Bench Homes)	n41, n42, n43, n44, n493	980<FF<1010 gpm. 8" Line Loop. However greater issue is likely the low-pressure nodes in the area.
16	<i>HWY 89 East Side (3450 South to Southern City Limit)</i>	n77, n78, j27,j43,j90	550<FF<830 gpm. Dead End 6" Line
17	<i>HWY 89 West Side (3000 S to Southern City Limit)</i>	n36, n37, n91, n339,89, n95	880<FF<1270 gpm. Dead end 6" Line
19	3600 South	j28, j27	<i>FF = 880 gpm. 6" main line & PRV install</i>
20	Valley View Dr.	n235, n447	1010 <FF<1070 gpm. Dead End 8" line.

5.4.3 Water Main Pipe Size Minimum

Almost one third of the existing distribution system is 6-inch piping. State Code R309-550-5 – Water Main Design, (4) Minimum Water Main Size states: "...Minimum water main size, serving a fire hydrant lateral, shall be 8-inches in diameter unless a hydraulic analysis indicates that required flow and pressures can be maintained by 6-inch lines." The italicized items listed above do not meet this criterion.

Development may correct a few of these deficiencies by way of looping system lines, thus improving water flow. For example, should development occur on the easternmost end of north end of Valley View Drive, the deficiency listed as item 16 may be eliminated.

The State DDW's Hydraulic Modeling Rule (R309-511) requires that the existing water model is updated and re-run as development occurs in order to re-evaluate the system for compliance with minimum requirements and identify any deficiencies that would result due to the proposed

development. Any system improvements or upsizing necessary in order to be compliant must be done as part of the development in order to receive approval.

Several other projects have been identified based on maintenance issues, providing needed reliability and redundancy in the system, and emergency preparedness. These projects are considered existing deficiencies. They are as follows:

1. New Pressure Zones for East Bench foothill homes with accompanying infrastructure.
(Deficiencies #4, #8, #11, #12, #13, #14, & #15.)
2. Replace existing 2" distribution pipes across HWY 89 with 6" PRV on 3000 South & 3450 South.
(Deficiencies #8, #9, & #10)
3. Replace 6" dead end lines with 10" diameter pipe or as specified by the City engineer in Highway 89 (Deficiencies #1, #10, #16, & #17)
4. Replace 6" mainline for 10" diameter pipe or as specified by the City engineer for HWY 89.
(Deficiency #18)
5. Replace 6" main dead-end lines in cul-de-sacs with 8" pipes that have fire hydrants attached.
(Deficiency #2)
6. Replace 6" mainline with 8" pipe for 2600 South from 725 West to HWY 89.
7. Replace 4" main dead-end lines with 8" pipe for FH on 2700 South. (Deficiency #5)
8. Replace 4" main dead-end lines with 8" pipe for FH on 2950 South (Deficiency #7)
9. Replace 8" main dead-end line with 12" Main for FH on 2875 South. (Deficiency #6)
10. Replace 6" line with 8" line for two FH on 3600 South (Deficiency #19)

Since impact fees cannot be used to correct existing deficiencies, the water model was updated to "correct" all deficiencies and substandard lines prior to proceeding with the future development model. By doing this, the future model clearly shows where growth results in failure to meet the minimum requirements.

5.5 Future Water Distribution System Needs

5.5.1 Analysis

To analyze the future system, the distribution model needed to reflect a probable future layout of Perry. The 2019 Perry City General Plan and the Future Roads Plan were used to determine future zoning boundaries of residential, commercial, and mixed-use areas. ERCs for the commercial, residential, and mixed-use areas were estimated based on the size of each parcel, as shown in Exhibit 3.1. Residential ERCs were tabulated by taking the area within the residential zone that are not yet developed (removing area of future roads based on general plan) and multiplying that area by 4 ERC/acre³. ERCs for mixed use and commercial were similarly tabulated by taking parcel areas within their respective zone and multiplying their areas by 10 ERC/acre, since these areas are anticipated for higher density. Agricultural land was counted as 1 ERC for culinary use only since irrigation is not provided for agricultural uses. The projected ERCs were then added to the existing “corrected” water model to check the capacity of the lines and the water pressures for both the indoor use only model and the indoor/outdoor use model.

5.5.2 Results

The water model was then run to identify what infrastructure changes are still needed for build out. This was done as a comparison to determine what deficiencies of the current model could not be solved by developer-installed water lines looping the current system (all lines assumed to be 8" dia or larger per City code).

From the analysis it was determined that the following changes to the system are required.

1. A new pressure zone was created with one of the tanks that will be required for build out. Tank to be installed at a higher elevation than the current tanks for increased pressures along the bench. PRVs to be installed on the bottom of the new pressure zone. The new pressure zone will provide a higher pressure threshold for homes along the bench and allow more time for the system to increase fire flows before hitting the 20-psi minimum.
2. 4" main lines need to be replaced as they continue to create deficiencies for fire flow requirements and are not in compliance with the fire code for minimum sizing. (2700 South & 2950 South)
3. Replaced 2" main line crossing HWY 89 with 6" PRVs.
4. 8" dead end lines need to be replaced with 12" mains.
5. 6" dead end lines with FF on the system need to be replaced with minimum 8" lines.

³This was done by request of the city manager in anticipation of a 1/4 acre lot build out.

Appendix D contains the approximate future water model schematic with the appropriately sized water lines.

5.6 Projects

The following is a summarized list of the water distribution system projects listed by type: maintenance, existing system deficiency, or future system deficiency. Section 6 groups and prioritizes these individual pipe segments into projects. It is anticipated that outdoor use demands will not pose additional need for distribution projects since distribution lines are generally sized for high fire flow (1500 gpm) which surpasses the outdoor/indoor use peak day flow rate of 1190 gpm. These projects are graphically represented on Exhibit 7.1 Projects Map.

5.6.1 Existing Water System Maintenance Projects

Project #	Project	Description/Purpose
1	PRV Repair Replacements	Replace broken PRVs and adjust settings on PRV to match model pressure zone settings.
2	Fire Hydrant Upgrades.	Repair existing fire hydrants that are leaking or in need of repair.

5.6.2 Existing Water System Deficiencies

Project #	Location	Project	Description/Purpose
1	3200 South	New Storage Tank	A new tank installed at higher elevation creating pressure zone for east bench homes will allow for higher flow to service most locations that are currently deficient before 20 psi minimum is achieved.
2	3000 S & 3450 South	Replace 2" Water lines with 6" PRVs	Pipes are connected across pressure boundary. New PRV's will ensure pressure is distributed correctly.
3	2700 S (West Side) From 1200 West to Frontage Rd.)	Update 4" Pipe to 8" Pipe	Improve fire flow of fire hydrant on the current line until the time of looping can occur.
4	2875 S Cul-de-sac	Update 8" Pipe with 10" Pipe	Improve fire flow of fire hydrant on the current line.
5	2950 S (West Side) From 1450 W to Frontage Rd.	Update 4" Pipe to 12" Pipe.	Improve fire flow until looping can occur. (Note: No Fire Hydrants are installed on this line.)
6	3600 South (East Side From 400 West to HWY 89	Update 6" Pipe to 8" Pipe	Project #1 would likely increase the likelihood of higher flows here before reaching 20 psi

			minimum. However, an 8" pipe would help in the interim.
7	HWY 89 (East Side) 3400 South to Southern City Limit	Update 6" pipe to 10" pipe.	Since there is no future plan to completely loop the end of HWY 89, increasing the flow in this area is crucial to fire flow. However, secondary to projects 1 and 2, increasing diameter raises fire flow in the area to 1400 min.
8	HWY 89 (West Side) from 3000 S to Southern City Limit	Update 6" Pipe to 10" Pipe	Future looping would solve this deficiency but in the interim a 10" line would provide 1350 gpm minimum of FF.
9	Valley View Dr. Finish 12" Loop	12" pipe	Fire flow is deficient currently but finalizing the loop solves the issue.

5.6.3 Future Deficiencies of Existing Infrastructure

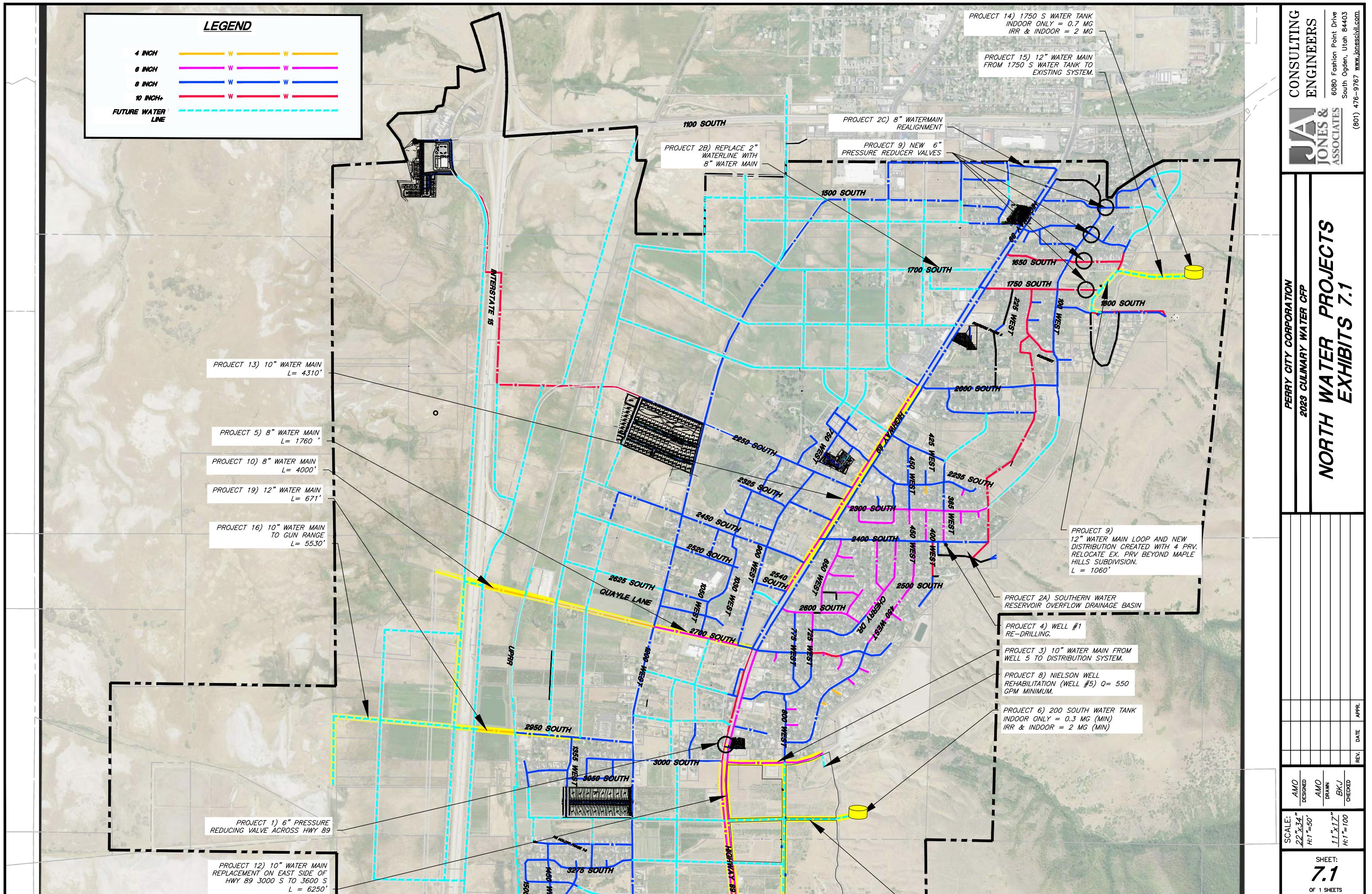
These projects may be impact fee eligible.

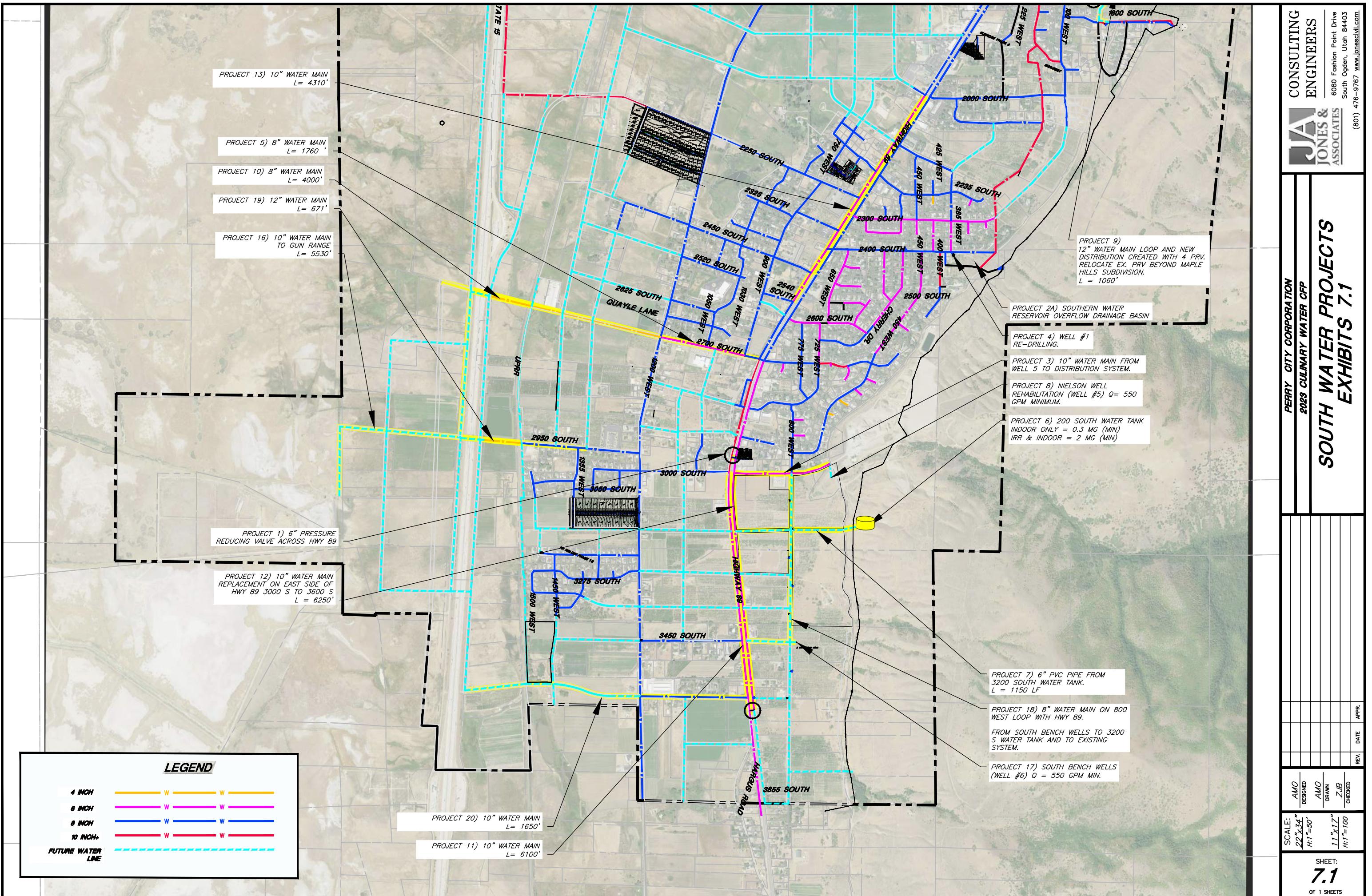
Project #	Project	Description/Purpose
1	3200 South Future Tank	Since the City will be required to build an additional tank for water storage, this tank could be strategic in providing higher pressures for residents on the East bench. If this issue is left unresolved pressures will likely be too low.
2	16" Water Main from New 3200 S Future Tank to Existing System	Pipe will connect the new tank to the existing system.
3	10" Water Main from Future South Bench Well # 6	When Well #6 is constructed, a pipeline from the pumpstation will need to loop into the existing system.
4	12" Water Main from Future 1750 Water	When the 1750 South Tank is constructed, water will need to be conveyed from tank to existing system.
5 ¹	Southern Water Reservoir Overflow Drainage Basin	With additional sources pumping into the water system on a peak day, these small tanks have a risk of overflowing. Without a catchment basin, there is a high risk of flooding nearby properties.
6 ¹	8" Waterline Realignment – 1200 South to 1425 South (Mace Street)	The general plan requires that this road be realigned for new development to occur. The existing waterline is located in an unacceptable location for future development.
7 ¹	Replace 2" Waterline with 8" – 1700 S	For future development to occur and achieve adequate fire flow, this waterline needs to be upsized.

¹Project added with 2025 amendment

6. ASSET MANAGEMENT, PROJECTS, AND COST ESTIMATES

6.1 Asset Management System


Perry City does not have a formal asset management system, but rather, relies on the knowledge of its Public Works employees. An asset management system would track the age of existing infrastructure as well as identify problem areas in a GIS database. This would then become the basis for making decisions on repair and replacement-type projects. Due to the inevitable change in personnel and, therefore, the loss of their institutional knowledge of the system, it is recommended that the City implement an asset management program to ensure that the system's data is maintained in a central location and accessible by those who need the information, both now and in the future.


6.2 Projects and Cost Estimates

As detailed in the previous sections, the existing and future water systems have been analyzed to determine needed system improvements. These improvements have been grouped, mainly by geography and type, and prioritized based on criticality to meet/service the public and condition. The projects and their associated ratings are shown in Table 6.2.

While some of these projects will be driven by development, others are necessary to provide better efficiency and reliability of the system. Consequently, these projects may be constructed and/or funded in part or entirely by either developers or by the City. Therefore, the project costs were evaluated and categorized to reflect these conditions.

- A summarized list of the projects and their associated costs is shown in Table 6.2.
- An itemized cost estimate for each project is included in Appendix E.
- A map of the City showing a conceptual layout of each project and its location is included as Exhibit 7.1 Projects Map.

Table 6.2. Project Ratings-Indoor Use Only

Project #	Project Description	Rated 1-5 with 5 being highest priority and 0 being only with development			Total Rating
		Criticality	Condition	When Needed	
1	Replace 2" Crossing Pipe with 6" PRV. Across HWY 89 @ 3600 South	5	5	5	5
2	Replace 2" Crossing Pipe with 6" PRV. Across HWY 89 @ 3000 South	5	5	5	5
2a ¹	Southern Water Reservoir Overflow Drainage Basin	4	5	5	4.6
2b ¹	Replace 2" Waterline with 8" – 1700 South	3	3	5	3.6
2c ¹	8" Waterline Realignment – 1200 South to 1425 South (Mace Street)	3	3	5	3.6
3	10" Water Main on 3000 South (from 400 West to HWY 89)	4	3	4	3.6
4	Well # 1 – Redrilling	4	5	2	3.6
5	8" Water Main on 2700 S (900 W to 1200 West)	3	5	3	3.6
6	New Water Tank – Future 3200 South	5	0	5	3.3
7	16" Water Main on 3200 S	5	0	5	3.3
8	Nielson Well Rehab – Well #5	5	0	5	3.3
9	12" Water Main – Finish Loop Valley View	5	0	5	3.3
10	8" Water Main on 2700 South (1200 West to I-15)	2	5	2	3
11	10" Water Main HWY 89 -West Side (3000 S to 3600 S)	2	5	2	3
12	10" Water Main HWY 89 -East Side) (3000 S to 3600 S)	2	5	2	3
13	10" Water Main on West Side HWY 89 (1950 S to Larsen Ave)	2	5	2	3
14	New Water Tank – 1750 S	3	0	3	2
15	12" Water Main on 1750 S	3	0	3	2
16	10" Water Main to Gun Range	2	0	2	1.3
17	South Bench Well	1	0	2	1
18	10" Main on 800 West	1	0	2	1
19	12" Water Main on 2950 S (1400 West to I – 15)	1	0	1	0.6
20	10" Water Main on 3550 South	1	0	1	0.6

¹Project added with 2025 amendment

Table 6.2.1 Additional Indoor/Outdoor Use Projects

Project #	Project Description	Rated 1-5, with 5 being highest priority and 0 being only with development			Total Rating
		Criticality	Condition	When Needed	
21	Future Well # 7 W/ Pump Station	0	0	1	0.3
22	Future Well #8 W/ Pump Station	0	0	1	0.3
23	Future Well # 9 W/ Pump Station	0	0	1	0.3
24	Future Well # 10 W/ Pump Station	0	0	1	0.3
25	Future Well #11 W/Pump Station	0	0	1	0.3
26	Future Well #12 W/Pump Station	0	0	1	0.3
27	Future Well #13 W/Pump Station	0	0	1	0.3
28	Future Well #14 W/Pump Station	0	0	1	0.3
29	Future Well #15 W/Pump Station	0	0	1	0.3
30	Future Well #16 W/Pump Station	0	0	1	0.3
31	Future Well #17 W/Pump Station	0	0	1	0.3
32	Future Well #18 W/Pump Station	0	0	1	0.3
33	Future Well #19 W/Pump Station	0	0	1	0.3
34	1.25 MG additional Storage for 3200 Southern East Bench Tank.	0	0	1	0.3
35	1.25 MG additional Storage for 1750 South Tank	0	0	1	0.3
36	New Water Tank (1.25 MG)	0	0	1	0.3

Table 6.2.2. Projects Cost Summary

Project No.	Project Description	Total Estimated Cost	Cost Breakdown			
			Replacement/Deficiency/Expansion	Impact Fee Eligible	Developer Cost	Proposed Budget Year
1	Replace 2" Crossing Pipe with 6" PRV. Across HWY 89 @ 3600 South	\$201,292.00	Deficiency	75%	\$150,969.00	2024
2	Replace 2" Crossing Pipe with 6" PRV. Across HWY 89 @ 3000 South	\$198,155.75	Deficiency	75%	\$148,616.00	2024
2a ¹	Southern Water Reservoir Overflow Drainage Basin	\$186,357.60	Expansion	100%	\$186,357.60	2026
2b ¹	Replace 2" Waterline with 8" – 1700 South	\$595,445.50	Expansion	100%	\$595,445.50	2026
2c ¹	8" Waterline – 1200 South to 1425 South (Mace Street)	\$486,980.00	Expansion	100%	\$486,980.00	2026
3	10" Water Main on 3000 South (from 400 West to HWY 89)	\$447,374.00	Replacement	50%	223,687.00	2026
4	Well # 1 – Redrilling	\$3,666,000.00	Replacement	50%	\$1,833,000	2033
5	8" Water Main on 2700 S (900 W to 1200 West)	\$389,902.50	Replacement	0%	\$0	2030
6	New Water Tank – Future 3200 South	\$2,821,000.00	Expansion	100%	\$2,821,000.00	2026
7	16" Water Main on 3200 S	\$351,130.00	Expansion	100%	\$351,130.00	2026
8	Nielson Well Rehab – Well #5	\$3,289,000.00	Expansion	100%	\$3,289,000.00	2025
9	12" Water Main – Finish Loop Valley View	\$852,878.00	Expansion	100%	\$852,878.00	2027
10	8" Water Main on 2700 South (1200 West to I-15)	\$705,315.00	Replacement	0%	\$0	2028
11	10" Water Main HWY 89 -West Side (3000 S to 3600 S)	\$1,069,250.00	Replacement/Expansion	50%	\$534,625.00	2030

12	10" Water Main HWY 89 -East Side) (3000 S to 3600 S)	\$1,021,897.50	Replacement/ Expansion	50%	\$510,950.00	2033
13	10" Water Main on West Side HWY 89 (1950 S to Larsen Ave)	\$1,039,350.00	Replacement	36%	\$374,170.00	2033
14	New Water Tank - 1750 S	\$2,703,556.82	Expansion	100%	\$2,703,556.82	20XX
15	12" Water Main on 1750 S	\$381,972.50	Expansion	100%	\$381,927.50	20XX
16	10" Water Main to Gun Range Area	\$1,191,775.00	Expansion	100%	\$1,191,775.00	20XX
17	3600 West Well #6	\$3,666,000.00	Expansion	100%	\$3,666,000.00	20XX
18	10" Main on 800 West	\$955,726.80	Expansion	100%	\$955,726.80	20XX
19	12" Water Main on 2950 S (1400 West to I - 15)	\$153,647.00	Expansion/ Replacement	75%	\$115,235	20XX
20	10" Water Main on 3550 South	\$291,330.00	Expansion	100%	\$104,878.80	20XX
21	*Future Well #7 W/ Pump Station	\$2.5M	Expansion	100%	\$2.5M	2080
22	*Future Well #8 W/ Pump Station & 47 acre-ft of Water Rights	2.65M	Expansion	100%	\$2.65M	2090

* Future Well Projects are for indoor use only scenario

¹Project added with 2025 amendment

Table 6.2.3. Additional Indoor/Outdoor Projects Cost Summary

Project No.	Project Description	Total Estimated Cost	Cost Breakdown			
			Replacement/Deficiency/Expansion	Impact Fee Eligible	Developer Cost	Proposed Budget Year
21	**Well #5 Nielson Well Rehab W/ Pump Station	\$3.3 M	Expansion	100%	\$3.3M	2030
22	**Well #6 3200 South W/ Pump Station	\$3.3M	Expansion	100%	\$3.3M	2030
23	Future Well #7 W/ Pump Station & 230 ac-ft Water Right	3.3 M	Expansion	100%	\$3.3M	2040
24	Future Well # 8 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2050
25	Future Well # 9 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2050
26	Future Well # 10 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2060
27	Future Well #11 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2060
28	Future Well #12 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2070
29	Future Well #13 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2070
30	Future Well # 14 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2080
31	Future Well # 15 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2080
32	Future Well # 16 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2080
33	Future Well # 17 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2093

34	Future Well # 18 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2093
35	Future Well # 19 W/ Pump Station & 230 ac-ft Water Right	\$3.3M	Expansion	100%	\$3.3M	2093
36	0.85 MG additional Storage for 3200 Southern East Bench Tank.	\$1.7 M	Expansion	100%	\$1.7 M	2030
37	1 MG additional Storage for 1750 South Tank (MG)	\$2.0 M	Expansion	100%	\$2.0 M	2040
38	New Water Tank – (1.5 MG)	\$3.0 M	Expansion	100%	\$3.0 M	2050
39	New Water Tank – (1 MG)	\$2.0 M	Expansion	100%	\$2.0 M	2060
40	New Water Tank – (2 MG)	\$4.0 M	Expansion	100%	\$4.0 M	2070
41	New Water Tank – (1.5 MG)	\$3.0 M	Expansion	100%	\$3.0 M	2080
42	New Water Tank – (2.5 MG)	\$5.0 M	Expansion	100%	\$5.0 M	2093

APPENDICES

APPENDIX A

INTERNATIONAL FIRE CODE

TABLE B105.1

TABLE B105.1(1)
REQUIRED FIRE FLOW FOR ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

FIRE-FLOW CALCULATION AREA (square feet)	AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE FLOW (gallons per minute)	FLOW DURATION (hours)
0-3,600	No automatic sprinkler system	1,000	1
3,601 and greater	No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B105.1(2) at the required fire-flow rate
0-3,600	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	500	1/2
3,601 and greater	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	1/2 value in Table B105.1(2)	1

For SI: 1 square foot = 0.0929 m², 1 gallon per minute = 3.785 L/m.

TABLE B105.1(2)
REFERENCE TABLE FOR TABLES B105.1(1) AND B105.2

FIRE-FLOW CALCULATION AREA (square feet)					FIRE FLOW (gallons per minute) ^b	FLOW DURATION (hours)
Type IA and IB ^a	Type IIA and IIIA ^a	Type IV and V-A ^a	Type IIB and IIIB ^a	Type V-B ^a		
0-22,700	0-12,700	0-8,200	0-5,900	0-3,600	1,500	2
22,701-30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	
30,201-38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000	
38,701-48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	
48,301-59,000	24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500	
59,001-70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401-11,300	2,750	
70,901-83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301-13,400	3,000	3
83,701-97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401-15,600	3,250	
97,701-112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601-18,000	3,500	
112,701-128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001-20,600	3,750	
128,701-145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601-23,300	4,000	
145,901-164,200	82,101-92,400	52,501-59,100	37,901-42,700	23,301-26,300	4,250	4
164,201-183,400	92,401-103,100	59,101-66,000	42,701-47,700	26,301-29,300	4,500	
183,401-203,700	103,101-114,600	66,001-73,300	47,701-53,000	29,301-32,600	4,750	
203,701-225,200	114,601-126,700	73,301-81,100	53,001-58,600	32,601-36,000	5,000	
225,201-247,700	126,701-139,400	81,101-89,200	58,601-65,400	36,001-39,600	5,250	
247,701-271,200	139,401-152,600	89,201-97,700	65,401-70,600	39,601-43,400	5,500	
271,201-295,900	152,601-166,500	97,701-106,500	70,601-77,000	43,401-47,400	5,750	
295,901-Greater	166,501-Greater	106,501-115,800	77,001-83,700	47,401-51,500	6,000	
—	—	115,801-125,500	83,701-90,600	51,501-55,700	6,250	
—	—	125,501-135,500	90,601-97,900	55,701-60,200	6,500	
—	—	135,501-145,800	97,901-106,800	60,201-64,800	6,750	
—	—	145,801-156,700	106,801-113,200	64,801-69,600	7,000	
—	—	156,701-167,900	113,201-121,300	69,601-74,600	7,250	
—	—	167,901-179,400	121,301-129,600	74,601-79,800	7,500	
—	—	179,401-191,400	129,601-138,300	79,801-85,100	7,750	
—	—	191,401-Greater	138,301-Greater	85,101-Greater	8,000	

For SI: 1 square foot = 0.0929 m², 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa.

a. Types of construction are based on the *International Building Code*.

b. Measured at 20 psi residual pressure.

APPENDIX B

EXISTING WATER SYSTEM MODEL AND OUTPUT

[TITLE]

Perry City Water System Model

The elevations for each node are at surface elevation from 2013 AGRC lidar data.

Residential demands are approximately 0.38 gpm per residence.

Nodes without an "n" designation at the beginning are additions since the original model.

NEW LINE SIZES TO SW QUADRANT OF CITY:

- New 12" on west side of US-89 (2700 S to 3000 S)
- New 8" on 3000 S (US-89 to 1200 W)
- New 8" on 1200 W (2950 S to Pheasant Hollow)
- New 12" on 1200 W (Cherry Ridge to 3600 S)
- New 8" on 2450 S (1200 W to 1350 W)
- 1500 gpm fire flow at 1200 W south end

[JUNCTIONS]

ID	Elev	Demand	Pattern	;
n4	4387	9.00	1	;
n5	4383	7.00	1	;
n7	4373	13.00	1	;
n9	4375	7.00	1	;
n10	4358	10.00	1	;
n13	4400	12.00	1	;
n14	4425	6.00	1	;
n16	4420	6.00	1	;
n19	4407	1.00	1	;
n20	4417	9.00	1	;
;Stokes Spring (35 gpm)				
n21	4365	7.00	1	;
n24	4542	0.00		;
n26	4517	8.00	1	;
n28	4446	1.00	1	;
n29	4448	13.00	1	;
n30	4456	9.00	1	;
n31	4482	10.00	1	;
n32	4510	9.00	1	;
n33	4466	12.00	1	;
n35	4397	0.00		;
n36	4392	8.00	1	;
n37	4386	6.00	1	;
n39	4409	5.00	1	;
n41	4458	4.00	1	;
n42	4462	3.00	1	;
n43	4463	5.00	1	;
n44	4470	4.00	1	;
n45	4522	13.00	1	;
n46	4528	2.00	1	;
n47	4511	5.00	1	;
n48	4525	2.00	1	;
n49	4370	10.00	1	;
n50	4363	6.00	1	;

n51	4316	21.00	1	;
n52	4307	9.00	1	;
n53	4322	11.00	1	;
n54	4333	21.00	1	;
n56	4557	0.00		;
n58	4503	9.00	1	;
n60	4473	4.00	1	;
n61	4471	6.00	1	;
n62	4512	2.00	1	;
n63	4444	13.00	1	;
n65	4454	5.00	1	;
n68	4289	4.00	1	;
n69	4296	7.00	1	;
n70	4324	6.00	1	;
n73	4416	7.00	1	;
n75	4331	10	1	;
n77	4354	28.00	1	;
n78	4349	3.95	1	;
n79	4372	7.00	1	;
n80	4369	4.00	1	;
n83	4370	8.00	1	;
n84	4354	6.00	1	;
n88	4422	10.00	1	;
n91	4375	5.00	1	;
n92	4406	5.00	1	;
n93	4412	3.00	1	;
n94	4467	5.00	1	;
n96	4474	3.00	1	;
n97	4384	4.00	1	;
n99	4415	15.00	1	;
n100	4401	11.00	1	;
n101	4421	15.00	1	;
n102	4418	7.00	1	;
n105	4400	8.00	1	;
n106	4393	4.00	1	;
n108	4376	8.00	1	;
n109	4378	5.00	1	;
n110	4382	4.00	1	;
n111	4388	6.00	1	;
n113	4371	6.00	1	;
n114	4367	7.00	1	;
n116	4374	6.00	1	;
n118	4381	8.00	1	;
n121	4325	5.00	1	;
n122	4309	8.00	1	;
n123	4288	8.00	1	;
n124	4270	13.00	1	;
n126	4261	15.00	1	;
n127	4274	10.00	1	;
n130	4282	7.00	1	;

n131	4322	10.00	1	;
n137	4319	2.00	1	;
n140	4287	15.00	1	;
n142	4302	5.00	1	;
n143	4313	9.00	1	;
n146	4304	12.00	1	;
n147	4295	12.00	1	;
n148	4296	14.00	1	;
n150	4274	4.00	1	;
n151	4273	1.00	1	;
n152	4330	11.00	1	;
n155	4346	2.00	1	;
n156	4362	1.00	1	;
n157	4366	2.00	1	;
n158	4375	8.00	1	;
n159	4348	6.00	1	;
n160	4359	4.00	1	;
n165	4276	0.00		;
n168	4306	5.00	1	;
n169	4298	8.00	1	;
n170	4578	0.00		;
n171	4446	16.00	1	;
n174	4367	4.00	1	;
n177	4388	17.00	1	;
n179	4366	2.00	1	;
n181	4332	4.00	1	;
n182	4331	2.00	1	;
n183	4331	7.00	1	;
n184	4303	6.00	1	;
n187	4295	26.00	1	;
n188	4291	0.00		;
n192	4451	15.00	1	;
n193	4415	10.00	1	;
n194	4379	9.00	1	;
n195	4330	1.00	1	;
n197	4374	4.00	1	;
n199	4391	6.00	1	;
n201	4397	2.00	1	;
n202	4377	10.00	1	;
n203	4397	9.00	1	;
n205	4265	11.00	1	;
n212	4258	2.00	1	;
n232	4459	7.00	1	;
n235	4486	2.00	1	;
n241	4449	12.00	1	;
n242	4450	2.00	1	;
n246	4455	10.00	1	;
n249	4326	33.00	1	;
n251	4373	12.00	1	;
n253	4337	14.00	1	;

n256	4449	9.00	1	;
n257	4445	2.00	1	;
n261	4552	1	1	;
n266	4373	10.00	1	;
n267	4356	9.00	1	;
n272	4370	5.00	1	;
n274	4377	4.00	1	;
n277	4300	11.00	1	;
n287	4279	2.00	1	;
n290	4273	6.00	1	;
n291	4272	2.00	1	;
n300	4317	11.00	1	;
n305	4513	1.00	1	;
n308	4512	1.00	1	;
n314	4384	6.00	1	;
n315	4379	9.00	1	;
n316	4412	5.00	1	;
n320	4377	14.00	1	;
n323	4416	5.00	1	;
n324	4384	10.00	1	;
n325	4398	7.00	1	;
n332	4520	3.00	1	;
n333	4521	3.00	1	;
n334	4508	4.00	1	;
n335	4428	3.00	1	;
n336	4492	5.00	1	;
n337	4361	5.00	1	;
n338	4358	2.00	1	;
n339	4354	4.00	1	;
n343	4419	5.00	1	;
n345	4404	0.00		;
n352	4268	0.00		;
n357	4242	75.00	1	
;Elevation is a guess				
n358	4394	3.00	1	;
n361	4440	8.00	1	;
n362	4390	7.00	1	;
n367	4325	5.00	1	;
n369	4302	9.00	1	;
n374	4314	1	1	;
n376	4319	1.00	1	;
n385	4349	19.00	1	;
n387	4357	13.00	1	;
n389	4326	4.00	1	;
;No demand on Maddox (have their own well)				
n390	4351	40.00	1	;
n391	4368	5.00	1	;
n395	4298	0.00		;
n397	4220	63.00	1	
;Elevation is a guess				

n398	4301	12.00	1	;
n399	4327	9.00	1	;
n400	4290	5.00	1	;
n406	4323	5.00	1	;
n407	4358	10.00	1	;
n408	4360	1.00	1	;
n409	4361	4.00	1	;
n410	4364	7.00	1	;
n416	4379	2.00	1	;
n418	4398	8.00	1	;
n420	4330	17.00	1	;
n421	4332	7.00	1	;
n423	4310	3.00	1	;
n424	4289	3.00	1	;
n429	4310	8.00	1	;
n430	4398	1.00	1	;
n436	4365	11.00	1	;
n437	4373	9.00	1	;
n438	4388	10.00	1	;
n440	4386	1.00	1	;
n443	4302	8.00	1	;
n444	4291	9.00	1	;
n445	4313	4.00	1	;
n446	4314	3.00	1	;
n447	4467	9.00	1	;
n448	4448	2.00	1	;
n449	4329	5.00	1	;
n450	4445	0.00		;
n451	4441	3.00	1	;
n453	4509	2.00	1	;
n457	4361	8.00	1	;
n458	4377	12.00	1	;
n459	4374	6.00	1	;
n460	4370	12.00	1	;
n467	4452	5.00	1	;
n468	4433	5.00	1	;
n472	4373	11.00	1	;
n473	4371	0.00		;
n475	4352	9.00	1	;
n477	4415	4.00	1	;
n478	04428	5.00	1	;
n479	4420	3.00	1	;
n480	4429	4.00	1	;
n481	4411	8.00	1	;
n493	4446	6.00	1	;
n494	4457	3.00	1	;
n495	4503	4.00	1	;
n496	4277	1.00	1	;
n500	4338	5.00	1	;
n511	4316	6.00	1	;

n512	4448	4.00	1	;
n516	4397	3.00	1	;
n518	4511	62.00	1	;
n527	4284	12.00	1	;
1	4467	13.00	1	;
2	4496	4.00	1	;
3	4392	6.00	1	;
4	4308	7.00	1	;
5	4482	2.00	1	;
6	4502	4.00	1	;
7	4306.5	1.00	1	;
16	4497	0.00		;
17	4312	2.00	1	;
18	4281	22.00	1	;
8	4274	8	1	;
9	4435	2.00	1	;
12	4450	4.00	1	;
;Elevation from Design Drawings				
13	4452	5.00	1	
;Elevation from Design Drawings				
14	4452	1.00	1	
;Elevation from Design Drawings				
15	4521	1.00	1	
;Elevation from Design Drawings				
19	4520	11.00	1	
;Elevation from Design Drawings				
20	4266	8.00	1	
;Elevation from Design Drawings				
21	4268	2.00	1	
;Elevation from Design Drawings				
22	4267	3.00	1	
;Elevation from Design Drawings				
23	4288	8.00	1	;
24	4240	4.00	1	;
;Elevation is a guess				
25	4277	65.00	1	;
26	4283	3.00	1	;
30	4424	5.00	1	;
31	4412	3.00	1	;
32	4458	6.00	1	;
33	4464	3.00	1	;
34	4492	5.00	1	;
35	4470	4.00	1	;
27	4328	18.00	1	;
28	4297	8.00	1	;
29	4329	11.00	1	;
36	4299	14.00	1	;
37	4298	6.00	1	;
38	4270	11.00	1	;
39	4269	4.00	1	;

40	4392	9	;
41	4391	0	;
42	4264	2.63	1
43	4350	1.05	1
44	4330	0	;
45	4276	0	;
46	4278	0	;
47	4263	21	1
48	4265	18	1
49	4263	1	1
50	4276	21	1
51	4278	18	1
52	4262	8	;
53	4326	0	;
54	4326	0	;
55	4352	1	;
56	4333	7	1
57	4310.5	7	1
58	4293.25	6	1
59	4308.75	6	1
66	4222.75	30	;
67	4222	30	;
68	4220.5	30	;
69	4221	0	;
70	4222.5	30	;
71	4283	0	;
60	4259	8	1
61	4256	7	1
62	4350.5	4	;
63	4347	7	;
;elevation from plan			
64	4349.5	7	;
;elevation from plan			
65	4332.5	4	;
72	4377	8	;
73	4373.5	8	;
74	4305.5	8	;
75	4305	0	;
76	4400	9	;
77	4379	11	;
78	4375	0	;
79	4374.5	11	;
80	4380.25	4	;
81	4384	4	;
82	4330.75	8	;
83	4337.5	8	;
84	4329.25	4	1
85	4293	0	1
86	4310	0	1
87	4257.75	6	;

88	4262.5	6	;		
89	4550	27	1 ;		
[RESERVOIRS]					
;ID		Head	Pattern		
1004		4500			
;East_Bench_Well_House_(Well_#4)					
1001		4440			
;Allen_St_Well_House_(Well_#1)					
1002		4386	;500 pgm (10-16		
hours per day)					
1003		4448			
;Anderson_Well_House_(Well_#3)					
1005		4511	;Well_House_#5		
[TANKS]					
;ID		Elevation	InitLevel	MinLevel	MaxLevel
Diameter	MinVol	VolCurve	Overflow		
2001		4674	12	0	16
105	0			;East_Bench_Reservoir=1MG	
10		4581	12	0	16
60	0			;Res300,000gal	
11		4579	14	0	18
54	0			;Res350,000gal	
[PIPES]				Length	
;ID		Node1	Node2		
Diameter	Roughness	MinorLoss	Status		
p23		n41	n42	178.79	
6	110	0	Open	;	
p24		n43	n44	181.23	
6	110	0	Open	;	
p25		n45	n46	132.82	
4	110	0	Open	;	
p26		n47	n48	199.27	
4	110	0	Open	;	
p29		n53	n54	386.42	
8	110	0	Open	;	
p42		n79	n80	221.53	
8	110	0	Open	;	
p44		n83	n84	503.92	
8	110	0	Open	;	
p50		n92	n93	170.50	
6	110	0	Open	;	
p55		n101	n102	521.91	
6	110	0	Open	;	
p59		n109	n110	123.82	
6	110	0	Open	;	
p61		n113	n114	296.17	
6	110	0	Open	;	

p81		n147		n148		509.90
8	110	0		Open	;	
p83		n150		n151		481.09
8	110	0		Open	;	
p84		n146		n152		640.42
8	110	0		Open	;	
p87		n157		n158		853.95
8	110	0		Open	;	
p89		n159		n160		555.12
8	110	0		Open	;	
p95		n170		n24		346.04
12	110	0		Open	;	
p109		n193		n194		671.83
8	110	0		Open	;	
p139		n241		n242		118.24
8	110	0		Open	;	
p149		n256		n257		250.17
8	110	0		Open	;	
p170		n290		n291		186.96
8	110	0		Open	;	
p191		n324		n101		949.11
6	110	0		Open	;	
p198		n335		n336		656.69
6	110	0		Open	;	
p199		n325		n29		633.85
6	110	0		Open	;	
p200		n337		n338		421.64
10	110	0		Open	;	
p206		n345		n19		477.29
10	110	0		Open	;	
p207		n28		n345		379.37
10	110	0		Open	;	
p218		n212		n357		875.78
3	110	0		Open	;	
p223		n361		n203		521.72
6	110	0		Open	;	
p224		n316		n362		528.96
6	110	0		Open	;	
p230		n300		n369		430.11
8	110	0		Open	;	
p245		n84		n385		627.43
6	110	0		Open	;	
p249		n338		n390		415.23
8	110	0		Open	;	
p251		n391		n179		1182.02
8	110	0		Open	;	
p265		n407		n387		657.04
6	110	0		Open	;	
p266		n408		n407		359.00
6	110	0		Open	;	

p267		n408		n409		520.56
6	110	0		Open	;	
p270		n409		n156		595.81
6	110	0		Open	;	
p271		n156		n157		285.28
8	110	0		Open	;	
p275		n418		n416		280.13
8	110	0		Open	;	
p281		n75		n421		746.54
10	110	0		Open	;	
p292		n418		n430		484.97
6	110	0		Open	;	
p300		n437		n113		327.23
6	110	0		Open	;	
p301		n320		n438		499.80
6	110	0		Open	;	
p306		n430		n77		2507.73
6	110	0		Closed	;	
p309		n445		n446		162.16
8	110	0		Open	;	
p311		n448		n256		312.06
8	110	0		Open	;	
p314		n195		n450		242.89
10	110	0		Open	;	
p315		n451		n28		266.21
6	110	0		Open	;	
p322		n457		n410		691.60
6	110	0		Open	;	
p323		n458		n459		274.04
6	110	0		Open	;	
p324		n460		n458		544.12
6	110	0		Open	;	
p326		n457		n84		852.18
6	110	0		Open	;	
p336		n472		n473		452.82
6	110	0		Open	;	
p337		n174		n472		617.33
6	110	0		Open	;	
p342		n477		n478		202.84
8	110	0		Open	;	
p343		n479		n480		163.42
8	110	0		Open	;	
p354		n336		n495		151.46
6	110	0		Open	;	
p365		n94		n512		312.44
8	110	0		Open	;	
4		n65		n232		188
8	110	0		Open	;	
7		n30		1		414.09
6	110	0		Open	;	

13		1		2		228.19
6	110	0		Open	;	
14		n108		n109		259.85
6	110	0		Open	;	
16		n105		3		395.54
6	110	0		Open	;	
17		3		n106		105.77
6	110	0		Open	;	
18		n97		n111		154.42
6	110	0		Open	;	
21		n99		n102		176.01
6	110	0		Open	;	
22		n97		n194		308.08
6	110	0		Open	;	
23		n194		n436		243.07
6	110	0		Open	;	
24		n97		n100		282.51
6	110	0		Open	;	
25		n100		n88		370.19
6	110	0		Open	;	
28		n512		n88		278.15
10	110	0		Open	;	
30		n159		n155		591.73
8	110	0		Open	;	
31		n155		n152		615.00
8	110	0		Open	;	
32		n152		n399		299.27
8	110	0		Open	;	
33		n399		n70		471.45
8	110	0		Open	;	
34		n70		n367		125.72
8	110	0		Open	;	
35		n367		n406		685.84
8	110	0		Open	;	
36		n52		n53		822.71
8	110	0		Open	;	
37		n51		n53		240.66
8	110	0		Open	;	
38		n527		n147		639.78
8	110	0		Open	;	
39		n147		n146		289.19
8	110	0		Open	;	
40		n398		n146		323.36
8	110	0		Open	;	
41		n399		n398		614.30
8	110	0		Open	;	
43		n69		n443		146.64
8	110	0		Open	;	
44		n443		n445		247.70
8	110	0		Open	;	

45		n445		n70		265.32
8	110	0		Open	;	
46		n142		n52		291.98
8	110	0		Open	;	
47		n52		n511		356.49
8	110	0		Open	;	
48		n527		n140		538.67
8	110	0		Open	;	
49		n140		n142		780.55
8	110	0		Open	;	
51		n511		n54		812.51
6	110	0		Open	;	
54		n511		n131		541.18
8	110	0		Open	;	
56		n367		n407		783.49
6	110	0		Open	;	
58		n406		n387		688.74
8	110	0		Open	;	
63		n181		4		467.40
8	110	0		Open	;	
68		5		n232		238
8	110	0		Open	;	
74		n305		n62		115.98
8	110	0		Open	;	
75		n62		n308		138.18
8	110	0		Open	;	
86		n251		n343		696.57
8	110	0		Open	;	
89		n199		n201		227.45
8	110	0		Open	;	
90		n199		n358		129.27
6	110	0		Open	;	
93		n197		n274		146.35
4	110	0		Open	;	
94		n197		n272		273.26
8	110	0		Open	;	
96		n315		n314		241.10
6	110	0		Open	;	
97		n315		n362		280.67
6	110	0		Open	;	
98		n362		n203		308.03
6	110	0		Open	;	
99		n203		n323		285.89
6	110	0		Open	;	
100		n323		n451		281.85
6	110	0		Open	;	
103		n459		n83		473.94
8	110	0		Open	;	
104		n83		n266		263.20
8	110	0		Open	;	

106		n459		n315		267.32
6	110	0	Open	;		
107		n266	n315		383.41	
8	110	0	Open	;		
109		n21	n79		338.66	
6	110	0	Open	;		
110		n79	n459		273.37	
6	110	0	Open	;		
112		n114	n320		590.60	
8	110	0	Open	;		
113		n320	n324		318.79	
8	110	0	Open	;		
114		n324	n440		79.76	
8	110	0	Open	;		
117		n440	n325		254.16	
8	110	0	Open	;		
118		n325	n316		177.79	
8	110	0	Open	;		
119		n316	n335		148.88	
8	110	0	Open	;		
120		n335	n195		62.52	
6	110	0	Open	;		
1		n453	n24		378.67	
10	110	0	Open	;		
102		n113	n116		283.68	
6	110	0	Open	;		
121		n30	n31		398.59	
8	110	0	Open	;		
126		n47	n45		326.24	
8	110	0	Open	;		
130		n92	n193		322.16	
8	110	0	Open	;		
131		n193	n88		282.10	
8	110	0	Open	;		
140		n77	n339		79.43	
2	110	0	Closed	;	Normally Closed	
142		n385	n267		363.66	
8	110	0	Open	;		
145		n142	n51		757.91	
8	110	0	Open	;		
146		n152	n409		714.58	
8	110	0	Open	;		
147		n457	n21		226.76	
6	110	0	Open	;		
155		n424	n123		134.05	
8	110	0	Open	;		
165		n369	n277		340.22	
8	110	0	Open	;		
166		n277	n188		343.45	
8	110	0	Open	;		

168		n416		n49		287.31
8	110	0		Open	;	
171		n148		n143		452.41
8	110	0		Open	;	
172		n143		n137		101.90
8	110	0		Open	;	
173		n150		n527		1203.06
8	110	0		Open	;	
174		n212		n511		2291.14
4	110	0		Open	;	
175		n4		n481		333.21
10	110	0		Open	;	
176		n481		n448		434.61
10	110	0		Open	;	
5		n493		n41		272.55
8	110	0		Open	;	
6		n41		n43		268.02
8	110	0		Open	;	
8		n43		n33		290.54
8	110	0		Open	;	
10		n33		n494		384.17
8	110	0		Open	;	
11		n450		n24		613.32
12	110	0		Open	;	
26		n195		n361		97.85
6	110	0		Open	;	
53		n406		n168		354.89
8	110	0		Open	;	
180		n168		n444		272.49
8	110	0		Open	;	
181		n444		n496		1489.03
8	110	0		Open	;	
183		n453		n28		646.56
10	110	0		Open	;	
190		n35		n339		2661.52
6	110	0		Open	;	
192		n91		n436		862.24
6	110	0		Open	;	
193		n436		n410		1418.38
6	110	0		Open	;	
195		n21		n460		242.87
6	110	0		Open	;	
203		n339		n449		972.80
6	110	0		Open	;	
211		n429		n121		1231.34
6	110	0		Open	;	
212		n398		n69		539.44
8	110	0		Open	;	
213		n69		n68		205.80
8	110	0		Open	;	

2		n475		n10		707.21
6	110	0		Open	;	
3		n10		n174		536.49
6	110	0		Open	;	
60		n481		n479		210.09
10	110	0		Open	;	
62		n251		n253		816.16
8	110	0		Open	;	
69		n184		n183		648.57
8	110	0		Open	;	
70		n183		n182		226.78
8	110	0		Open	;	
77		n183		n181		259.20
8	110	0		Open	;	
108		n165		n352		4477.79
12	110	0		Open	;	
111		n438		n101		430.93
6	110	0		Open	;	
141		n20		n343		502.56
10	110	0		Open	;	
148		n421		n420		325.40
10	110	0		Open	;	
157		n188		7		155.88
8	110	0		Open	;	
158		n300		n277		762.43
8	110	0		Open	;	
160		n300		n421		332.30
8	110	0		Open	;	
161		n187		n205		950.06
6	110	0		Open	;	
163		n187		n420		1042.88
6	110	0		Open	;	
66		n261		n56		771.20
10	110	0		Open	;	
78		n10		n171		1045.68
8	110	0		Open	;	
81		n177		n241		921.09
8	110	0		Open	;	
83		n177		n246		905.00
8	110	0		Open	;	
84		n246		n241		324.66
8	110	0		Open	;	
88		n61		n60		331.79
8	110	0		Open	;	
164		n61		n62		432.52
8	110	0		Open	;	
170		n246		n63		497.03
8	110	0		Open	;	
178		n472		n63		1049.69
8	110	0		Open	;	

182		n63		n232		289
8	110	0		Open	;	
188		n14		n16		242.65
6	110	0		Open	;	
189		n13		n14		409.98
6	110	0		Open	;	
199		n473		n13		305.18
6	110	0		Open	;	
201		n65		n447		741
8	110	0		Open	;	
204		n447		n235		186
8	110	0		Open	;	
206		n251		n9		974.47
6	110	0		Open	;	
207		n253		n7		1054.59
8	110	0		Open	;	
208		n7		n20		857.45
8	110	0		Open	;	
209		n267		n266		702.04
8	110	0		Open	;	
222		n266		n197		276.27
8	110	0		Open	;	
223		n467		n451		145.20
6	110	0		Open	;	
224		n337		n179		436.79
8	110	0		Open	;	
226		n479		n477		328.51
10	110	0		Open	;	
227		n475		n4		481.79
10	110	0		Open	;	
228		n5		n4		650.77
6	110	0		Open	;	
229		n389		n390		1967.85
8	110	0		Open	;	
231		n26		n336		610.95
8	110	0		Open	;	
232		n197		n202		323.62
8	110	0		Open	;	
233		n202		n203		441.85
8	110	0		Open	;	
234		1		n29		783.22
6	110	0		Open	;	
235		n361		n453		796.77
6	110	0		Open	;	
236		n323		n468		209.49
6	110	0		Open	;	
237		n202		n199		393.93
8	110	0		Open	;	
238		n168		n169		703.84
8	110	0		Open	;	

239		n443		n444		766.33
8	110	0	Open	;		
240		n398	n400			342.34
8	110	0	Open	;		
241		n146	n143			596.77
8	110	0	Open	;		
242		n51	n143			813.68
8	110	0	Open	;		
243		n158	n160			260.44
6	110	0	Open	;		
244		n54	n160			663.81
6	110	0	Open	;		
245		n53	n500			368.82
8	110	0	Open	;		
246		n88	n192			695.68
8	110	0	Open	;		
247		n192	n193			671.38
8	110	0	Open	;		
248		n94	n96			264.38
6	110	0	Open	;		
249		n31	n32			580.69
8	110	0	Open	;		
250		6	n332			180.01
6	110	0	Open	;		
252		n31	6			261.97
8	110	0	Open	;		
253		n493	n192			313.33
8	110	0	Open	;		
254		n45	n33			1127.90
8	110	0	Open	;		
255		n334	n47			335.46
8	110	0	Open	;		
256		n333	n334			162.66
6	110	0	Open	;		
257		n334	6			268.10
8	110	0	Open	;		
258		n92	n91			343.11
8	110	0	Open	;		
259		n100	n99			934.28
8	110	0	Open	;		
260		n108	n111			370.74
6	110	0	Open	;		
262		n111	n105			454.76
6	110	0	Open	;		
263		n109	3			401.42
6	110	0	Open	;		
264		n108	n437			359.90
6	110	0	Open	;		
265		n437	n118			467.52
6	110	0	Open	;		

266		n156		n155		512.59
8	110	0	Open	;		
267		n105	n99			268.43
6	110	0	Open	;		
268		n39	n493			378.14
8	110	0	Open	;		
269		n37	n39			414.59
8	110	0	Open	;		
270		n91	n37			876.66
6	110	0	Open	;		
271		n36	n73			540.22
8	110	0	Open	;		
272		n37	n36			529.66
6	110	0	Open	;		
275		n516	n494			970.70
6	110	0	Open	;		
276		n494	n518			697.61
6	110	0	Open	;		
277		n516	n35			303.16
6	110	0	Open	;		
278		n421	n49			992.39
8	110	0	Open	;		
279		n49	n50			694.10
8	110	0	Open	;		
280		n121	n122			478.63
8	110	0	Open	;		
282		n123	n124			548.93
8	110	0	Open	;		
283		n124	n126			763.63
8	110	0	Open	;		
284		n126	n127			405.62
8	110	0	Open	;		
285		n127	n290			250.13
8	110	0	Open	;		
286		n290	n130			523.01
8	110	0	Open	;		
287		n130	n287			147.47
8	110	0	Open	;		
288		n130	n123			298.54
8	110	0	Open	;		
289		n130	n127			386.50
8	110	0	Open	;		
290		n127	n124			401.89
8	110	0	Open	;		
291		n122	n423			116.40
8	110	0	Open	;		
292		n429	n77			1795.21
8	110	0	Open	;		
294		n420	n131			1507.47
8	110	0	Open	;		

295		n410		n114		287.25
8	110	0	Open	;		
299		n20	n19			944.32
10	110	0	Open	;		
300		n267	n202			1043.14
8	110	0	Open	;		
301		n148	n140			598.67
8	110	0	Open	;		
12		n31	n94			431.60
8	110	0	Open	;		
29		16	n448			585.47
10	110	0	Open	;		
73		n391	17			857.50
8	110	0	Open	;		
57		n352	18			1075.25
12	110	0	Open	;		
61		n395	18			1191.25
8	110	0	Open	;		
50		n165	n496			97.54
12	110	0	Open	;		
52		10	n170			117.61
12	110	0	Open	;		
55		11	n170			72.98
12	110	0	Open	;		
15		n14	9			187.34
6	110	0	Open	;		
20		n63	9			216.45
8	110	0	Open	;		
27		n5	n9			226.88
8	110	0	Open	;		
91		n242	13			183.16
8	110	0	Open	;		
92		13	14			169.51
8	110	0	Open	;		
95		13	19			931.12
12	110	0	Open	;		
101		19	n305			182.91
12	110	0	Open	;		
105		19	15			149.74
12	110	0	Open	;		
115		13	n171			76.63
12	110	0	Open	;		
116		23	20			719.41
8	110	0	Open	;		
122		20	21			246.67
8	110	0	Open	;		
123		20	22			217.93
8	110	0	Open	;		
124		n187	23			595.37
8	110	0	Open	;		

125		23		n188		144.19
8	110	0		Open	;	
127		24		n205		638.33
2	110	0		Open	;	
85		n56		2001		276.85
10	110	0		Open	;	
64		18		25		585.78
8	110	0		Open	;	
129		25		26		1289.62
8	110	0		Open	;	
132		n448		14		347.23
8	120	0		Open	;	Future Loop
167		n246		n61		295.56
8	120	0		Open	;	
87		12		n257		385.66
8	110	0		Open	;	
220		n343		31		922.95
10	110	0		Open	;	
133		31		30		190.86
10	110	0		Open	;	
134		30		n477		289.69
10	110	0		Open	;	
135		30		32		542.66
10	110	0		Open	;	
136		35		33		224.72
8	110	0		Open	;	
137		33		34		245.70
8	110	0		Open	;	
138		33		32		157.40
8	110	0		Open	;	
139		32		12		163.33
8	110	0		Open	;	
143		n429		28		975.80
6	110	0		Open	;	
144		27		28		1896.12
6	110	0		Open	;	
149		n77		27		1008.76
6	110	0		Open	;	
154		29		n121		246.73
6	110	0		Open	;	
281		n122		37		263.64
8	110	0		Open	;	
156		37		n123		258.03
8	110	0		Open	;	
159		29		36		708.38
8	110	0		Open	;	
169		36		37		420.64
8	110	0		Open	;	
177		36		38		781.84
8	110	0		Open	;	

179		38		n124		282.03
8	110	0		Open	;	
184		38		39		257.23
8	110	0		Open	;	
152		n36		40		386.70
6	110	0		Open	;	
153		40		n516		262.18
6	110	0		Open	;	
185		40		41		80.36
2	110	0		Open	;	
187		41		n418		536.89
12	110	0		Open	;	
191		28		42		1774.68
8	120	0		Open	;	
194		27		43		1842.44
6	120	0		Open	;	
196		n78		43		248.40
6	120	0		Open	;	
151		n75		44		417.54
10	120	0		Open	;	
162		44		29		329.54
6	120	0		Open	;	
197		n496		45		414.71
10	120	0		Open	;	
198		45		46		308.98
10	120	0		Open	;	
200		46		n527		940.05
10	120	0		Open	;	
210		48		47		317.44
8	120	0		Open	;	
215		47		49		315.93
8	120	0		Open	;	
216		47		50		1244.39
8	120	0		Open	;	
217		48		51		1284.01
8	120	0		Open	;	
218		n397		52		6842.44
12	120	0		Open	;	
219		52		8		1040.67
12	120	0		Open	;	
225		49		52		128.68
8	120	0		Open	;	
19		n389		n376		1000
8	120	0		Open	;	
67		n385		53		934.06
6	110	0		Open	;	
150		54		n249		30.23
6	110	0		Open	;	
214		n253		n249		475.11
8	120	0		Open	;	

251		n387		55		550.28
6	120	0	Open	;		
261		55	n389		1592.93	
6	120	0	Open	;		
273		55	56		376.90	
8	120	0	Open	;		
274		56	57		348.73	
8	120	0	Open	;		
293		57	58		521.50	
8	120	0	Open	;		
296		57	59		273.60	
8	120	0	Open	;		
302		67	66		239.73	
8	100	0	Open	;		
303		68	69		515.18	
12	100	0	Open	;		
304		69	n397		564.91	
12	100	0	Open	;		
305		67	70		126.38	
8	100	0	Open	;		
306		n397	70		441.02	
8	100	0	Open	;		
307		68	67		600.86	
8	100	0	Open	;		
308		66	70		344.41	
8	100	0	Open	;		
310		n395	71		383.76	
8	100	0	Open	;		
311		71	n374		1044.87	
8	100	0	Open	;		
312		71	26		286.65	
8	100	0	Open	;		
313		26	n374		924.93	
8	100	0	Open	;		
65		61	60		316.15	
8	100	0	Open	;		
72		n179	60		95.82	
12	100	0	Open	;		
80		60	n181		291.71	
12	100	0	Open	;		
221		65	64		322.89	
8	100	0	Open	;		
297		62	64		66.52	
8	100	0	Open	;		
298		64	63		321.65	
8	100	0	Open	;		
309		n475	65		1054.71	
6	100	0	Open	;		
314		n249	65		994.40	
6	100	0	Open	;		

315		73		72		214.64
8	100	0		Open	;	
316		n177		72		189.86
8	100	0		Open	;	
317		72		n174		110.74
8	100	0		Open	;	
318		n75		74		1150.07
8	100	0		Open	;	
319		7		74		258.54
8	100	0		Open	;	
320		74		75		280.24
8	100	0		Open	;	
321		76		40		225.84
8	100	0		Open	;	
322		n158		80		407.33
12	100	0		Open	;	
323		80		81		480.42
12	100	0		Open	;	
324		41		81		911.62
12	100	0		Open	;	
325		80		79		77.50
8	100	0		Open	;	
326		81		77		78.19
8	100	0		Open	;	
327		77		78		104.66
8	100	0		Open	;	
328		77		79		481.62
8	100	0		Open	;	
329		56		83		434.90
12	100	0		Open	;	
330		83		82		204.94
12	100	0		Open	;	
331		57		82		586.61
12	100	0		Open	;	
186		59		84		238.89
12	100	0		Open	;	
205		59		58		265.56
12	100	0		Open	;	
230		85		58		130.21
12	100	0		Open	;	
332		86		59		119.63
12	100	0		Open	;	
333		35		87		230.43
8	100	0		Open	;	
334		n343		87		398.24
8	100	0		Open	;	
335		87		88		549.18
8	100	0		Open	;	
337		n58		89		1966.60
8	100	0		Open	;	

339		16	n58	405.53
10	100	0	Closed ;	
340		89	n261	106.02
8	100	0	Open ;	
341		n261	n58	499.89
8	100	0	Open ;	
[PUMPS]				
;ID		Node1	Node2	Parameters
4002		1002	n440	HEAD 2
;Well_#2				
4001		1001	n361	HEAD 1
;Allen_St_Well_(Well_#1)		1003	n512	HEAD 3
4003			n518	HEAD 5
;Anderson_Well_(Well_#3)		1005		
4005			2001	HEAD 4
;Well_#5		1004		
4004				
;East_Bench_Well_(Well_#4)				
[VALVES]				
;ID		Node1	Node2	Diameter
Type	Setting	MinorLoss		
71		17	n374	6
PRV	74	0	;PRV north line	
76		n475	n390	8
PRV	80	0	;	
79		n410	n408	8
PRV	76	0	;	
82		n91	n158	6
PRV	69.75	0	;	
42		n496	8	8
PRV	70	0	;Pointe Perry PRV	
202		53	54	6
PRV	100	0	;	
336		n58	n256	6
PRV	68	0	;	
[TAGS]				
NODE	1002	Well_House_#2		
[DEMANDS]				
;Junction		Demand	Pattern	Category
[STATUS]				
;ID		Status/Setting		
4001		Closed		
4005		Closed		
79		Closed		

[PATTERNS]

;ID	Multipliers
;	
1	0.38

[CURVES]

;ID	X-Value	Y-Value
;PUMP: PUMP: Well House #1 Pump Curve	180	172
1	500	240
;PUMP: PUMP: Well House #3 Pump Curve	400	165
;PUMP: PUMP: Well House #4 Pump Curve	900	205
;PUMP: PUMP: Well House #5 Pump Curve	800	100
5		

[CONTROLS]

[RULES]

[ENERGY]

Global Efficiency	75
Global Price	0
Demand Charge	0

[EMITTERS]

;Junction	Coefficient
-----------	-------------

[QUALITY]

;Node	InitQual
-------	----------

[SOURCES]

;Node	Type	Quality	Pattern
-------	------	---------	---------

[REACTIONS]

;Type	Pipe/Tank	Coefficient
-------	-----------	-------------

[REACTIONS]

Order Bulk	1
Order Tank	1
Order Wall	1
Global Bulk	0
Global Wall	0
Limiting Potential	0
Roughness Correlation	0

[MIXING]
;Tank Model

[TIMES]
Duration 0:00
Hydraulic Timestep 1:00
Quality Timestep 0:05
Pattern Timestep 1:00
Pattern Start 0:00
Report Timestep 1:00
Report Start 0:00
Start ClockTime 12 am
Statistic None

[REPORT]
Status No
Summary No
Page 0

[OPTIONS]
Units GPM
Headloss H-W
Specific Gravity 1
Viscosity 1
Trials 40
Accuracy 0.001
CHECKFREQ 2
MAXCHECK 10
DAMPLIMIT 0
Unbalanced Continue 10
Pattern 1
Demand Multiplier 1
Emitter Exponent 0.5
Quality None mg/L
Diffusivity 1
Tolerance 0.01

[COORDINATES]
;Node X-Coord Y-Coord
n4 1497841.749 3698471.225
n5 1497684.473 3697841.409
n7 1497375.333 3696274.206
n9 1497512.329 3697705.481
n10 1497746.344 3699077.929
n13 1498918.757 3700387.789
n14 1499289.376 3700265.051
n16 1499371.083 3700481.726
n19 1497833.624 3695439.548
n20 1498231.906 3696286.868

n21	1495136.692	3694594.759
n24	1497138.022	3693729.204
n26	1496188.792	3692872.314
n28	1497415.679	3694613.468
n29	1496098.285	3693415.936
n30	1495296.329	3692226.464
n31	1495227.118	3692054.041
n32	1495710.828	3692226.254
n33	1493830.989	3690478.966
n35	1492789.372	3689825.022
n36	1492932.345	3690763.412
n37	1493069.961	3691265.134
n39	1493445.445	3691362.769
n41	1493849.447	3691061.625
n42	1494032.491	3691059.008
n43	1493842.872	3690785.586
n44	1494059.108	3690782.734
n45	1494449.286	3691183.897
n46	1494555.944	3691142.675
n47	1494651.153	3691433.412
n48	1494810.668	3691316.395
n49	1492153.115	3690153.311
n50	1492253.226	3690825.354
n51	1492485.819	3692950.653
n52	1491632.199	3692886.209
n53	1492435.192	3692707.293
n54	1492334.592	3692342.557
n56	1500491.916	3698076.730
n58	1499221.174	3698052.510
n60	1499629.471	3699577.717
n61	1499430.261	3699292.742
n62	1499849.231	3699205.648
n63	1499381.749	3699900.838
n65	1499671.339	3700090.500
n68	1493038.416	3695012.563
n69	1493249.650	3694915.435
n70	1493839.411	3694624.615
n73	1493515.927	3690630.206
n75	1491141.796	3689419.545
n77	1492955.384	3687175.337
n78	1493293.027	3684092.616
n79	1495475.356	3694595.466
n80	1495458.039	3694813.161
n83	1495765.715	3695053.480
n84	1495374.987	3695368.985
n88	1494301.230	3692050.199
n91	1493340.407	3692098.271
n92	1493682.148	3692067.624
n93	1493643.128	3691903.888
n94	1494812.933	3692006.960

n96	1494762.816	3691762.858
n97	1494325.914	3692759.334
n99	1495147.049	3692583.076
n100	1494313.669	3692460.772
n101	1495577.385	3693144.934
n102	1495260.856	3692717.344
n105	1494922.876	3692730.728
n106	1495205.788	3693170.359
n108	1494481.711	3693123.412
n109	1494740.094	3693118.204
n110	1494739.873	3692992.213
n111	1494472.348	3692759.001
n113	1494744.415	3693773.187
n114	1494818.895	3694057.652
n116	1495022.345	3693730.355
n118	1495045.046	3693405.892
n121	1491143.880	3688403.976
n122	1490693.810	3688274.787
n123	1490160.935	3688265.320
n124	1489656.402	3688407.824
n126	1489293.237	3688020.694
n127	1489692.758	3688012.150
n130	1490107.014	3687977.008
n131	1491375.123	3691954.075
n137	1493009.002	3693552.926
n140	1491894.135	3693937.491
n142	1491703.672	3693171.850
n143	1492920.057	3693582.718
n146	1492942.827	3694128.270
n147	1492666.411	3694234.732
n148	1492493.758	3693726.287
n150	1490900.667	3694888.902
n151	1490755.796	3694415.057
n152	1493512.111	3693927.394
n155	1493324.060	3693289.998
n156	1493851.640	3693138.748
n157	1493610.795	3692756.842
n158	1493258.376	3692131.222
n159	1493161.485	3692757.531
n160	1492997.931	3692190.622
n165	1492433.913	3696187.259
n168	1494052.312	3695379.352
n169	1494279.531	3695886.715
n170	1497456.955	3693711.495
n171	1498774.808	3698975.026
n174	1498034.548	3699530.430
n177	1498319.358	3699520.901
n179	1497977.457	3699579.105
n181	1497599.205	3699616.846
n182	1497786.407	3700053.055

n183	1497685.383	3699852.652
n184	1497053.085	3699937.080
n187	1490076.885	3690568.952
n188	1489993.589	3689839.303
n192	1494106.341	3691432.741
n193	1493997.680	3692059.676
n194	1494009.764	3692766.853
n195	1496529.190	3694014.001
n197	1496310.929	3695018.737
n199	1496994.433	3694942.316
n201	1497197.710	3694951.547
n202	1496630.265	3695063.434
n203	1496630.043	3694560.425
n205	1489085.279	3690649.000
n212	1489166.953	3693083.353
n232	1499671.079	3699902.829
n235	1500357.663	3700257.415
n241	1498976.621	3699202.883
n242	1498894.437	3699060.051
n246	1499180.678	3699467.330
n249	1496260.425	3696749.332
n251	1497540.522	3696733.240
n253	1496724.649	3696711.678
n256	1498603.470	3698149.816
n257	1498569.138	3697902.009
n261	1499720.742	3698070.458
n266	1496021.992	3695018.470
n267	1496030.542	3695708.110
n272	1496310.280	3695273.745
n274	1496310.859	3694856.950
n277	1490335.004	3689836.636
n287	1490183.070	3687933.723
n290	1489695.295	3687755.579
n291	1489687.005	3687619.018
n300	1490802.210	3690168.447
n305	1499802.900	3699108.254
n308	1499921.605	3699342.032
n314	1496026.453	3694320.686
n315	1496023.895	3694579.697
n316	1496313.724	3694021.833
n320	1495458.010	3694044.861
n323	1496932.385	3694548.903
n324	1495786.851	3694031.359
n325	1496116.654	3694021.771
n332	1495307.466	3691711.246
n333	1495055.643	3691496.702
n334	1494940.034	3691610.417
n335	1496437.584	3694011.084
n336	1496433.494	3693401.998
n337	1497736.253	3699214.949

n338	1497455.502	3698796.736
n339	1493034.811	3687175.389
n343	1498235.307	3696775.182
n345	1497389.689	3695136.789
n352	1494589.306	3700047.565
n357	1488504.538	3693240.425
n358	1496946.078	3694830.747
n361	1496625.935	3694013.664
n362	1496318.923	3694571.761
n367	1493912.611	3694722.491
n369	1490344.919	3690196.161
n374	1497771.846	3700594.415
n376	1495965.108	3696905.832
n385	1495718.135	3695894.263
n387	1495015.661	3694964.326
n389	1496171.325	3696769.247
n390	1497262.761	3698507.757
n391	1498620.345	3700571.004
n395	1496931.127	3700022.321
n397	1487998.938	3700530.959
n398	1493050.572	3694414.173
n399	1493624.932	3694208.224
n400	1492767.866	3694579.439
n406	1494353.856	3695247.497
n407	1494650.896	3694390.337
n408	1494447.443	3694062.360
n409	1494166.760	3693644.112
n410	1494552.517	3694062.542
n416	1492440.383	3690148.580
n418	1492720.414	3690156.179
n420	1491162.466	3690470.625
n421	1491160.802	3690165.845
n423	1490689.328	3688402.082
n424	1490152.487	3688391.041
n429	1491160.179	3687172.743
n430	1492712.422	3689671.273
n436	1493781.286	3692838.742
n437	1494588.492	3693465.262
n438	1495441.814	3693296.633
n440	1495855.177	3694029.228
n443	1493377.065	3694860.836
n444	1493776.262	3695497.987
n445	1493611.314	3694755.834
n446	1493706.529	3694883.078
n447	1500279.019	3700425.529
n448	1498636.413	3698460.131
n449	1493142.725	3686162.764
n450	1496528.392	3693781.114
n451	1497235.766	3694546.821
n453	1497414.725	3694001.451

n457	1494921.356	3694647.574
n458	1495704.684	3694341.749
n459	1495753.339	3694588.956
n460	1495161.161	3694364.254
n467	1497249.858	3694438.845
n468	1496931.161	3694333.884
n472	1498374.959	3700045.416
n473	1498617.154	3700410.366
n475	1497361.976	3698477.122
n477	1498097.700	3697921.664
n478	1498305.231	3697918.830
n479	1498169.444	3698238.656
n480	1498343.749	3698231.458
n481	1498182.161	3698468.058
n493	1493820.683	3691327.355
n494	1493825.201	3690122.128
n495	1496537.638	3693402.220
n496	1492411.036	3696092.439
n500	1492746.113	3692533.085
n511	1491542.751	3692532.751
n512	1494511.109	3692055.369
n516	1492815.762	3690127.032
n518	1494496.102	3690285.769
n527	1492018.701	3694475.648
1	1495697.940	3692757.068
2	1495876.202	3692628.148
3	1495128.290	3693064.058
4	1497058.399	3699628.988
5	1499908.696	3699905.008
6	1495131.960	3691789.190
7	1489994.413	3689683.423
16	1499221.881	3698458.038
17	1497772.194	3700642.830
18	1495656.272	3700040.261
8	1492260.022	3696157.099
9	1499385.374	3700109.192
12	1498560.217	3697523.655
13	1498840.623	3698964.487
14	1498740.700	3698782.981
15	1499711.397	3698796.239
19	1499768.062	3698950.131
20	1489284.788	3689938.346
21	1489315.796	3689693.636
22	1489241.513	3690151.938
23	1490000.542	3689983.328
24	1488416.492	3690706.178
25	1495654.265	3700700.361
26	1496943.861	3700692.616
30	1498145.224	3697647.825
31	1497992.907	3697532.821

32	1498566.258	3697360.989
33	1498633.777	3697220.649
34	1498879.462	3697218.396
35	1498632.782	3696995.928
27	1493057.814	3686171.793
28	1491161.864	3686196.941
29	1491146.153	3688672.567
36	1490437.815	3688680.702
37	1490422.236	3688260.348
38	1489656.024	3688689.849
39	1489400.373	3688718.304
40	1492838.758	3690388.206
41	1492759.897	3690403.679
42	1491201.318	3684394.616
43	1493264.917	3684341.031
44	1491138.760	3689002.020
45	1492310.569	3695690.085
46	1492236.168	3695390.193
47	1491128.445	3696151.096
48	1491007.651	3695857.538
49	1491250.635	3696442.438
50	1492284.397	3695696.858
51	1492203.935	3695397.248
52	1491300.887	3696560.895
53	1496224.239	3696679.333
54	1496246.543	3696722.478
55	1495309.901	3695429.333
56	1495034.175	3695682.019
57	1494765.212	3695901.696
58	1494705.133	3696293.541
59	1494914.913	3696130.706
66	1487441.684	3700240.184
67	1487441.891	3700479.914
68	1487441.762	3701080.772
69	1487956.801	3701092.793
70	1487568.271	3700479.684
71	1496938.292	3700406.017
60	1497890.344	3699617.362
61	1498038.184	3699893.886
62	1497082.389	3697407.466
63	1497093.941	3697795.467
64	1497084.343	3697473.957
65	1496789.526	3697591.282
72	1498135.318	3699484.502
73	1498035.612	3699294.422
74	1489991.741	3689424.901
75	1489989.513	3689144.669
76	1493062.967	3690375.258
77	1492917.376	3691304.631
78	1492816.140	3691331.168

79	1493043.184	3691769.531
80	1493117.883	3691748.890
81	1492993.058	3691284.973
82	1494620.779	3695436.213
83	1494790.714	3695321.657
84	1495099.775	3695979.404
85	1494776.721	3696390.947
86	1494980.386	3696230.825
87	1498633.434	3696765.498
88	1498663.676	3696219.492
89	1499720.742	3697964.440
1004	1499327.218	3697987.340
1001	1496671.164	3693958.330
1002	1495836.431	3694116.008
1003	1494513.386	3692003.386
1005	1494522.614	3690043.906
2001	1500721.000	3697981.685
10	1497553.820	3693778.206
11	1497555.415	3693721.167

[VERTICES]

;Link	X-Coord	Y-Coord
p26	1494689.530	3691392.381
p26	1494757.231	3691346.894
p42	1495478.445	3694760.370
p44	1495511.135	3695233.114
p50	1493673.206	3691971.994
p61	1494813.908	3693976.510
p95	1497280.046	3693654.883
p191	1495761.115	3693385.312
p323	1495750.062	3694366.741
p324	1495434.030	3694347.076
p365	1494741.363	3691993.226
p365	1494656.737	3692004.862
p365	1494571.758	3692034.347
16	1494960.217	3692830.845
16	1494982.849	3692879.879
23	1493902.831	3692781.810
23	1493858.826	3692794.383
33	1493710.314	3694432.566
35	1494125.518	3694970.253
36	1491999.884	3692807.732
37	1492465.513	3692924.193
45	1493784.362	3694673.750
86	1497842.065	3696738.122
89	1497091.556	3694903.702
89	1497150.649	3694908.731
103	1495756.307	3694788.031
103	1495731.161	3694891.129
103	1495738.705	3694996.742

104	1495802.027	3695030.744
104	1495940.070	3695020.808
1	1497343.140	3693909.937
102	1494855.147	3693737.540
126	1494615.482	3691409.306
126	1494519.220	3691310.928
126	1494473.734	3691241.112
146	1493857.812	3693792.103
146	1493987.924	3693742.385
147	1495027.699	3694597.036
173	1491469.576	3694685.955
173	1492018.322	3694492.998
5	1493820.166	3691240.115
5	1493847.827	3691187.309
11	1497002.781	3693758.592
190	1492811.498	3689372.023
190	1492921.076	3688245.765
190	1492958.988	3687888.973
192	1493593.316	3692549.847
195	1495133.449	3694389.214
212	1493145.435	3694666.345
69	1497586.572	3699910.331
70	1497761.642	3699968.641
77	1497602.644	3699717.621
108	1492667.666	3697055.765
108	1492853.954	3697559.247
108	1493252.836	3698288.577
108	1494462.465	3699962.986
141	1498252.505	3696310.037
141	1498251.522	3696518.406
141	1498236.779	3696532.166
158	1490799.991	3689903.630
158	1490764.767	3689845.762
78	1497797.930	3699059.287
78	1498083.661	3699048.704
78	1498276.264	3698974.626
81	1498330.163	3699260.585
81	1498848.958	3699264.471
83	1498513.092	3699587.902
83	1498981.446	3699578.134
83	1499079.727	3699546.544
164	1499555.530	3699255.571
164	1499615.902	3699248.551
164	1499708.566	3699249.955
164	1499787.191	3699233.809
170	1499378.750	3699744.525
178	1498426.315	3700023.906
178	1499048.573	3700021.789
178	1499101.486	3700000.624
178	1499167.098	3699930.779

178	1499230.594	3699907.497
188	1499357.138	3700348.336
188	1499371.954	3700405.482
189	1499076.278	3700389.787
189	1499140.485	3700377.156
189	1499188.263	3700347.734
189	1499239.060	3700311.753
199	1498681.967	3700388.550
201	1499686.563	3700146.767
201	1499722.852	3700179.497
201	1499772.659	3700202.266
201	1499920.658	3700200.131
201	1500013.868	3700222.900
201	1500072.925	3700254.919
201	1500110.637	3700286.938
201	1500188.194	3700371.611
206	1497549.766	3697381.926
207	1496730.123	3696564.957
207	1496697.558	3696474.662
207	1496687.936	3696396.950
207	1496700.518	3696356.984
207	1496754.547	3696318.498
207	1496803.394	3696298.515
207	1497103.882	3696286.673
208	1497619.641	3696294.417
209	1496000.309	3695637.278
209	1496001.082	3695050.497
228	1497801.969	3698233.836
228	1497841.298	3698438.906
231	1496426.225	3693179.116
232	1496402.872	3695019.108
234	1496000.001	3693153.970
234	1496049.036	3693225.636
234	1496079.211	3693302.331
237	1496716.882	3695069.665
237	1496794.834	3695049.548
238	1494154.679	3695578.111
238	1494274.213	3695676.489
238	1494400.095	3695763.230
239	1493524.673	3695147.968
239	1493562.755	3695197.686
239	1493669.596	3695269.618
240	1492800.584	3694514.018
241	1492918.463	3694044.923
241	1492904.711	3693927.505
241	1492978.759	3693879.902
241	1492962.891	3693744.501
242	1492532.994	3693001.353
242	1492670.733	3693066.520
242	1492738.862	3693109.471

242	1492796.623	3693185.005
245	1492627.752	3692644.295
246	1494288.614	3691619.813
246	1494257.937	3691563.749
246	1494154.270	3691463.255
247	1493977.225	3691600.218
248	1494834.452	3691923.409
248	1494818.585	3691853.593
249	1495350.961	3692007.809
249	1495514.501	3692020.389
253	1493927.036	3691334.413
253	1494025.105	3691370.874
254	1494308.105	3690611.365
254	1494276.210	3690527.987
254	1494214.409	3690484.445
254	1494145.584	3690471.804
256	1494955.044	3691589.136
257	1495040.728	3691669.531
257	1495096.793	3691729.827
259	1494598.939	3692447.448
259	1494674.756	3692421.474
259	1494747.062	3692383.565
259	1494815.157	3692366.717
259	1494869.211	3692366.015
259	1494926.073	3692380.757
259	1495013.824	3692428.494
262	1494829.459	3692759.179
263	1495031.883	3693116.251
264	1494492.503	3693206.776
264	1494527.708	3693312.389
265	1494684.068	3693418.704
268	1493500.813	3691368.360
269	1493230.494	3691237.601
269	1493278.271	3691250.174
269	1493414.059	3691349.500
270	1493326.049	3692071.188
270	1493277.014	3691932.886
270	1493192.775	3691685.198
275	1493016.297	3690112.230
275	1493712.201	3690113.668
276	1494045.858	3690122.062
276	1494323.966	3690195.101
279	1492145.496	3690361.440
279	1492175.688	3690472.144
279	1492246.136	3690602.976
279	1492248.652	3690693.552
280	1490977.542	3688391.223
280	1490810.321	3688293.154
282	1489977.723	3688263.762
282	1489890.247	3688284.402

282	1489774.268	3688389.570
283	1489299.539	3688404.313
283	1489258.258	3688355.169
283	1489267.563	3688058.168
286	1489946.503	3687757.674
288	1490156.471	3688092.115
289	1490021.940	3688005.361
289	1489795.627	3688011.648
294	1491161.740	3691018.116
299	1498222.363	3696173.476
300	1496335.774	3695576.089
300	1496643.378	3695435.630
12	1495153.915	3692084.199
12	1495060.827	3692083.141
73	1498574.472	3700599.600
73	1498173.333	3700621.215
73	1497774.697	3700648.581
15	1499352.894	3700199.900
95	1498902.755	3698942.878
116	1489697.983	3689986.658
116	1489499.220	3689976.594
124	1490051.212	3690121.260
85	1500661.630	3698070.740
132	1498642.423	3698593.652
132	1498682.637	3698682.546
220	1498154.387	3697335.553
220	1497979.328	3697352.765
220	1497985.249	3697489.686
134	1498120.435	3697672.071
134	1498102.663	3697700.211
134	1498096.738	3697763.897
135	1498298.163	3697485.457
135	1498357.405	3697401.037
135	1498437.382	3697365.491
138	1498615.530	3697259.942
138	1498577.198	3697316.949
138	1498568.502	3697351.945
139	1498560.489	3697385.750
216	1492066.098	3695750.810
217	1491928.506	3695471.413
217	1492021.872	3695440.525
218	1488073.993	3700409.511
218	1488179.724	3700331.472
218	1488232.589	3700292.452
218	1488285.455	3700253.432
218	1488486.847	3700067.144
218	1488582.509	3699810.369
218	1488602.648	3699619.046
218	1488548.739	3698769.190
218	1488837.866	3698755.422

218	1488798.009	3697772.148
218	1488755.732	3696783.343
218	1490883.679	3696736.992
214	1496308.684	3696715.164
273	1495208.674	3695522.921
273	1495140.973	3695609.662
274	1494982.300	3695709.098
293	1494564.967	3696093.853
304	1487960.848	3700806.986
304	1487972.426	3700666.643
306	1487926.991	3700500.307
306	1487666.305	3700500.658
306	1487621.044	3700481.010
308	1487531.862	3700239.878
308	1487567.664	3700277.085
311	1497764.823	3700376.704
313	1497758.339	3700688.140
313	1497756.233	3700593.369
65	1497907.044	3699683.669
72	1497933.567	3699604.591
80	1497839.263	3699624.238
221	1496895.604	3697526.342
221	1496955.035	3697495.890
221	1497019.377	3697478.699
316	1498202.116	3699483.520
321	1492868.958	3690378.205
331	1494523.438	3695537.934
331	1494576.513	3695493.705
331	1494610.914	3695477.979
230	1494705.087	3696288.413
335	1498636.140	3696646.298
335	1498663.676	3696526.320
335	1498661.709	3696380.773
337	1499228.728	3697482.374
337	1499281.031	3697267.511
337	1499354.536	3697157.253
337	1499391.289	3697124.740
337	1499463.381	3697112.018
337	1499507.202	3697127.567
337	1499545.369	3697168.561
337	1499652.800	3697509.232
337	1499671.176	3697606.769
337	1499700.862	3697762.261
337	1499712.170	3697900.792
4004	1499407.792	3698045.296
4004	1500648.908	3698048.123
336	1499133.858	3698053.184
336	1498974.125	3698140.826

[LABELS]

;X-Coord Y-Coord Label & Anchor Node
1499763.454 3698014.750 "Valves closed on line here. "

[BACKDROP]
DIMENSIONS 1482224.213 3669954.616 1524097.595
3726569.104
UNITS Feet
FILE G:\Clients\Perry City\Studies and Planning\Water\2023 Perry
Utah Culinary Water Capital Facilities Plan\Drawings\aerial WATER MODEL 2021-UPDATE
enhanced.emf
OFFSET -11894.68 22935.68

[END]

2023 MODEL FF RESULTS (CURRENT CONDITIONS)

"Check_Node", "Maximal_Flow", "Violating_Node", "Minimal_pressure"
"n4", "Maximal flow was reached"
"n5", "Maximal flow was reached"
"n7", "Maximal flow was reached"
"n9", "Maximal flow was reached"
"n10", "Maximal flow was reached"
"n13", 1490, "15", 19.96951
"n14", 1490, "15", 19.93956
"n16", 1490, "15", 19.93961
"n19", "Maximal flow was reached"
"n20", "Maximal flow was reached"
"n21", "Maximal flow was reached"
"n24", "Maximal flow was reached"
"n26", 580, "n26", 19.6355
"n28", "Maximal flow was reached"
"n29", "Maximal flow was reached"
"n30", 1060, "n46", 19.92845
"n31", 1020, "n46", 19.90349
"n32", 1020, "n46", 19.89787
"n33", 950, "n46", 19.9476
"n35", 1270, "n46", 19.99441
"n36", 1150, "n46", 19.99199
"n37", 1090, "n46", 19.90589
"n39", 1070, "n46", 19.8999
"n41", 1010, "n46", 19.86634
"n42", 1010, "n46", 19.86082
"n43", 980, "n46", 19.86461
"n44", 980, "n46", 19.85901
"n45", 810, "n46", 19.92437
"n46", 360, "n46", 19.90694
"n47", 850, "n46", 19.89811
"n48", 330, "n48", 19.90904
"n49", "Maximal flow was reached"
"n50", "Maximal flow was reached"
"n51", "Maximal flow was reached"
"n52", "Maximal flow was reached"
"n53", "Maximal flow was reached"
"n54", "Maximal flow was reached"
"n56", "Maximal flow was reached"
"n58", "Maximal flow was reached"
"n60", 1450, "15", 19.99405
"n61", 1460, "15", 19.8862
"n62", 1400, "15", 19.91205
"n63", 1490, "15", 19.96382
"n65", 1360, "n235", 19.91878
"n68", "Maximal flow was reached"
"n69", "Maximal flow was reached"
"n70", "Maximal flow was reached"
"n73", 1150, "n46", 19.98767
"n75", "Maximal flow was reached"

"n77",860,"n77",19.33246
"n78",550,"n78",19.88834
"n79","Maximal flow was reached"
"n80","Maximal flow was reached"
"n83","Maximal flow was reached"
"n84","Maximal flow was reached"
"n88",1150,"n46",19.8708
"n91",1150,"n46",19.97034
"n92",1150,"n46",19.93107
"n93",1150,"n46",19.92078
"n94",1080,"n46",19.8773
"n96",1080,"n46",19.86654
"n97",1270,"n46",19.94233
"n99",1350,"n46",19.98866
"n100",1270,"n46",19.89519
"n101","Maximal flow was reached"
"n102",1450,"n46",19.91207
"n105",1340,"n46",19.90812
"n106",1350,"n46",19.90973
"n108",1400,"n46",19.9284
"n109",1370,"n46",19.95092
"n110",1370,"n46",19.94645
"n111",1320,"n46",19.92516
"n113","Maximal flow was reached"
"n114","Maximal flow was reached"
"n116","Maximal flow was reached"
"n118","Maximal flow was reached"
"n121",1410,"n77",19.62025
"n122",1440,"n77",19.98627
"n123",1470,"n77",19.54358
"n124",1470,"n77",19.70942
"n126",1470,"n77",19.73343
"n127",1470,"n77",19.62585
"n130",1470,"n77",19.55309
"n131","Maximal flow was reached"
"n137","Maximal flow was reached"
"n140","Maximal flow was reached"
"n142","Maximal flow was reached"
"n143","Maximal flow was reached"
"n146","Maximal flow was reached"
"n147","Maximal flow was reached"
"n148","Maximal flow was reached"
"n150","Maximal flow was reached"
"n151","Maximal flow was reached"
"n152","Maximal flow was reached"
"n155","Maximal flow was reached"
"n156","Maximal flow was reached"
"n157","Maximal flow was reached"
"n158","Maximal flow was reached"
"n159","Maximal flow was reached"

"n160","Maximal flow was reached"
"n165","Maximal flow was reached"
"n168","Maximal flow was reached"
"n169","Maximal flow was reached"
"n170","Maximal flow was reached"
"n171","Maximal flow was reached"
"n174",1500,"15",19.9796
"n177",1500,"15",19.97554
"n179","Maximal flow was reached"
"n181","Maximal flow was reached"
"n182","Maximal flow was reached"
"n183","Maximal flow was reached"
"n184","Maximal flow was reached"
"n187","Maximal flow was reached"
"n188","Maximal flow was reached"
"n192",1100,"n46",19.92207
"n193",1150,"n46",19.94399
"n194",1200,"n46",19.99759
"n195","Maximal flow was reached"
"n197","Maximal flow was reached"
"n199","Maximal flow was reached"
"n201","Maximal flow was reached"
"n202","Maximal flow was reached"
"n203","Maximal flow was reached"
"n205",1200,"n205",19.25852
"n212",310,"n212",18.00494
"n232",1490,"n235",19.75731
"n235",1010,"n235",19.94977
"n241",1500,"15",19.92382
"n242",1500,"15",19.93611
"n246",1480,"15",19.99824
"n249","Maximal flow was reached"
"n251","Maximal flow was reached"
"n253","Maximal flow was reached"
"n256","Maximal flow was reached"
"n257","Maximal flow was reached"
"n261","Maximal flow was reached"
"n266","Maximal flow was reached"
"n267","Maximal flow was reached"
"n272","Maximal flow was reached"
"n274",1220,"n274",19.30805
"n277","Maximal flow was reached"
"n287",1460,"n77",19.95647
"n290",1470,"n77",19.54287
"n291",1460,"n77",19.96512
"n300","Maximal flow was reached"
"n305",1370,"15",19.99801
"n308",1390,"n308",19.86022
"n314","Maximal flow was reached"
"n315","Maximal flow was reached"

"n316","Maximal flow was reached"
"n320","Maximal flow was reached"
"n323","Maximal flow was reached"
"n324","Maximal flow was reached"
"n325","Maximal flow was reached"
"n332",800,"n332",19.9508
"n333",780,"n333",19.88187
"n334",900,"n46",19.91381
"n335","Maximal flow was reached"
"n336",640,"n26",19.76411
"n337","Maximal flow was reached"
"n338","Maximal flow was reached"
"n339",910,"n339",18.87643
"n343","Maximal flow was reached"
"n345","Maximal flow was reached"
"n352","Maximal flow was reached"
"n357",300,"n357",15.04705
"n358","Maximal flow was reached"
"n361","Maximal flow was reached"
"n362","Maximal flow was reached"
"n367","Maximal flow was reached"
"n369","Maximal flow was reached"
"n374","Maximal flow was reached"
"n376","Maximal flow was reached"
"n385","Maximal flow was reached"
"n387","Maximal flow was reached"
"n389","Maximal flow was reached"
"n390","Maximal flow was reached"
"n391","Maximal flow was reached"
"n395","Maximal flow was reached"
"n397","Maximal flow was reached"
"n398","Maximal flow was reached"
"n399","Maximal flow was reached"
"n400","Maximal flow was reached"
"n406","Maximal flow was reached"
"n407","Maximal flow was reached"
"n408","Maximal flow was reached"
"n409","Maximal flow was reached"
"n410","Maximal flow was reached"
"n416","Maximal flow was reached"
"n418","Maximal flow was reached"
"n420","Maximal flow was reached"
"n421","Maximal flow was reached"
"n423",1440,"n77",19.89038
"n424",1460,"n77",19.94712
"n429",910,"n77",19.03803
"n430",910,"n430",19.70205
"n436",1240,"n46",19.98525
"n437","Maximal flow was reached"
"n438","Maximal flow was reached"

"n440","Maximal flow was reached"
"n443","Maximal flow was reached"
"n444","Maximal flow was reached"
"n445","Maximal flow was reached"
"n446","Maximal flow was reached"
"n447",1070,"n235",19.59733
"n448","Maximal flow was reached"
"n449",870,"n449",19.74402
"n450","Maximal flow was reached"
"n451","Maximal flow was reached"
"n453","Maximal flow was reached"
"n457","Maximal flow was reached"
"n458","Maximal flow was reached"
"n459","Maximal flow was reached"
"n460","Maximal flow was reached"
"n467","Maximal flow was reached"
"n468","Maximal flow was reached"
"n472",1490,"15",19.98166
"n473",1490,"15",19.92242
"n475","Maximal flow was reached"
"n477","Maximal flow was reached"
"n478","Maximal flow was reached"
"n479","Maximal flow was reached"
"n480","Maximal flow was reached"
"n481","Maximal flow was reached"
"n493",1050,"n46",19.92223
"n494",980,"n46",19.95493
"n495",640,"n26",19.74938
"n496","Maximal flow was reached"
"n500","Maximal flow was reached"
"n511","Maximal flow was reached"
"n512",1130,"n46",19.9887
"n516",1210,"n46",19.9245
"n518",560,"n518",19.54988
"n527","Maximal flow was reached"
"1",1220,"n46",19.92874
"2",960,"2",19.75853
"3",1350,"n46",19.91884
"4","Maximal flow was reached"
"5",1380,"5",19.99872
"6",950,"n46",19.93371
"7","Maximal flow was reached"
"16","Maximal flow was reached"
"17","Maximal flow was reached"
"18","Maximal flow was reached"
"8","Maximal flow was reached"
"9",1490,"15",19.91956
"12","Maximal flow was reached"
"13","Maximal flow was reached"
"14","Maximal flow was reached"

"15",1340,"15",19.90645
"19",1370,"15",19.96855
"20","Maximal flow was reached"
"21","Maximal flow was reached"
"22","Maximal flow was reached"
"23","Maximal flow was reached"
"24",600,"24",18.12255
"25","Maximal flow was reached"
"26","Maximal flow was reached"
"30","Maximal flow was reached"
"31","Maximal flow was reached"
"32","Maximal flow was reached"
"33","Maximal flow was reached"
"34","Maximal flow was reached"
"35","Maximal flow was reached"
"27",860,"n78",19.54326
"28",900,"n77",19.83944
"29","Maximal flow was reached"
"36",1480,"n77",19.54731
"37",1460,"n77",19.78935
"38",1470,"n77",19.74814
"39",1470,"n77",19.61572
"40",1240,"n46",19.95518
"41","Maximal flow was reached"
"42",900,"n77",19.60035
"43",570,"n78",18.77142
"44","Maximal flow was reached"
"45","Maximal flow was reached"
"46","Maximal flow was reached"
"47","Maximal flow was reached"
"48","Maximal flow was reached"
"49","Maximal flow was reached"
"50","Maximal flow was reached"
"51","Maximal flow was reached"
"52","Maximal flow was reached"
"53",1450,"53",19.12543
"54","Maximal flow was reached"
"55","Maximal flow was reached"
"56","Maximal flow was reached"
"57","Maximal flow was reached"
"58","Maximal flow was reached"
"59","Maximal flow was reached"
"66","Maximal flow was reached"
"67","Maximal flow was reached"
"68","Maximal flow was reached"
"69","Maximal flow was reached"
"70","Maximal flow was reached"
"71","Maximal flow was reached"
"60","Maximal flow was reached"
"61","Maximal flow was reached"

"62", "Maximal flow was reached"
"63", "Maximal flow was reached"
"64", "Maximal flow was reached"
"65", "Maximal flow was reached"
"72", 1500, "15", 19.9717
"73", 1500, "15", 19.97166
"74", "Maximal flow was reached"
"75", "Maximal flow was reached"
"76", 1240, "n46", 19.95517
"77", "Maximal flow was reached"
"78", "Maximal flow was reached"
"79", "Maximal flow was reached"
"80", "Maximal flow was reached"
"81", "Maximal flow was reached"
"82", "Maximal flow was reached"
"83", "Maximal flow was reached"
"84", "Maximal flow was reached"
"85", "Maximal flow was reached"
"86", "Maximal flow was reached"
"87", "Maximal flow was reached"
"88", "Maximal flow was reached"
"89", 850, "89", 19.786
"90", 830, "n78", 19.80026

APPENDIX C

FUTURE WATER SYSTEM MODEL AND OUTPUT

[TITLE]

Perry City Water System Model

The elevations for each node are at surface elevation from 2013 AGRC lidar data.

Residential demands are approximately 0.38 gpm per residence.

Nodes without an n designation at the beginning are additions since the original model.

[JUNCTIONS]

;ID	Elev	Demand	Pattern	;
n4	4387	9.00	1	;
n5	4383	7.00	1	;
n7	4373	67.00	1	;
n9	4375	7.00	1	;
n10	4358	10.00	1	;
n13	4400	12.00	1	;
n14	4425	6.00	1	;
n16	4420	6.00	1	;
n19	4407	1	1	;
;Stokes Spring (35 GPM)				
n20	4417	9.00	1	;
n21	4365	7.00	1	;
n24	4542	0.00		;
n26	4517	8.00	1	;
n28	4446	69.00	1	;
n29	4448	13.00	1	;
n30	4456	9.00	1	;
n31	4482	10.00	1	;
n32	4510	9.00	1	;
n33	4466	12.00	1	;
n35	4397	0.00		;
n36	4392	16.00	1	;
n37	4386	6.00	1	;
n39	4409	5.00	1	;
n41	4458	4.00	1	;
n42	4462	3.00	1	;
n43	4463	5.00	1	;
n44	4470	4.00	1	;
n45	4522	13.00	1	;
n46	4528	2.00	1	;
n47	4511	5.00	1	;
n48	4525	2.00	1	;
n49	4370	10.00	1	;
n50	4363	6.00	1	;
n51	4316	21.00	1	;
n52	4307	9.00	1	;
n53	4322	11.00	1	;
n54	4333	21.00	1	;

n56	4557	0.00		;
n58	4503	15.00	1	;
n60	4473	4.00	1	;
n61	4471	6.00	1	;
n62	4512	2.00	1	;
n63	4444	13.00	1	;
n65	4454	5.00	1	;
n68	4289	4.00	1	;
n69	4296	7.00	1	;
n70	4324	6.00	1	;
n73	4416	15.00	1	;
n75	4331	10.00	1	;
n77	4354	62.00	1	;
n78	4349	4.00	1	;
n79	4372	7.00	1	;
n80	4369	4.00	1	;
n83	4370	8.00	1	;
n84	4354	6.00	1	;
n88	4422	10.00	1	;
n91	4375	5.00	1	;
n92	4406	5.00	1	;
n93	4412	3.00	1	;
n94	4467	5.00	1	;
n96	4474	3.00	1	;
n97	4384	4.00	1	;
n99	4415	15.00	1	;
n100	4401	11.00	1	;
n101	4421	15.00	1	;
n102	4418	7.00	1	;
n105	4400	8.00	1	;
n106	4393	4.00	1	;
n108	4376	8.00	1	;
n109	4378	5.00	1	;
n110	4382	4.00	1	;
n111	4388	6.00	1	;
n113	4371	6.00	1	;
n114	4367	7.00	1	;
n116	4374	6.00	1	;
n118	4381	8.00	1	;
n121	4325	23.00	1	;
n122	4309	8.00	1	;
n123	4288	8.00	1	;
n124	4270	13.00	1	;
n126	4261	15.00	1	;
n127	4274	10.00	1	;
n130	4282	7.00	1	;
n131	4322	10.00	1	;
n137	4319	2.00	1	;
n140	4287	38.00	1	;
n142	4302	37.00	1	;

n143	4313	9.00	1	;
n146	4304	12.00	1	;
n147	4295	12.00	1	;
n148	4296	14.00	1	;
n150	4274	43.00	1	;
n151	4273	1.00	1	;
n152	4330	11.00	1	;
n155	4346	6.00	1	;
n156	4362	4.00	1	;
n157	4366	4.00	1	;
n158	4375	14.00	1	;
n159	4348	6.00	1	;
n160	4359	11.00	1	;
n165	4276	0.00		;
n168	4306	5.00	1	;
n169	4298	8.00	1	;
n170	4578	0.00		;
n171	4446	16.00	1	;
n174	4367	4.00	1	;
n177	4388	17.00	1	;
n179	4366	2.00	1	;
n181	4332	4.00	1	;
n182	4331	2.00	1	;
n183	4331	7.00	1	;
n184	4303	6.00	1	;
n187	4295	26.00	1	;
n188	4291	0.00		;
n192	4451	15.00	1	;
n193	4415	10.00	1	;
n194	4379	9.00	1	;
n195	4330	1.00	1	;
n197	4374	4.00	1	;
n199	4391	6.00	1	;
n201	4397	2.00	1	;
n202	4377	10.00	1	;
n203	4397	9.00	1	;
n205	4265	40.00	1	;
n212	4258	31.00	1	;
n232	4459	7.00	1	;
n235	4486	2.00	1	;
n241	4449	12.00	1	;
n242	4450	2.00	1	;
n246	4455	10.00	1	;
n249	4326	33.00	1	;
n251	4373	12.00	1	;
n253	4337	14.00	1	;
n256	4449	9.00	1	;
n257	4445	2.00	1	;
n261	4552	27.00	1	;
n266	4373	10.00	1	;

n267	4356	9.00	1	;
n272	4370	5.00	1	;
n274	4377	4.00	1	;
n277	4300	11.00	1	;
n287	4279	30.00	1	;
n290	4273	6.00	1	;
n291	4272	32.00	1	;
n300	4317	11.00	1	;
n305	4513	1.00	1	;
n308	4512	5.00	1	;
n314	4384	6.00	1	;
n315	4379	9.00	1	;
n316	4412	5.00	1	;
n320	4377	14.00	1	;
n323	4416	5.00	1	;
n324	4384	10.00	1	;
n325	4398	7.00	1	;
n332	4520	3.00	1	;
n333	4521	3.00	1	;
n334	4508	4.00	1	;
n335	4428	3.00	1	;
n336	4492	5.00	1	;
n337	4361	5.00	1	;
n338	4358	18.00	1	;
n339	4354	29.00	1	;
n343	4419	5.00	1	;
n345	4404	0.00		;
n352	4268	20.00	1	;
n357	4242	81.00	1	;
;Elevation is a guess				
n358	4394	3.00	1	;
n361	4440	8.00	1	;
n362	4390	7.00	1	;
n367	4325	5.00	1	;
n369	4302	9.00	1	;
n374	4314	1.00	1	;
n376	4319	1.00	1	;
n385	4349	19.00	1	;
n387	4357	24.00	1	;
n389	4326	4.00	1	;
demand on Maddox				
n390	4351	47.00	1	;
n391	4368	5.00	1	;
n395	4298	36.00	1	;
n397	4220	283.00	1	;
;Elevation is a guess				
n398	4301	12.00	1	;
n399	4327	9.00	1	;
n400	4290	34.00	1	;

n406	4323	17.00	1	;
n407	4358	10.00	1	;
n408	4360	1.00	1	;
n409	4361	23.00	1	;
n410	4364	7.00	1	;
n416	4379	2.00	1	;
n418	4398	25.00	1	;
n420	4330	22.00	1	;
n421	4332	29.00	1	;
n423	4310	3.00	1	;
n424	4289	3.00	1	;
n429	4310	61.00	1	;
n430	4398	1.00	1	;
n436	4365	11.00	1	;
n437	4373	9.00	1	;
n438	4388	10.00	1	;
n440	4386	1.00	1	;
n443	4302	8.00	1	;
n444	4291	85.00	1	;
n445	4313	4.00	1	;
n446	4314	3.00	1	;
n447	4467	12.00	1	;
n448	4448	19.00	1	;
n449	4329	31.00	1	;
n450	4445	0.00		;
n451	4441	3.00	1	;
n453	4509	2.00	1	;
n457	4361	8.00	1	;
n458	4377	12.00	1	;
n459	4374	6.00	1	;
n460	4370	12.00	1	;
n467	4452	5.00	1	;
n468	4433	5.00	1	;
n472	4373	11.00	1	;
n473	4371	0.00		;
n475	4352	9.00	1	;
n477	4415	4.00	1	;
n478	4428	5.00	1	;
n479	4420	3.00	1	;
n480	4429	4.00	1	;
n481	4411	8.00	1	;
n493	4446	6.00	1	;
n494	4457	49.00	1	;
n495	4503	4.00	1	;
n496	4277	79.00	1	;
n500	4338	5.00	1	;
n511	4316	55.00	1	;
n512	4448	4.00	1	;
n516	4397	22.00	1	;
n518	4511	89.00	1	;

n527	4284	48.00	1	;
1	4467	13.00	1	;
2	4496	4.00	1	;
3	4392	6.00	1	;
4	4308	17.00	1	;
5	4482	7.00	1	;
6	4502	4.00	1	;
7	4306.5	8.00	1	;
16	4497	0.00		;
17	4312	12.00	1	;
18	4281	65.00	1	;
8	4274	8.00	1	;
9	4435	2.00	1	;
;Elevation From Design Drawings				
12	4450	4.00	1	
;Elevation From Design Drawings				
13	4452	5.00	1	
;Elevation From Design Drawings				
14	4452	1.00	1	
;Elevation From Design Drawings				
15	4521	5.00	1	
;Elevation From Design Drawings				
19	4520	11.00	1	
;Elevation From Design Drawings				
20	4266	8.00	1	
;Elevation From Design Drawings				
21	4268	17.00	1	
;Elevation From Design Drawings				
22	4267	3.00	1	;
23	4288	8.00	1	
;Elevation is a guess				
24	4240	11.00	1	;
25	4277	65.00	1	;
26	4283	3.00	1	;
30	4424	5.00	1	;
31	4412	3.00	1	;
32	4458	6.00	1	;
33	4464	3.00	1	;
34	4492	5.00	1	;
35	4470	4.00	1	;
27	4328	58.00	1	;
28	4297	77.00	1	;
29	4329	16.00	1	;
36	4299	24.00	1	;
37	4298	6.00	1	;
38	4270	11.00	1	;
39	4269	11.00	1	;
40	4392	9.00	1	;
41	4391	0.00		;
42	4264	29.00	1	;

43	4350	44.00	1	;
44	4330	0.00		;
45	4276	0.00		;
46	4278	0.00		;
47	4263	21.00	1	;
48	4265	47.00	1	;
49	4263	1.00	1	;
50	4276	21.00	1	;
51	4278	18.00	1	;
52	4262	11.00	1	;
53	4326	0.00		;
54	4326	0.00		;
55	4352	1.00	1	;
56	4333	7.00	1	;
57	4310.5	7.00	1	;
58	4293.25	6.00	1	;
59	4308.75	6.00	1	;
66	4222.75	30.00	1	;
67	4222	30.00	1	;
68	4220.5	30.00	1	;
69	4221	80.00	1	;
70	4222.5	30.00	1	;
71	4283	14.00	1	;
60	4259	8.00	1	;
61	4256	7.00	1	;
62	4350.5	4.00	1	;
63	4347	7.00	1	;
;Elevation from Plan				
64	4349.5	7.00	1	
;Elevation From Plan				
65	4332.5	4.00	1	;
72	4377	8.00	1	;
73	4373.5	8.00	1	;
74	4305.5	8.00	1	;
75	4305	7.00	1	;
76	4400	9.00	1	;
77	4379	11.00	1	;
78	4375	9.00	1	;
79	4374.5	11.00	1	;
80	4380.25	4.00	1	;
81	4384	4.00	1	;
82	4330.75	8.00	1	;
83	4337.5	8.00	1	;
84	4329.25	4.00	1	;
85	4293	0.00		;
86	4310	0.00		;
87	4257.75	6.00	1	;
88	4262.5	57.00	1	;
90	4352	29.00	1	;
91	4341	5.00	1	;

92	4348	13.00	1	;
93	4362	12.00	1	;
94	4328	9.00	1	;
95	4324	39.00	1	;
96	4391	0.00		;
97	4359	33.00	1	;
98	4355	6.00	1	;
99	4337	9.00	1	;
100	4330	31.00	1	;
101	4395	28.00	1	;
102	4358	56.00	1	;
103	4348	42.00	1	;
104	4384	24.00	1	;
105	4329	20.00	1	;
106	4341	38.00	1	;
107	4318	36.00	1	;
108	4368	23.00	1	;
109	4307	10.00	1	;
89	4412	80.00	1	;
110	4415	66.00	1	;
111	4408	71.00	1	;
112	4440	109.00	1	;
113	4395	32.00	1	;
114	4384	23.00	1	;
115	4369	18.00	1	;
116	4408	95.00	1	;
117	4289	40.00	1	;
118	4275	47.00	1	;
119	4329	41.00	1	;
120	4306	47.00	1	;
121	4264	59.00	1	;
122	4258	64.00	1	;
123	4256	6.00	1	;
124	4233	9.00	1	;
125	4279	29.00	1	;
126	4267	110.00	1	;
127	4285	87.00	1	;
128	4300	62.00	1	;
129	4272	51.00	1	;
130	4273	34.00	1	;
131	4263	17.00	1	;
132	4261	16.00	1	;
133	4260	18.00	1	;
134	4268	36.00	1	;
135	4277	79.00	1	;
136	4276	62.00	1	;
137	4283	51.00	1	;
138	4292	26.00	1	;
139	4294	4.00	1	;
140	4310	0.00		;

141	4303	4.00	1	;
142	4347	0.00		;
143	4302	22.00	1	;
144	4292	47.00	1	;
145	4308	16.00	1	;
146	4270	66.00	1	;
147	4267	40.00	1	;
148	4282	4.00	1	;
149	4270	31.00	1	;
150	4266	113.00	1	;
151	4276	100.00	1	;
152	4285	55.00	1	;
153	4292	76.00	1	;
154	4288	132.00	1	;
155	4280	98.00	1	;
156	4272	95.00	1	;
157	4266	69.00	1	;
158	4272	22.00	1	;
159	4303	17.00	1	;
160	4292	14.00	1	;
161	4296	0.00		;
162	4367	54.00	1	;
163	4507	19.00	1	;
164	4520	5.00	1	;
165	4516	6.00	1	;
166	4479	3.00	1	;
167	4439	0.00		;
169	4415	0.00		;
170	4424	0.00		;
168	4259	48.00	1	;
171	4259	100.00	1	;
172	4258	120.00	1	;
173	4260	52.00	1	;
174	4259	35.00	1	;
175	4261	79.00	1	;
176	4248	76.00	1	;
177	4252	62.00	1	;
178	4260	0.00		;
179	4247	46.00	1	;
180	4248	6.00	1	;
181	4245	619.00	1	;
182	4253	46.00	1	;
183	4246	6.00	1	;
184	4236	0.00		;
185	4250	0.00		;
186	4239	2.00	1	;
187	4234	0.00		;
188	4242	2.00	1	;
189	4214	2.00	1	;
190	4215	0.00		;

191	4233	0.00	;
192	4220	6.00	1 ;
193	4220	1.00	1 ;
194	4221	6.00	1 ;
195	4217	3.00	1 ;
196	4232	0.00	1 ;
197	4239	1.00	1 ;
198	4228	0.00	1 ;
202	4227	2.00	1 ;
204	4266	23.00	1 ;
205	4260	0.00	1 ;
206	4266	0.00	1 ;
207	4264	0.00	1 ;
208	4243	571.00	1 ;
200	4415	0	1 ;
201	4451	0	1 ;
203	4516	0	1 ;
199	4335	0	1 ;

[RESERVOIRS]

;ID		Head	Pattern
3004		4500	
;East_Bench_Well_House_(Well_#4)			
3001		4440	
;Allen_St_Well_House_(Well_#1)			
3002		4386	;500 pgm (10-16
hours per day)			
3003		4448	
;Anderson_Well_House_(Well_#3)			
3005		4511	;Well_House_#5
3006		4324	;WELL6
3007		4322	;WELL7

[TANKS]

;ID		Elevation	InitLevel	MinLevel	MaxLevel
Diameter	MinVol	VolCurve	Overflow		
9999		4674	12	0	16
105	0				;East_Bench_Reservoir=1MG
10		4581	12	0	16
60	0				;Res300,000gal
11		4579	14	0	18
54	0				;Res350,000gal
1001		4580	9	0	13
50	0			;	
1002		4580	9	0	13
50	0			;	
1003		4580	9	0	13
50	0			;	
1004		4580	9	0	13
50	0			;	

[PIPES]					
;	ID	Node1	Node2	Length	
Diameter		Roughness	MinorLoss	Status	
p23	6	110	n41	n42	178.79
p24	6	110	n43	Open	;
p25	4	110	n45	n44	181.23
p26	4	110	n47	Open	;
p29	8	110	n53	n46	114.35
p42	8	110	n79	Open	;
p44	8	110	n83	n54	386.42
p50	6	110	n92	Open	;
p55	6	110	n101	n80	221.53
p59	6	110	n109	Open	;
p61	6	110	n113	n84	503.92
p81	8	110	n147	Open	;
p83	8	110	n150	n93	170.50
p84	8	110	n146	Open	;
p87	8	110	n157	n114	521.91
p89	8	110	n159	Open	;
p95	12	110	n170	n102	296.17
p109	8	110	n193	Open	;
p139	8	110	n241	n110	123.82
p149	8	110	n256	Open	;
p170	8	110	n290	n148	481.09
p191	6	110	n324	Open	;
p198	6	110	n335	n151	640.42
		110	0	n152	718.05
				Open	;
				n158	555.12
				Open	;
				n160	346.04
				Open	;
				n24	707.28
				Open	;
				n194	118.24
				Open	;
				n242	244.74
				Open	;
				n257	186.96
				Open	;
				n291	949.11
				Open	;
				n101	656.69
				Open	;

p199		n325		n29		606.11
6	110	0		Open	;	
p200		n337		n338		421.64
10	110	0		Open	;	
p206		n345		n19		477.29
10	110	0		Open	;	
p207		n28		n345		379.37
10	110	0		Open	;	
p218		n212		n357		875.78
3	110	0		Open	;	
p223		n361		n203		521.72
6	110	0		Open	;	
p224		n316		n362		528.96
6	110	0		Open	;	
p230		n300		n369		430.11
8	110	0		Open	;	
p245		n84		n385		627.43
6	110	0		Open	;	
p249		n338		n390		347.36
8	110	0		Open	;	
p251		n391		n179		1182.02
8	110	0		Open	;	
p265		n407		n387		657.04
6	110	0		Open	;	
p266		n408		n407		385.96
6	110	0		Open	;	
p267		n408		n409		503.70
6	110	0		Open	;really 6	
p270		n409		n156		595.81
6	110	0		Open	;reall 6	
p271		n156		n157		285.28
8	110	0		Open	;	
p275		n418		n416		280.13
8	110	0		Open	;	
p281		n75		n421		746.54
10	110	0		Open	;	
p292		n418		n430		484.97
6	110	0		Open	;	
p300		n437		n113		327.23
6	110	0		Open	;	
p301		n320		n438		499.80
6	110	0		Open	;	
p309		n445		n446		162.16
8	110	0		Open	;	
p311		n448		n256		289.65
8	110	0		Open	;	
p314		n195		n450		242.89
10	110	0		Open	;	
p315		n451		n28		266.21
6	110	0		Open	;	

p322		n457		n410		691.60
6	110	0		Open	;	
p323		n458		n459		274.04
6	110	0		Open	;	
p324		n460		n458		544.12
6	110	0		Open	;	
p326		n457		n84		852.18
6	110	0		Open	;	
p336		n472		n473		452.82
6	110	0		Open	;	
p337		n174		n472		617.33
6	110	0		Open	;	
p342		n477		n478		202.84
8	110	0		Open	;	
p343		n479		n480		163.42
8	110	0		Open	;	
p354		n336		n495		151.46
6	110	0		Open	;	
p365		n94		n512		312.44
8	110	0		Open	;	
4		n65		n232		187.67
8	110	0		Open	;	
7		n30		1		665.46
6	110	0		Open	;	
13		1		2		219.99
6	110	0		Open	;	
14		n108		n109		259.85
6	110	0		Open	;	
16		n105		3		395.54
6	110	0		Open	;	
17		3		n106		105.77
6	110	0		Open	;	
18		n97		n111		154.42
6	110	0		Open	;	
21		n99		n102		176.01
6	110	0		Open	;	
22		n97		n194		316.24
6	110	0		Open	;	
23		n194		n436		243.07
6	110	0		Open	;	
24		n97		n100		282.51
6	110	0		Open	;	
25		n100		n88		370.19
6	110	0		Open	;	
28		n512		n88		278.15
10	110	0		Open	;	
30		n159		n155		591.73
8	110	0		Open	;	
31		n155		n152		615.00
8	110	0		Open	;	

32		n152		n399		299.27
8	110	0	Open	;		
33		n399	n70		471.45	
8	110	0	Open	;		
34		n70	n367		125.72	
8	110	0	Open	;		
35		n367	n406		685.84	
8	110	0	Open	;		
36		n52	n53		822.71	
8	110	0	Open	;		
37		n51	n53		240.66	
8	110	0	Open	;		
38		n527	n147		639.78	
8	110	0	Open	;		
39		n147	n146		289.19	
8	110	0	Open	;		
40		n398	n146		323.36	
8	110	0	Open	;		
41		n399	n398		614.30	
8	110	0	Open	;		
43		n69	n443		146.64	
8	110	0	Open	;		
44		n443	n445		247.70	
8	110	0	Open	;		
45		n445	n70		265.32	
8	110	0	Open	;		
46		n142	n52		291.98	
8	110	0	Open	;		
47		n52	n511		356.49	
8	110	0	Open	;		
48		n527	n140		538.67	
8	110	0	Open	;		
49		n140	n142		780.55	
8	110	0	Open	;		
51		n511	n54		812.51	
6	110	0	Open	;		
56		n367	n407		783.49	
6	110	0	Open	;		
58		n406	n387		688.74	
8	110	0	Open	;		
63		n181	4		467.40	
8	110	0	Open	;		
68		5	n232		237.63	
8	110	0	Open	;		
86		n251	n343		696.57	
8	110	0	Open	;		
89		n199	n201		227.45	
8	110	0	Open	;		
90		n199	n358		129.27	
6	110	0	Open	;		

93		n197		n274		146.35
4	110	0		Open	;	
94		n197		n272		273.26
8	110	0		Open	;	
96		n315		n314		241.10
6	110	0		Open	;	
97		n315		n362		280.67
6	110	0		Open	;	
98		n362		n203		308.03
6	110	0		Open	;	
99		n203		n323		285.89
6	110	0		Open	;	
100		n323		n451		281.85
6	110	0		Open	;	
103		n459		n83		473.94
8	110	0		Open	;	
104		n83		n266		263.20
8	110	0		Open	;	
106		n459		n315		267.32
6	110	0		Open	;	
107		n266		n315		383.41
8	110	0		Open	;	
109		n21		n79		338.66
6	110	0		Open	;	
110		n79		n459		273.37
6	110	0		Open	;	
112		n114		n320		639.24
8	110	0		Open	;	
113		n320		n324		318.79
8	110	0		Open	;	
114		n324		n440		79.76
8	110	0		Open	;	
117		n440		n325		261.58
8	110	0		Open	;	
118		n325		n316		197.07
8	110	0		Open	;	
119		n316		n335		148.88
8	110	0		Open	;	
120		n335		n195		62.52
6	110	0		Open	;	
1		n453		n24		389.57
10	110	0		Open	;	
102		n113		n116		283.68
6	110	0		Open	;	
121		n30		n31		185.80
8	110	0		Open	;	
126		n47		n45		326.24
8	110	0		Open	;	
130		n92		n193		315.63
8	110	0		Open	;	

131		n193		n88		282.10
8	110	0		Open	;	
142		n385		n267		363.66
8	110	0		Open	;	
145		n142		n51		757.91
8	110	0		Open	;	
146		n152		n409		714.58
8	110	0		Open	;	
147		n457		n21		226.76
6	110	0		Open	;	
155		n424		n123		134.05
8	110	0		Open	;	
165		n369		n277		340.22
8	110	0		Open	;	
166		n277		n188		343.45
8	110	0		Open	;	
168		n416		n49		287.31
8	110	0		Open	;	
171		n148		n143		452.41
8	110	0		Open	;	
172		n143		n137		101.90
8	110	0		Open	;	
173		n150		n527		1203.06
8	110	0		Open	;	
175		n4		n481		333.21
10	110	0		Open	;	
176		n481		n448		434.61
10	110	0		Open	;	
5		n493		n41		272.55
8	110	0		Open	;	
6		n41		n43		268.02
8	110	0		Open	;	
11		n450		n24		613.32
12	110	0		Open	;	
26		n195		n361		97.85
6	110	0		Open	;	
53		n406		n168		354.89
8	110	0		Open	;	
180		n168		n444		272.49
8	110	0		Open	;	
181		n444		n496		1489.03
8	110	0		Open	;	
183		n453		n28		646.56
10	110	0		Open	;	
192		n91		n436		862.24
6	110	0		Open	;	
193		n436		n410		1418.38
6	110	0		Open	;	
195		n21		n460		242.87
6	110	0		Open	;	

203		n339		n449		972.80
6	110	0		Open	;	
212		n398		n69		539.44
8	110	0		Open	;	
213		n69		n68		205.80
8	110	0		Open	;	
2		n475		n10		707.21
6	110	0		Open	;	
3		n10		n174		536.49
6	110	0		Open	;	
60		n481		n479		210.09
10	110	0		Open	;	
62		n251		n253		816.16
8	110	0		Open	;	
69		n184		n183		648.57
8	110	0		Open	;	
70		n183		n182		226.78
8	110	0		Open	;	
77		n183		n181		259.20
8	110	0		Open	;	
111		n438		n101		430.93
6	110	0		Open	;	
141		n20		n343		502.56
10	110	0		Open	;	
148		n421		n420		325.40
10	110	0		Open	;	
157		n188		7		155.88
8	110	0		Open	;	
158		n300		n277		762.43
8	110	0		Open	;	
160		n300		n421		332.30
8	110	0		Open	;	
59		n58		n261		500.45
10	110	0		Open	;	
66		n261		n56		772.19
10	110	0		Open	;	
78		n10		n171		1045.68
8	110	0		Open	;	
81		n177		n241		921.09
8	110	0		Open	;	
83		n177		n246		905.00
8	110	0		Open	;	
84		n246		n241		324.66
8	110	0		Open	;	
88		n61		n60		331.79
8	110	0		Open	;	
170		n246		n63		497.03
8	110	0		Open	;	
178		n472		n63		1049.69
8	110	0		Open	;	

188		n14		n16		242.65
6	110	0		Open	;	
189		n13		n14		409.98
6	110	0		Open	;	
199		n473		n13		305.18
6	110	0		Open	;	
201		n65		n447		741
8	110	0		Open	;	
204		n447		n235		186
8	110	0		Open	;	
206		n251		n9		974.47
6	110	0		Open	;	
207		n253		n7		1054.59
8	110	0		Open	;	
208		n7		n20		857.45
8	110	0		Open	;	
209		n267		n266		702.04
8	110	0		Open	;	
222		n266		n197		276.27
8	110	0		Open	;	
223		n467		n451		145.20
6	110	0		Open	;	
224		n337		n179		436.79
8	110	0		Open	;	
226		n479		n477		328.51
10	110	0		Open	;	
227		n475		n4		481.79
10	110	0		Open	;	
228		n5		n4		650.77
6	110	0		Open	;	
231		n26		n336		610.95
8	110	0		Open	;	
232		n197		n202		323.62
8	110	0		Open	;	
233		n202		n203		441.85
8	110	0		Open	;	
234		1		n29		783.22
6	110	0		Open	;	
235		n361		n453		796.77
6	110	0		Open	;	
236		n323		n468		209.49
6	110	0		Open	;	
237		n202		n199		393.93
8	110	0		Open	;	
238		n168		n169		703.84
8	110	0		Open	;	
239		n443		n444		766.33
8	110	0		Open	;	
240		n398		n400		342.34
8	110	0		Open	;	

241		n146		n143		596.77
8	110	0	Open	;		
242		n51	n143			813.68
8	110	0	Open	;		
243		n158	n160			267.13
6	110	0	Open	;		
245		n53	n500			368.82
8	110	0	Open	;		
246		n88	n192			695.68
8	110	0	Open	;		
247		n192	n193			671.38
8	110	0	Open	;		
248		n94	n96			264.38
6	110	0	Open	;		
249		n31	n32			580.69
8	110	0	Open	;		
250		6	n332			192.04
6	110	0	Open	;		
252		n31	6			281.43
8	110	0	Open	;		
253		n493	n192			313.33
8	110	0	Open	;		
254		n45	n33			1004.53
8	110	0	Open	;		
255		n334	n47			338.80
8	110	0	Open	;		
256		n333	n334			162.66
6	110	0	Open	;		
257		n334	6			268.10
8	110	0	Open	;		
258		n92	n91			343.11
8	110	0	Open	;		
259		n100	n99			934.28
8	110	0	Open	;		
260		n108	n111			370.74
6	110	0	Open	;		
262		n111	n105			454.76
6	110	0	Open	;		
263		n109	3			401.42
6	110	0	Open	;		
264		n108	n437			359.90
6	110	0	Open	;		
265		n437	n118			467.52
6	110	0	Open	;		
266		n156	n155			512.59
8	110	0	Open	;		
267		n105	n99			268.43
6	110	0	Open	;		
268		n39	n493			378.14
8	110	0	Open	;		

269		n37		n39		414.59
8	110	0		Open	;	
270		n91		n37		876.66
6	110	0		Open	;	
271		n36		n73		540.22
8	110	0		Open	;	
272		n37		n36		529.66
6	110	0		Open	;	
275		n516		n494		970.70
6	110	0		Open	;	
276		n494		n518		697.61
6	110	0		Open	;	
277		n516		n35		303.16
6	110	0		Open	;	
279		n49		n50		694.10
8	110	0		Open	;	
280		n121		n122		478.63
8	110	0		Open	;	
282		n123		n124		548.93
8	110	0		Open	;	
283		n124		n126		763.63
8	110	0		Open	;	
284		n126		n127		405.62
8	110	0		Open	;	
285		n127		n290		250.13
8	110	0		Open	;	
286		n290		n130		523.01
8	110	0		Open	;	
287		n130		n287		147.47
8	110	0		Open	;	
288		n130		n123		298.54
8	110	0		Open	;	
289		n130		n127		386.50
8	110	0		Open	;	
290		n127		n124		401.89
8	110	0		Open	;	
291		n122		n423		116.40
8	110	0		Open	;	
295		n410		n114		266.42
8	110	0		Open	;	
299		n20		n19		944.32
10	110	0		Open	;	
301		n148		n140		598.67
8	110	0		Open	;	
12		n31		n94		431.60
8	110	0		Open	;	
29		16		n448		694.03
10	110	0		Open	;	
73		n391		17		857.50
8	110	0		Open	;	

50		n165		n496		97.54
12	110	0		Open	;	
52		10		n170		117.61
12	110	0		Open	;	
55		11		n170		98.93
12	110	0		Open	;	
15		n14		9		187.34
6	110	0		Open	;	
20		n63		9		208.39
8	110	0		Open	;	
27		n5		n9		226.88
8	110	0		Open	;	
91		n242		13		183.16
8	110	0		Open	;	
92		13		14		169.51
8	110	0		Open	;	
95		13		19		931.12
12	110	0		Open	;	
101		19		n305		182.91
12	110	0		Open	;	
105		19		15		149.74
12	110	0		Open	;	
115		13		n171		76.63
12	110	0		Open	;	
116		23		20		719.41
8	110	0		Open	;	
122		20		21		246.67
8	110	0		Open	;	
123		20		22		217.93
8	110	0		Open	;	
124		n187		23		595.37
8	110	0		Open	;	
125		23		n188		144.19
8	110	0		Open	;	
127		24		n205		638.33
2	110	0		Open	;	
85		n56		9999		105.94
10	110	0		Open	;	
64		18		25		585.78
8	110	0		Open	;	
129		25		26		1289.62
8	110	0		Open	;	
132		n448		14		347.23
8	120	0		Open	;	Future Loop
167		n246		n61		295.56
8	120	0		Open	;	
87		12		n257		385.66
8	110	0		Open	;	
220		n343		31		922.95
10	110	0		Open	;	

133		31		30		190.86
10	110	0		Open	;	
134		30		n477		289.69
10	110	0		Open	;	
135		30		32		542.66
10	110	0		Open	;	
136		35		33		224.72
8	110	0		Open	;	
137		33		34		245.70
8	110	0		Open	;	
138		33		32		157.40
8	110	0		Open	;	
139		32		12		163.33
8	110	0		Open	;	
143		n429		28		975.80
6	110	0		Open	;	
149		n77		27		1008.76
6	110	0		Open	;	
154		29		n121		246.73
6	110	0		Open	;	
281		n122		37		263.64
8	110	0		Open	;	
156		37		n123		258.03
8	110	0		Open	;	
159		29		36		708.38
8	110	0		Open	;	
169		36		37		420.64
8	110	0		Open	;	
177		36		38		781.84
8	110	0		Open	;	
179		38		n124		282.03
8	110	0		Open	;	
184		38		39		257.23
8	110	0		Open	;	
152		n36		40		386.70
6	110	0		Open	;	
153		40		n516		262.18
6	110	0		Open	;	
187		41		n418		250.63
12	110	0		Open	;	
191		28		42		1774.68
8	120	0		Open	;	
196		n78		43		248.40
6	120	0		Open	;	
162		44		29		329.54
6	120	0		Open	;	
197		n496		45		414.71
10	120	0		Open	;	
198		45		46		308.98
10	120	0		Open	;	

200		46		n527		940.05
10	120	46	0	Open	;	
210		48		47		317.44
8	120	47	0	Open	;	
215		47		49		315.93
8	120	47	0	Open	;	
216		47		50		1244.39
8	120	48		Open	;	
217		48		51		1284.01
8	120	48	0	Open	;	
219		52		8		1040.67
12	120	49	0	Open	;	
225		49		52		128.68
8	120	n389	0	Open	;	
19		n389		n376		247.35
8	120	n385	0	Open	;	
67		n385		53		934.06
6	110	54	0	Open	;	
150		54		n249		30.23
6	110	54	0	Open	;	
214		n253		n249		475.11
8	120	n253	0	Open	;	
251		n387		55		550.28
6	120	n387	0	Open	;	
273		55		56		376.90
8	120	55	0	Open	;	
274		56		57		348.73
8	120	56	0	Open	;	
293		57		58		521.50
8	120	57	0	Open	;	
296		57		59		273.60
8	120	57	0	Open	;	
9		n58		n261		2058.84
12	110	n58	0	Open	;	
302		67		66		239.73
8	110	67	0	Open	;	
303		68		69		515.18
12	110	68	0	Open	;	
304		69		n397		564.91
12	110	69	0	Open	;	
305		67		70		126.38
8	110	67	0	Open	;	
306		n397		70		441.02
8	110	n397	0	Open	;	
307		68		67		600.86
8	110	68	0	Open	;	
308		66		70		344.41
8	110	66	0	Open	;	
310		n395		71		383.76
8	110	n395	0	Open	;	

311		71		n374		1044.87
8	110	0		Open	;	
312		71		26		286.65
8	110	0		Open	;	
313		26		n374		924.93
8	110	0		Open	;	
65		61		60		316.15
8	110	0		Open	;	
72		n179		60		95.82
12	110	0		Open	;	
80		60		n181		291.71
12	110	0		Open	;	
221		65		64		322.89
8	110	0		Open	;	
297		62		64		66.52
8	110	0		Open	;	
298		64		63		321.65
8	110	0		Open	;	
309		n475		65		1054.71
6	110	0		Open	;	
314		n249		65		994.40
6	110	0		Open	;	
315		73		72		214.64
8	110	0		Open	;	
316		n177		72		189.86
8	110	0		Open	;	
317		72		n174		110.74
8	110	0		Open	;	
318		n75		74		1150.07
8	110	0		Open	;	
319		7		74		258.54
8	110	0		Open	;	
320		74		75		280.24
8	110	0		Open	;	
321		76		40		225.84
8	110	0		Open	;	
322		n158		80		407.33
12	110	0		Open	;	
323		80		81		480.42
12	110	0		Open	;	
325		80		79		77.50
8	110	0		Open	;	
326		81		77		78.19
8	110	0		Open	;	
327		77		78		104.66
8	110	0		Open	;	
328		77		79		481.62
8	110	0		Open	;	
329		56		83		434.90
8	110	0		Open	;	

330		83		82		204.94
8	110	0		Open	;	
331		57		82		586.61
8	110	0		Open	;	
186		59		84		238.89
8	110	0		Open	;	
205		59		58		265.56
8	110	0		Open	;	
230		85		58		130.21
8	110	0		Open	;	
332		86		59		119.63
8	110	0		Open	;	
333		35		87		230.43
8	110	0		Open	;	
334		n343		87		398.24
8	110	0		Open	;	
335		87		88		549.18
8	110	0		Open	;	
336		78		90		596.70
8	110	0		Open	;	
337		90		91		352.42
8	110	0		Open	;	
338		91		92		758.23
8	110	0		Open	;	
339		92		93		431.53
8	110	0		Open	;	
340		n420		94		485.11
8	110	0		Open	;	
341		94		95		811.07
8	110	0		Open	;	
342		95		n131		210.37
12	110	0		Open	;	
343		n131		n511		602.47
8	110	0		Open	;	
344		92		94		670.51
8	110	0		Open	;	
345		91		95		596.10
8	110	0		Open	;	
346		90		93		634.71
8	110	0		Open	;	
347		n50		93		34.32
8	110	0		Open	;	
348		81		96		471.85
12	110	0		Open	;	
349		96		41		439.79
12	110	0		Open	;	
350		96		93		621.14
8	110	0		Open	;	
351		n49		97		217.73
8	110	0		Open	;	

352		97		98		110.02
8	110	0		Open	;	
353		98		n421		664.70
8	110	0		Open	;	
354		n160		99		518.79
8	110	0		Open	;	
355		99		n54		161.73
8	110	0		Open	;	
356		90		99		851.32
8	110	0		Open	;	
357		92		98		684.22
8	110	0		Open	;	
358		97		102		1041.70
8	110	0		Open	;	
359		102		103		735.02
8	110	0		Open	;	
360		103		106		613.39
8	110	0		Open	;	
362		102		101		844.36
8	110	0		Open	;	
363		104		103		912.50
8	110	0		Open	;	
364		103		n121		786.71
8	110	0		Open	;	
365		108		106		944.64
8	110	0		Open	;	
366		106		107		766.96
8	110	0		Open	;	
367		105		106		591.52
8	110	0		Open	;	
368		n75		100		295.27
8	110	0		Open	;	
369		100		44		122.26
8	110	0		Open	;	
370		100		109		699.90
8	110	0		Open	;	
371		109		75		450.55
8	110	0		Open	;	
372		109		36		464.11
8	110	0		Open	;	
373		n121		107		622.99
8	110	0		Open	;	
374		107		n429		608.36
8	110	0		Open	;	
375		107		n287		997.13
8	110	0		Open	;	
376		n77		105		1035.91
8	110	0		Open	;	
377		105		n429		759.31
8	110	0		Open	;	

378		n430		101		574.77
6	110	0		Open	;	
379		101		104		745.54
6	110	0		Open	;	
380		104		108		610.34
6	110	0		Open	;	
381		108		n77		584.16
6	110	0		Open	;	
151		89		n339		759.29
8	110	0		Open	;	
211		115		110		829.37
8	110	0		Open	;	
244		89		110		595.93
8	110	0		Open	;	
278		110		111		580.61
8	110	0		Open	;	
292		111		114		894.48
8	110	0		Open	;	
294		111		112		796.81
8	110	0		Open	;	
324		112		113		972.39
8	110	0		Open	;	
382		n494		112		996.29
8	110	0		Open	;	
383		n35		113		724.60
6	110	0		Open	;	
384		113		114		748.16
6	110	0		Open	;	
385		114		115		603.62
6	110	0		Open	;	
386		115		n339		585.18
6	110	0		Open	;	
387		117		118		1015.63
8	110	0		Open	;	
388		119		117		1204.97
8	110	0		Open	;	
389		120		117		822.48
8	110	0		Open	;	
390		27		119		819.17
6	110	0		Open	;	
391		43		119		1023.33
6	110	0		Open	;	
392		27		120		1101.88
6	110	0		Open	;	
393		120		28		794.26
6	110	0		Open	;	
394		n429		121		1492.60
8	110	0		Open	;	
395		121		n291		407.48
8	110	0		Open	;	

396		28		122		1555.90
8	110	0		Open	;	
397		122		124		1558.75
8	110	0		Open	;	
398		123		122		363.54
8	110	0		Open	;	
399		122		121		798.59
8	110	0		Open	;	
400		125		126		2338.27
8	110	0		Open	;	
401		128		127		2258.15
8	110	0		Open	;	
402		n511		127		1248.39
4	110	0		Open	;	
403		127		126		541.13
4	110	0		Open	;	
404		126		n212		649.25
4	110	0		Open	;	
405		n420		128		944.52
6	110	0		Open	;	
407		125		n205		592.25
6	110	0		Open	;	
408		n187		125		402.61
6	110	0		Open	;	
409		n187		128		145.57
6	110	0		Open	;	
410		n140		130		1234.39
8	110	0		Open	;	
411		n142		129		1240.85
8	110	0		Open	;	
412		127		129		720.20
8	110	0		Open	;	
413		129		130		861.77
8	110	0		Open	;	
414		130		n151		74.44
8	110	0		Open	;	
415		126		131		752.54
8	110	0		Open	;	
417		132		133		605.20
8	110	0		Open	;	
418		129		131		581.08
8	110	0		Open	;	
419		132		131		888.50
8	110	0		Open	;	
420		132		130		622.06
8	110	0		Open	;	
421		48		134		933.86
8	110	0		Open	;	
422		n150		134		254.51
8	110	0		Open	;	

423		134		133		429.48
8	110	0		Open	;	
424		146		135		1438.24
8	110	0		Open	;	
428		85		139		130.63
8	110	0		Open	;	
429		139		138		585.08
8	110	0		Open	;	
430		140		141		764.70
8	110	0		Open	;	
431		143		141		431.38
8	110	0		Open	;	
432		141		138		321.08
8	110	0		Open	;	
433		138		148		420.00
8	110	0		Open	;	
434		148		135		360.37
8	110	0		Open	;	
435		142		140		705.19
8	110	0		Open	;	
436		140		139		246.51
8	110	0		Open	;	
437		139		148		724.40
8	110	0		Open	;	
438		135		136		780.34
8	110	0		Open	;	
439		136		137		770.97
8	110	0		Open	;	
440		138		137		782.63
8	110	0		Open	;	
441		n376		143		340.79
8	110	0		Open	;	
442		143		144		761.97
8	110	0		Open	;	
443		144		137		692.60
8	110	0		Open	;	
444		144		145		627.20
8	110	0		Open	;	
445		136		147		1130.36
8	110	0		Open	;	
446		136		149		950.94
8	110	0		Open	;	
447		149		151		769.13
8	110	0		Open	;	
448		151		137		958.81
8	110	0		Open	;	
449		151		152		686.15
8	110	0		Open	;	
450		144		152		969.49
8	110	0		Open	;	

451		145		153		976.93
8	110	0		Open	;	
452		157		156		707.83
8	110	0		Open	;	
453		156		155		692.70
8	110	0		Open	;	
454		155		154		630.23
8	110	0		Open	;	
455		151		156		860.24
8	110	0		Open	;	
456		155		152		853.80
8	110	0		Open	;	
457		153		154		845.54
8	110	0		Open	;	
458		158		156		379.46
8	110	0		Open	;	
459		155		18		380.38
8	110	0		Open	;	
460		154		159		649.34
8	110	0		Open	;	
461		159		4		129.77
8	110	0		Open	;	
462		160		154		323.54
8	110	0		Open	;	
463		n338		161		1062.80
8	110	0		Open	;	
464		n390		161		1216.67
8	110	0		Open	;	
465		161		153		132.40
8	110	0		Open	;	
466		153		152		623.70
8	110	0		Open	;	
467		149		150		526.62
8	110	0		Open	;	
468		n7		162		1185.42
8	110	0		Open	;	
469		88		n28		2082.51
8	110	0		Open	;	
470		n58		163		457.84
12	110	0		Open	;	
471		15		163		465.93
12	110	0		Open	;	
472		163		16		64.48
8	110	0		Open	;	
473		n308		164		689.68
8	110	0		Open	;	
474		5		164		517.56
8	110	0		Open	;	
475		164		165		232.32
8	110	0		Open	;	

476		n235		165		324.52
8	110	0		Open	;	
477		165		166		612.42
8	110	0		Open	;	
478		166		n447		538.86
8	110	0		Open	;	
479		169		167		620.90
8	110	0		Open	;	
480		167		166		637.58
8	110	0		Open	;	
481		167		170		136.11
8	110	0		Open	;	
482		n165		146		1139.67
12	110	0		Open	;	
484		150		157		991.05
12	110	0		Open	;	
485		157		n352		514.64
12	110	0		Open	;	
486		147		146		697.26
12	110	0		Open	;	
487		147		150		1141.82
12	110	0		Open	;	
488		n352		158		373.54
12	110	0		Open	;	
489		158		18		693.45
12	110	0		Open	;	
490		159		n395		372.06
8	110	0		Open	;	
491		n395		160		648.06
8	110	0		Open	;	
492		160		18		631.26
8	110	0		Open	;	
57		140		86		1000
8	110	0		Open	;	
61		n352		168		1000
8	110	0		Open	;	
108		168		171		699.14
8	110	0		Open	;	
144		171		174		389.95
8	110	0		Open	;	
161		168		173		406.78
8	110	0		Open	;	
163		157		173		406.85
8	110	0		Open	;	
174		173		174		720.13
8	110	0		Open	;	
190		150		173		849.34
8	110	0		Open	;	
194		150		175		631.37
8	110	0		Open	;	

406		175		174		556.03
8	110	0		Open	;	
416		175		172		703.33
8	110	0		Open	;	
425		171		177		709.08
8	110	0		Open	;	
426		177		172		960.83
8	110	0		Open	;	
427		172		176		1216.31
8	110	0		Open	;	
493		172		178		898.19
8	110	0		Open	;	
494		147		178		726.15
8	110	0		Open	;	
495		178		179		1411.69
8	110	0		Open	;	
496		176		179		426.83
8	110	0		Open	;	
497		179		180		891.88
8	110	0		Open	;	
498		146		180		1973.64
8	110	0		Open	;	
499		52		182		733.75
12	110	0		Open	;	
500		182		181		681.60
12	110	0		Open	;	
502		180		182		1238.92
8	110	0		Open	;	
503		182		133		1645.69
8	110	0		Open	;	
504		24		185		67.53
12	110	0		Open	;	
505		185		124		4404.46
8	110	0		Open	;	
506		185		n357		2540.34
8	110	0		Open	;	
507		n357		183		1608.01
8	110	0		Open	;	
508		184		183		2265.99
8	110	0		Open	;	
509		183		181		2314.09
8	110	0		Open	;	
510		n357		186		335.22
8	110	0		Open	;	
511		187		186		5221.91
8	110	0		Open	;	
512		186		198		513.50
8	110	0		Open	;	
513		186		197		955.20
8	110	0		Open	;	

515		194		193		1593.03
8	110	0		Open	;	
516		193		189		832.61
8	110	0		Open	;	
517		189		190		1210.36
8	110	0		Open	;	
518		190		192		778.25
8	110	0		Open	;	
519		192		193		1182.29
8	110	0		Open	;	
521		192		195		1607.62
8	110	0		Open	;	
522		195		196		1225.77
8	110	0		Open	;	
523		196		191		1651.05
8	110	0		Open	;	
524		192		191		1279.58
8	110	0		Open	;	
525		193		188		1303.54
8	110	0		Open	;	
526		188		191		1083.81
8	110	0		Open	;	
527		188		197		1631.52
8	110	0		Open	;	
528		197		202		479.06
8	110	0		Open	;	
529		202		194		844.73
8	110	0		Open	;	
530		202		198		1047.21
8	110	0		Open	;	
531		181		184		1152.88
12	110	0		Open	;	
532		184		187		2065.60
12	110	0		Open	;	
533		187		n397		2199.12
12	110	0		Open	;	
534		39		204		423.77
8	110	0		Open	;	
535		75		204		585.90
8	110	0		Open	;	
536		204		21		604.71
8	110	0		Open	;	
537		168		207		942.81
8	110	0		Open	;	
538		207		206		397.31
8	110	0		Open	;	
539		207		205		857.47
8	110	0		Open	;	
540		181		208		4562.31
8	110	0		Open	;	

218		102		100		784.12
8	100	0		Open	;	
361		112		1001		1160.60
12	100	0		Open	;	
501		15		1002		607.96
12	100	0		Open	;	
514		n449		116		2234.24
8	100	0		Open	;	
520		89		200		2335.93
8	100	0		Open	;	
541		200		116		506.36
8	100	0		Open	;	
542		1003		200		851.35
12	100	0		Open	;	
543		87		1004		967.10
8	100	0		Open	;	
545		n494		201		384.07
12	100	0		Open	;	
546		n43		201		462.87
12	100	0		Open	;	
8		n202		162		382.24
8	100	0		Open	;	
10		n267		162		673.63
8	100	0		Open	;	
74		n389		142		973.08
6	100	0		Open	;	
261		142		55		619.87
6	100	0		Open	;	
300		n390		199		806.33
8	100	0		Open	;	
483		199		n389		1246.39
8	100	0		Open	;	
544		199		145		578.28
8	100	0		Open	;	
547		n305		n62		107.85
12	100	0		Open	;	
548		n62		n61		434.35
8	100	0		Open	;	
549		n62		203		149.44
12	100	0		Open	;	

[PUMPS]

;ID		Node1		Parameters
2002		3002		HEAD 2
;Well_#2				
2001		3001		HEAD 1
;Allen_St_Well_(Well_#1)				
2003		3003		HEAD 3
;Anderson_Well_(Well_#3)				
2005		3005		HEAD 5

;Well_#5				
2004	3004	9999	HEAD 4	
;East_Bench_Well_(Well_#4)				
2006	3006	89	HEAD 6	
;ppumpsb				
2007	3007	n19	HEAD 7	
;WELL7				
2008	201	n33	HEAD 8	
;ppumpb				
75	203	n308	HEAD 9 ;	

[VALVES]

;ID		Node1	Node2	Diameter
Type	Setting	MinorLoss		
71		17	n374	6
PRV	74	0	;PRV north line	
76		n475	n390	8
PRV	80	0	;	
79		n410	n408	8
PRV	76	0	;	
82		n91	n158	6
PRV	69.75	0	;	
42		n496	8	8
PRV	70	0	;Pointe Perry PRV	
128		n58	n256	10
PRV	61	0	;PRV at north tank	
202		53	54	6
PRV	100	0	;	
54		40	41	6
PRV	62.75	0	;	
140		n339	n77	6
PRV	79	0	;	
164		n232	n63	8
PRV	66	0	;	

[TAGS]

NODE	3002	Well_House_#2
------	------	---------------

[DEMANDS]

;Junction	Demand	Pattern	Category
-----------	--------	---------	----------

[STATUS]

;ID	Status/Setting
-----	----------------

[PATTERNS]

;ID	Multipliers
;	
1	0.38

[CURVES]

ID	X-Value	Y-Value
;PUMP: PUMP: PUMP: PUMP: PUMP: Well House #1 Pump Curve		
1	500	172
;PUMP: PUMP: PUMP: PUMP: PUMP: Well House #2 Pump Curve		
2	450	240
;PUMP: PUMP: PUMP: PUMP: PUMP: Well House #3 Pump Curve		
3	900	165
;PUMP: PUMP: PUMP: PUMP: PUMP: Well House #4 Pump Curve		
4	900	205
;PUMP: PUMP: PUMP: PUMP: PUMP: Well House #5 Pump Curve		
5	500	102
;PUMP:		
6	500	288
;PUMP:		
7	500	271
;PUMP:		
8	500	131
;PUMP:		
9	1500	50

[CONTROLS]

[RULES]

[ENERGY]

Global Efficiency	75
Global Price	0
Demand Charge	0

[EMITTERS]

;Junction	Coefficient
-----------	-------------

[QUALITY]

;Node	InitQual
-------	----------

[SOURCES]

;Node	Type	Quality	Pattern
-------	------	---------	---------

[REACTIONS]

;Type	Pipe/Tank	Coefficient
-------	-----------	-------------

[REACTIONS]
Order Bulk 1
Order Tank 1
Order Wall 1
Global Bulk 0
Global Wall 0
Limiting Potential 0
Roughness Correlation 0

[MIXING]
;Tank Model

[TIMES]
Duration 0:00
Hydraulic Timestep 1:00
Quality Timestep 0:05
Pattern Timestep 1:00
Pattern Start 0:00
Report Timestep 1:00
Report Start 0:00
Start ClockTime 12 am
Statistic NONE

[REPORT]
Status No
Summary No
Page 0

[OPTIONS]
Units GPM
Headloss H-W
Specific Gravity 1
Viscosity 1
Trials 40
Accuracy 0.001
CHECKFREQ 2
MAXCHECK 10
DAMPLIMIT 0
Unbalanced Continue 10
Pattern 1
Demand Multiplier 1
Emitter Exponent 0.5
Quality None mg/L
Diffusivity 1
Tolerance 0.01

[COORDINATES]
;Node X-Coord Y-Coord

n4	1497841.749	3698471.225
n5	1497684.473	3697841.409
n7	1497375.333	3696274.206
n9	1497512.329	3697705.481
n10	1497746.344	3699077.929
n13	1498918.757	3700387.789
n14	1499289.376	3700265.051
n16	1499371.083	3700481.726
n19	1497833.624	3695439.548
n20	1498231.906	3696286.868
n21	1495136.692	3694594.759
n24	1497138.022	3693729.204
n26	1496188.792	3692872.314
n28	1497415.679	3694613.468
n29	1496098.285	3693415.936
n30	1495296.329	3692226.464
n31	1495227.118	3692054.041
n32	1495710.828	3692226.254
n33	1493965.974	3690483.713
n35	1492789.372	3689825.022
n36	1492932.345	3690763.412
n37	1493069.961	3691265.134
n39	1493445.445	3691362.769
n41	1493849.447	3691061.625
n42	1494032.491	3691059.008
n43	1493842.872	3690785.586
n44	1494059.108	3690782.734
n45	1494449.286	3691183.897
n46	1494555.944	3691142.675
n47	1494651.153	3691433.412
n48	1494810.668	3691316.395
n49	1492153.115	3690153.311
n50	1492253.226	3690825.354
n51	1492485.819	3692950.653
n52	1491632.199	3692886.209
n53	1492435.192	3692707.293
n54	1492334.592	3692342.557
n56	1500491.916	3698076.730
n58	1499219.558	3698052.924
n60	1499629.471	3699577.717
n61	1499430.261	3699292.742
n62	1499849.231	3699205.648
n63	1499381.749	3699900.838
n65	1499671.339	3700090.500
n68	1493038.416	3695012.563
n69	1493249.650	3694915.435
n70	1493839.411	3694624.615
n73	1493515.927	3690630.206
n75	1491141.796	3689419.545
n77	1492955.384	3687175.337

n78	1493293.027	3684092.616
n79	1495475.356	3694595.466
n80	1495458.039	3694813.161
n83	1495765.715	3695053.480
n84	1495374.987	3695368.985
n88	1494301.230	3692050.199
n91	1493340.407	3692098.271
n92	1493682.148	3692067.624
n93	1493643.128	3691903.888
n94	1494812.933	3692006.960
n96	1494762.816	3691762.858
n97	1494325.914	3692759.334
n99	1495147.049	3692583.076
n100	1494313.669	3692460.772
n101	1495577.385	3693144.934
n102	1495260.856	3692717.344
n105	1494922.876	3692730.728
n106	1495205.788	3693170.359
n108	1494481.711	3693123.412
n109	1494740.094	3693118.204
n110	1494739.873	3692992.213
n111	1494472.348	3692759.001
n113	1494744.415	3693773.187
n114	1494818.895	3694057.652
n116	1495022.345	3693730.355
n118	1495045.046	3693405.892
n121	1491143.880	3688403.976
n122	1490693.810	3688274.787
n123	1490160.935	3688265.320
n124	1489656.402	3688407.824
n126	1489293.237	3688020.694
n127	1489692.758	3688012.150
n130	1490107.014	3687977.008
n131	1491375.123	3691954.075
n137	1493009.002	3693552.926
n140	1491894.135	3693937.491
n142	1491703.672	3693171.850
n143	1492920.057	3693582.718
n146	1492942.827	3694128.270
n147	1492666.411	3694234.732
n148	1492493.758	3693726.287
n150	1490900.667	3694888.902
n151	1490755.796	3694415.057
n152	1493512.111	3693927.394
n155	1493324.060	3693289.998
n156	1493851.640	3693138.748
n157	1493610.795	3692756.842
n158	1493258.376	3692131.222
n159	1493161.485	3692757.531
n160	1492997.931	3692190.622

n165	1492433.913	3696187.259
n168	1494052.312	3695379.352
n169	1494279.531	3695886.715
n170	1497456.955	3693711.495
n171	1498774.808	3698975.026
n174	1498034.548	3699530.430
n177	1498319.358	3699520.901
n179	1497977.457	3699579.105
n181	1497599.205	3699616.846
n182	1497786.407	3700053.055
n183	1497685.383	3699852.652
n184	1497053.085	3699937.080
n187	1490076.885	3690568.952
n188	1489993.589	3689839.303
n192	1494106.341	3691432.741
n193	1493997.680	3692059.676
n194	1494009.764	3692766.853
n195	1496529.190	3694014.001
n197	1496310.929	3695018.737
n199	1496994.433	3694942.316
n201	1497197.710	3694951.547
n202	1496630.265	3695063.434
n203	1496630.043	3694560.425
n205	1489085.279	3690649.000
n212	1489166.953	3693083.353
n232	1499671.079	3699902.829
n235	1500357.663	3700257.415
n241	1498976.621	3699202.883
n242	1498894.437	3699060.051
n246	1499180.678	3699467.330
n249	1496260.425	3696749.332
n251	1497540.522	3696733.240
n253	1496724.649	3696711.678
n256	1498603.470	3698149.816
n257	1498569.138	3697902.009
n261	1499719.989	3698056.745
n266	1496021.992	3695018.470
n267	1496030.542	3695708.110
n272	1496310.280	3695273.745
n274	1496310.859	3694856.950
n277	1490335.004	3689836.636
n287	1490183.070	3687933.723
n290	1489695.295	3687755.579
n291	1489687.005	3687619.018
n300	1490802.210	3690168.447
n305	1499802.900	3699108.254
n308	1499921.605	3699342.032
n314	1496026.453	3694320.686
n315	1496023.895	3694579.697
n316	1496313.724	3694021.833

n320	1495458.010	3694044.861
n323	1496932.385	3694548.903
n324	1495786.851	3694031.359
n325	1496116.654	3694021.771
n332	1495307.466	3691711.246
n333	1495055.643	3691496.702
n334	1494940.034	3691610.417
n335	1496437.584	3694011.084
n336	1496433.494	3693401.998
n337	1497736.253	3699214.949
n338	1497455.502	3698796.736
n339	1493034.811	3687175.389
n343	1498235.307	3696775.182
n345	1497389.689	3695136.789
n352	1494589.306	3700047.565
n357	1488504.538	3693240.425
n358	1496946.078	3694830.747
n361	1496625.935	3694013.664
n362	1496318.923	3694571.761
n367	1493912.611	3694722.491
n369	1490344.919	3690196.161
n374	1497771.846	3700594.415
n376	1495965.108	3696905.832
n385	1495718.135	3695894.263
n387	1495015.661	3694964.326
n389	1496171.325	3696769.247
n390	1497262.761	3698507.757
n391	1498620.345	3700571.004
n395	1496931.127	3700022.321
n397	1487998.938	3700530.959
n398	1493050.572	3694414.173
n399	1493624.932	3694208.224
n400	1492767.866	3694579.439
n406	1494353.856	3695247.497
n407	1494650.896	3694390.337
n408	1494439.752	3694051.238
n409	1494166.760	3693644.112
n410	1494552.517	3694062.542
n416	1492440.383	3690148.580
n418	1492720.414	3690156.179
n420	1491162.466	3690470.625
n421	1491160.802	3690165.845
n423	1490689.328	3688402.082
n424	1490152.487	3688391.041
n429	1491160.179	3687172.743
n430	1492712.422	3689671.273
n436	1493781.286	3692838.742
n437	1494588.492	3693465.262
n438	1495441.814	3693296.633
n440	1495855.177	3694029.228

n443	1493377.065	3694860.836
n444	1493776.262	3695497.987
n445	1493611.314	3694755.834
n446	1493706.529	3694883.078
n447	1500279.019	3700425.529
n448	1498636.413	3698460.131
n449	1493142.725	3686162.764
n450	1496528.392	3693781.114
n451	1497235.766	3694546.821
n453	1497414.725	3694001.451
n457	1494921.356	3694647.574
n458	1495704.684	3694341.749
n459	1495753.339	3694588.956
n460	1495161.161	3694364.254
n467	1497249.858	3694438.845
n468	1496931.161	3694333.884
n472	1498374.959	3700045.416
n473	1498617.154	3700410.366
n475	1497361.976	3698477.122
n477	1498097.700	3697921.664
n478	1498305.231	3697918.830
n479	1498169.444	3698238.656
n480	1498343.749	3698231.458
n481	1498182.161	3698468.058
n493	1493820.683	3691327.355
n494	1493825.201	3690122.128
n495	1496537.638	3693402.220
n496	1492411.036	3696092.439
n500	1492746.113	3692533.085
n511	1491542.751	3692532.751
n512	1494511.109	3692055.369
n516	1492815.762	3690127.032
n518	1494496.102	3690285.769
n527	1492018.701	3694475.648
1	1495697.940	3692757.068
2	1495876.202	3692628.148
3	1495128.290	3693064.058
4	1497058.399	3699628.988
5	1499908.696	3699905.008
6	1495131.960	3691789.190
7	1489994.413	3689683.423
16	1499330.393	3698451.838
17	1497772.194	3700642.830
18	1495656.272	3700040.261
8	1492260.022	3696157.099
9	1499385.374	3700109.192
12	1498560.217	3697523.655
13	1498840.623	3698964.487
14	1498740.700	3698782.981
15	1499711.397	3698796.239

19	1499768.062	3698950.131
20	1489284.788	3689938.346
21	1489315.796	3689693.636
22	1489241.513	3690151.938
23	1490000.542	3689983.328
24	1488416.492	3690706.178
25	1495654.265	3700700.361
26	1496943.861	3700692.616
30	1498145.224	3697647.825
31	1497992.907	3697532.821
32	1498566.258	3697360.989
33	1498633.777	3697220.649
34	1498879.462	3697218.396
35	1498632.782	3696995.928
27	1493057.814	3686171.793
28	1491161.864	3686196.941
29	1491146.153	3688672.567
36	1490437.815	3688680.702
37	1490422.236	3688260.348
38	1489656.024	3688689.849
39	1489400.373	3688718.304
40	1492838.758	3690388.206
41	1492759.897	3690403.679
42	1491201.318	3684394.616
43	1493264.917	3684341.031
44	1491138.760	3689002.020
45	1492310.569	3695690.085
46	1492236.168	3695390.193
47	1491128.445	3696151.096
48	1491007.651	3695857.538
49	1491250.635	3696442.438
50	1492284.397	3695696.858
51	1492203.935	3695397.248
52	1491300.887	3696560.895
53	1496224.239	3696679.333
54	1496246.543	3696722.478
55	1495309.901	3695429.333
56	1495034.175	3695682.019
57	1494765.212	3695901.696
58	1494705.133	3696293.541
59	1494914.913	3696130.706
66	1487441.684	3700240.184
67	1487441.891	3700479.914
68	1487441.762	3701080.772
69	1487956.801	3701092.793
70	1487568.271	3700479.684
71	1496938.292	3700406.017
60	1497890.344	3699617.362
61	1498038.184	3699893.886
62	1497082.389	3697407.466

63	1497093.941	3697795.467
64	1497084.343	3697473.957
65	1496789.526	3697591.282
72	1498135.318	3699484.502
73	1498035.612	3699294.422
74	1489991.741	3689424.901
75	1489989.513	3689144.669
76	1493062.967	3690375.258
77	1492917.376	3691304.631
78	1492816.140	3691331.168
79	1493043.184	3691769.531
80	1493117.883	3691748.890
81	1492993.058	3691284.973
82	1494620.779	3695436.213
83	1494790.714	3695321.657
84	1495099.775	3695979.404
85	1494776.721	3696390.947
86	1494980.386	3696230.825
87	1498633.434	3696765.498
88	1498663.676	3696219.492
90	1492242.170	3691494.280
91	1491902.822	3691589.372
92	1491822.578	3690840.381
93	1492253.675	3690859.672
94	1491162.070	3690955.732
95	1491328.474	3691748.941
96	1492872.237	3690828.853
97	1491935.440	3690158.032
98	1491825.431	3690156.167
99	1492492.576	3692307.941
100	1491139.661	3689124.281
101	1492767.949	3689100.564
102	1491923.737	3689116.401
103	1491930.271	3688381.412
104	1492842.531	3688360.338
105	1491919.479	3687176.601
106	1491919.576	3687768.116
107	1491152.720	3687781.053
108	1492903.128	3687757.157
109	1490440.063	3689144.803
89	1493793.765	3687152.664
110	1493802.141	3687748.539
111	1493804.380	3688329.146
112	1493812.547	3689125.916
113	1492840.436	3689102.549
114	1492910.357	3688357.662
115	1492972.819	3687757.278
116	1493768.844	3684310.491
117	1491937.464	3685368.642
118	1491918.798	3684353.189

119	1493142.374	3685356.996
120	1491956.103	3686190.915
121	1489668.092	3687211.980
122	1489633.937	3686418.113
123	1489641.959	3686054.661
124	1488081.446	3686308.525
125	1489675.859	3690604.587
126	1489800.079	3692939.558
127	1490326.813	3692815.565
128	1490222.172	3690559.838
129	1490510.349	3693511.987
130	1490729.434	3694345.439
131	1489953.011	3693676.397
132	1490140.237	3694544.946
133	1490263.613	3695137.439
134	1490666.356	3694988.276
135	1494152.903	3697075.203
136	1494164.103	3697855.460
137	1494935.024	3697846.628
138	1494933.160	3697064.004
139	1494858.494	3696492.811
140	1495060.092	3696350.946
141	1495254.222	3697060.270
142	1495642.058	3695952.697
143	1495676.084	3697086.403
144	1495627.551	3697836.794
145	1496254.743	3697833.060
146	1492750.801	3697281.631
147	1493043.950	3697912.812
148	1494513.163	3697066.372
149	1494181.409	3698806.243
150	1493669.420	3698865.866
151	1494950.535	3698805.310
152	1495636.688	3698806.243
153	1496260.379	3698809.972
154	1496281.068	3699655.263
155	1495650.851	3699659.924
156	1494958.172	3699665.518
157	1494250.350	3699668.795
158	1494962.833	3700044.953
159	1496930.385	3699650.258
160	1496293.187	3700030.969
161	1496392.762	3698808.107
162	1496650.719	3695445.124
163	1499394.822	3698454.373
164	1500396.349	3699815.427
165	1500536.190	3700000.949
166	1500794.429	3700536.074
167	1500790.845	3701173.641
169	1500169.951	3701176.437

170	1500790.845	3701309.752
168	1493828.069	3700082.895
171	1493129.049	3700070.054
172	1492410.795	3699124.197
173	1493843.571	3699676.413
174	1493123.452	3699680.144
175	1493114.124	3699124.197
176	1491201.753	3699234.257
177	1492420.123	3700084.978
178	1492388.938	3698226.270
179	1491107.257	3698818.017
180	1490894.460	3697951.895
181	1489922.042	3696777.602
182	1490602.984	3696747.752
183	1489062.465	3694736.878
184	1488769.201	3696786.665
185	1488348.976	3690704.854
186	1488184.876	3693341.359
187	1488523.136	3698552.306
188	1488015.124	3690760.298
189	1485885.956	3690932.125
190	1485871.014	3689721.861
191	1487927.548	3689680.030
192	1486647.974	3689677.037
193	1486715.211	3690857.418
194	1486789.919	3692448.691
195	1486580.737	3688070.822
196	1487805.943	3688033.468
197	1488112.244	3692388.925
198	1487686.411	3693464.715
202	1487634.115	3692418.808
204	1489403.618	3689142.064
205	1493864.336	3701882.778
206	1494225.858	3701107.255
207	1493841.012	3701025.621
208	1491222.384	3701150.679
200	1493769.988	3684816.852
201	1493737.316	3690425.219
203	1499962.134	3699252.266
199	1496832.976	3697825.520
3004	1498678.239	3698008.702
3001	1496671.164	3693958.330
3002	1495815.068	3694091.607
3003	1494513.386	3692003.386
3005	1494522.614	3690043.906
3006	1493901.560	3687149.820
3007	1497898.430	3695391.000
9999	1500538.443	3697981.556
10	1497553.820	3693778.206
11	1497555.415	3693721.167

1001	1494973.150	3689124.270
1002	1500318.279	3698760.017
1003	1494620.200	3684860.840
1004	1499600.524	3696770.515

[VERTICES]

	X-Coord	Y-Coord
;Link		
p26	1494689.530	3691392.381
p26	1494757.231	3691346.894
p42	1495478.445	3694760.370
p44	1495511.135	3695233.114
p50	1493673.206	3691971.994
p61	1494813.908	3693976.510
p95	1497280.046	3693654.883
p191	1495761.115	3693385.312
p323	1495750.062	3694366.741
p324	1495434.030	3694347.076
p365	1494741.363	3691993.226
p365	1494656.737	3692004.862
p365	1494571.758	3692034.347
16	1494960.217	3692830.845
16	1494982.849	3692879.879
23	1493902.831	3692781.810
23	1493858.826	3692794.383
33	1493710.314	3694432.566
35	1494125.518	3694970.253
36	1491999.884	3692807.732
37	1492465.513	3692924.193
45	1493784.362	3694673.750
86	1497842.065	3696738.122
89	1497091.556	3694903.702
89	1497150.649	3694908.731
103	1495756.307	3694788.031
103	1495731.161	3694891.129
103	1495738.705	3694996.742
104	1495802.027	3695030.744
104	1495940.070	3695020.808
1	1497343.140	3693909.937
102	1494855.147	3693737.540
126	1494615.482	3691409.306
126	1494519.220	3691310.928
126	1494473.734	3691241.112
146	1493857.812	3693792.103
146	1493987.924	3693742.385
147	1495027.699	3694597.036
173	1491469.576	3694685.955
173	1492018.322	3694492.998
5	1493820.166	3691240.115
5	1493847.827	3691187.309
11	1497002.781	3693758.592

192	1493593.316	3692549.847
195	1495133.449	3694389.214
212	1493145.435	3694666.345
69	1497586.572	3699910.331
70	1497761.642	3699968.641
77	1497602.644	3699717.621
141	1498252.505	3696310.037
141	1498251.522	3696518.406
141	1498236.779	3696532.166
158	1490799.991	3689903.630
158	1490764.767	3689845.762
78	1497797.930	3699059.287
78	1498083.661	3699048.704
78	1498276.264	3698974.626
81	1498330.163	3699260.585
81	1498848.958	3699264.471
83	1498513.092	3699587.902
83	1498981.446	3699578.134
83	1499079.727	3699546.544
170	1499378.750	3699744.525
178	1498426.315	3700023.906
178	1499048.573	3700021.789
178	1499101.486	3700000.624
178	1499167.098	3699930.779
178	1499230.594	3699907.497
188	1499357.138	3700348.336
188	1499371.954	3700405.482
189	1499076.278	3700389.787
189	1499140.485	3700377.156
189	1499188.263	3700347.734
189	1499239.060	3700311.753
199	1498681.967	3700388.550
201	1499686.563	3700146.767
201	1499722.852	3700179.497
201	1499772.659	3700202.266
201	1499920.658	3700200.131
201	1500013.868	3700222.900
201	1500072.925	3700254.919
201	1500110.637	3700286.938
201	1500188.194	3700371.611
206	1497549.766	3697381.926
207	1496730.123	3696564.957
207	1496697.558	3696474.662
207	1496687.936	3696396.950
207	1496700.518	3696356.984
207	1496754.547	3696318.498
207	1496803.394	3696298.515
207	1497103.882	3696286.673
208	1497619.641	3696294.417
209	1496000.309	3695637.278

209	1496001.082	3695050.497
228	1497801.969	3698233.836
228	1497841.298	3698438.906
231	1496426.225	3693179.116
232	1496402.872	3695019.108
234	1496000.001	3693153.970
234	1496049.036	3693225.636
234	1496079.211	3693302.331
237	1496716.882	3695069.665
237	1496794.834	3695049.548
238	1494154.679	3695578.111
238	1494274.213	3695676.489
238	1494400.095	3695763.230
239	1493524.673	3695147.968
239	1493562.755	3695197.686
239	1493669.596	3695269.618
240	1492800.584	3694514.018
241	1492918.463	3694044.923
241	1492904.711	3693927.505
241	1492978.759	3693879.902
241	1492962.891	3693744.501
242	1492532.994	3693001.353
242	1492670.733	3693066.520
242	1492738.862	3693109.471
242	1492796.623	3693185.005
245	1492627.752	3692644.295
246	1494288.614	3691619.813
246	1494257.937	3691563.749
246	1494154.270	3691463.255
247	1493977.225	3691600.218
248	1494834.452	3691923.409
248	1494818.585	3691853.593
249	1495350.961	3692007.809
249	1495514.501	3692020.389
253	1493927.036	3691334.413
253	1494025.105	3691370.874
254	1494308.105	3690611.365
254	1494276.210	3690527.987
254	1494214.409	3690484.445
254	1494145.584	3690471.804
256	1494955.044	3691589.136
257	1495040.728	3691669.531
257	1495096.793	3691729.827
259	1494598.939	3692447.448
259	1494674.756	3692421.474
259	1494747.062	3692383.565
259	1494815.157	3692366.717
259	1494869.211	3692366.015
259	1494926.073	3692380.757
259	1495013.824	3692428.494

262	1494829.459	3692759.179
263	1495031.883	3693116.251
264	1494492.503	3693206.776
264	1494527.708	3693312.389
265	1494684.068	3693418.704
268	1493500.813	3691368.360
269	1493230.494	3691237.601
269	1493278.271	3691250.174
269	1493414.059	3691349.500
270	1493326.049	3692071.188
270	1493277.014	3691932.886
270	1493192.775	3691685.198
275	1493016.297	3690112.230
275	1493712.201	3690113.668
276	1494045.858	3690122.062
276	1494323.966	3690195.101
279	1492145.496	3690361.440
279	1492175.688	3690472.144
279	1492246.136	3690602.976
279	1492248.652	3690693.552
280	1490977.542	3688391.223
280	1490810.321	3688293.154
282	1489977.723	3688263.762
282	1489890.247	3688284.402
282	1489774.268	3688389.570
283	1489299.539	3688404.313
283	1489258.258	3688355.169
283	1489267.563	3688058.168
286	1489946.503	3687757.674
288	1490156.471	3688092.115
289	1490021.940	3688005.361
289	1489795.627	3688011.648
299	1498222.363	3696173.476
12	1495153.915	3692084.199
12	1495060.827	3692083.141
73	1498574.472	3700599.600
73	1498173.333	3700621.215
73	1497774.697	3700648.581
15	1499352.894	3700199.900
95	1498902.755	3698942.878
116	1489697.983	3689986.658
116	1489499.220	3689976.594
124	1490051.212	3690121.260
132	1498642.423	3698593.652
132	1498682.637	3698682.546
220	1498154.387	3697335.553
220	1497979.328	3697352.765
220	1497985.249	3697489.686
134	1498120.435	3697672.071
134	1498102.663	3697700.211

134	1498096.738	3697763.897
135	1498298.163	3697485.457
135	1498357.405	3697401.037
135	1498437.382	3697365.491
138	1498615.530	3697259.942
138	1498577.198	3697316.949
138	1498568.502	3697351.945
139	1498560.489	3697385.750
216	1492066.098	3695750.810
217	1491928.506	3695471.413
217	1492021.872	3695440.525
214	1496308.684	3696715.164
273	1495208.674	3695522.921
273	1495140.973	3695609.662
274	1494982.300	3695709.098
293	1494564.967	3696093.853
9	1499225.842	3697504.021
9	1499239.594	3697434.204
9	1499260.751	3697337.942
9	1499287.196	3697242.738
9	1499361.244	3697148.591
9	1499415.193	3697114.741
9	1499514.629	3697130.608
9	1499540.017	3697165.516
9	1499646.857	3697505.078
9	1499668.013	3697570.664
9	1499700.806	3697795.981
304	1487960.848	3700806.986
304	1487972.426	3700666.643
306	1487926.991	3700500.307
306	1487666.305	3700500.658
306	1487621.044	3700481.010
308	1487531.862	3700239.878
308	1487567.664	3700277.085
311	1497764.823	3700376.704
313	1497758.339	3700688.140
313	1497756.233	3700593.369
65	1497907.044	3699683.669
72	1497933.567	3699604.591
80	1497839.263	3699624.238
221	1496895.604	3697526.342
221	1496955.035	3697495.890
221	1497019.377	3697478.699
316	1498202.116	3699483.520
321	1492868.958	3690378.205
331	1494523.438	3695537.934
331	1494576.513	3695493.705
331	1494610.914	3695477.979
230	1494705.087	3696288.413
335	1498636.140	3696646.298

335	1498663.676	3696526.320
335	1498661.709	3696380.773
338	1491841.379	3691382.038
341	1491176.962	3691081.311
341	1491203.080	3691193.247
349	1492783.821	3690502.471
350	1492720.391	3690856.934
375	1490768.407	3687786.650
375	1490593.041	3687790.381
375	1490466.181	3687810.903
375	1490343.052	3687857.543
383	1492811.536	3689362.653
396	1490568.600	3686207.300
396	1490326.073	3686246.478
396	1489951.088	3686377.069
397	1489184.329	3686425.575
399	1489613.416	3686862.124
410	1491712.982	3694011.685
424	1493254.229	3697087.718
429	1494923.824	3696640.777
430	1495222.487	3696577.311
430	1495248.620	3696685.577
431	1495629.415	3697055.172
437	1494602.762	3696678.110
437	1494520.629	3696834.908
442	1495629.415	3697174.637
445	1493172.604	3697860.604
464	1497172.193	3698466.934
464	1496388.643	3698474.396
467	1493806.635	3698806.243
467	1493751.631	3698816.498
468	1497371.799	3696018.230
468	1497325.159	3695945.471
468	1496752.422	3695555.562
469	1498591.368	3695861.658
469	1498499.954	3695734.798
469	1498016.765	3695190.044
470	1499234.495	3698222.628
470	1499247.547	3698280.429
470	1499281.108	3698327.975
471	1499601.312	3698676.963
473	1499937.814	3699390.201
473	1499985.360	3699448.002
473	1500023.584	3699475.970
473	1500072.062	3699505.803
473	1500113.082	3699519.787
473	1500156.899	3699539.365
473	1500188.596	3699559.875
473	1500231.481	3699595.301
474	1500191.393	3699919.733

474	1500256.652	3699905.748
474	1500297.672	3699888.035
474	1500341.489	3699862.864
474	1500357.338	3699848.880
476	1500407.680	3700108.984
477	1500728.382	3700256.283
477	1500766.606	3700326.204
477	1500780.590	3700370.021
477	1500792.709	3700437.144
478	1500682.701	3700544.356
478	1500585.745	3700536.898
478	1500463.617	3700516.388
482	1492607.884	3696837.640
485	1494458.247	3699956.867
486	1492865.607	3697579.557
487	1493244.323	3698273.558
487	1493518.565	3698665.333
190	1493818.786	3699140.924
190	1493829.986	3699237.990
194	1493352.125	3699084.925
194	1493314.793	3699107.325
194	1493273.726	3699118.525
427	1492092.845	3699120.413
499	1490883.621	3696736.999
507	1488676.563	3693853.364
507	1488840.828	3694114.694
507	1488934.160	3694301.359
508	1488717.630	3694947.217
508	1488807.228	3694816.552
509	1489449.353	3696332.266
509	1489531.486	3696492.797
509	1489613.618	3696582.396
509	1489736.816	3696698.128
532	1488829.438	3698544.836
533	1488581.027	3699350.722
533	1488588.494	3699660.585
533	1488543.694	3699892.048
533	1488431.696	3700108.579
533	1488319.697	3700220.577
533	1488263.698	3700272.843
533	1488174.099	3700328.843
533	1488121.833	3700373.642
536	1489328.953	3689168.197
538	1494056.759	3701043.114
514	1493392.280	3684322.108
545	1493819.739	3690281.643
545	1493817.081	3690358.748
545	1493811.763	3690382.678
545	1493761.245	3690377.360
545	1493734.657	3690380.019

546	1493838.351	3690518.277
546	1493846.327	3690481.054
546	1493734.657	3690470.419
548	1499756.918	3699248.535
548	1499592.746	3699248.535
549	1499885.644	3699267.191
2008	1493835.692	3690427.878
2008	1493851.645	3690467.760
75	1499902.435	3699298.906
128	1499181.295	3698053.185
128	1499135.045	3698060.301
128	1498974.239	3698137.858

[LABELS]

;	X-Coord	Y-Coord	Label & Anchor Node
---	---------	---------	---------------------

[BACKDROP]

DIMENSIONS	1482224.213	3669954.616	1521588.200
3723176.300			
UNITS	Feet		
FILE	G:\Clients\Perry City\Studies and Planning\Water\2023 Perry		
Utah Culinary Water Capital Facilities Plan\Water Model\Scenarios\Perry Utah			
2023\3-FF & Peak Day (20 psi minimum) - (Q = 0.38 gpm + 1500 gpm min ff			
)\projects\model.emf			
OFFSET	-9382.70	20024.25	

[END]

2023 MODEL FF RESULTS (FUTURE CONDITIONS)

"Check_Node", "Maximal_Flow", "Violating_Node", "Minimal_pressure"
"n4", "Maximal flow was reached"
"n5", "Maximal flow was reached"
"n7", "Maximal flow was reached"
"n9", "Maximal flow was reached"
"n10", "Maximal flow was reached"
"n13", "Maximal flow was reached"
"n14", "Maximal flow was reached"
"n16", "Maximal flow was reached"
"n19", "Maximal flow was reached"
"n20", "Maximal flow was reached"
"n21", "Maximal flow was reached"
"n24", "Maximal flow was reached"
"n26", 590, "n26", 19.86121
"n28", "Maximal flow was reached"
"n29", "Maximal flow was reached"
"n30", "Maximal flow was reached"
"n31", "Maximal flow was reached"
"n32", 1440, "n32", 19.90439
"n33", "Maximal flow was reached"
"n35", "Maximal flow was reached"
"n36", "Maximal flow was reached"
"n37", "Maximal flow was reached"
"n39", "Maximal flow was reached"
"n41", "Maximal flow was reached"
"n42", "Maximal flow was reached"
"n43", "Maximal flow was reached"
"n44", "Maximal flow was reached"
"n45", "Maximal flow was reached"
"n46", 570, "n46", 19.79029
"n47", "Maximal flow was reached"
"n48", 460, "n48", 19.95903
"n49", "Maximal flow was reached"
"n50", "Maximal flow was reached"
"n51", "Maximal flow was reached"
"n52", "Maximal flow was reached"
"n53", "Maximal flow was reached"
"n54", "Maximal flow was reached"
"n56", "Maximal flow was reached"
"n58", "Maximal flow was reached"
"n60", "Maximal flow was reached"
"n61", "Maximal flow was reached"
"n62", "Maximal flow was reached"
"n63", "Maximal flow was reached"
"n65", "Maximal flow was reached"
"n68", "Maximal flow was reached"
"n69", "Maximal flow was reached"
"n70", "Maximal flow was reached"
"n73", "Maximal flow was reached"
"n75", "Maximal flow was reached"

"n77","Maximal flow was reached"
"n78",860,"n78",19.87746
"n79","Maximal flow was reached"
"n80","Maximal flow was reached"
"n83","Maximal flow was reached"
"n84","Maximal flow was reached"
"n88","Maximal flow was reached"
"n91","Maximal flow was reached"
"n92","Maximal flow was reached"
"n93","Maximal flow was reached"
"n94","Maximal flow was reached"
"n96","Maximal flow was reached"
"n97","Maximal flow was reached"
"n99","Maximal flow was reached"
"n100","Maximal flow was reached"
"n101","Maximal flow was reached"
"n102","Maximal flow was reached"
"n105","Maximal flow was reached"
"n106","Maximal flow was reached"
"n108","Maximal flow was reached"
"n109","Maximal flow was reached"
"n110","Maximal flow was reached"
"n111","Maximal flow was reached"
"n113","Maximal flow was reached"
"n114","Maximal flow was reached"
"n116","Maximal flow was reached"
"n118","Maximal flow was reached"
"n121","Maximal flow was reached"
"n122","Maximal flow was reached"
"n123","Maximal flow was reached"
"n124","Maximal flow was reached"
"n126","Maximal flow was reached"
"n127","Maximal flow was reached"
"n130","Maximal flow was reached"
"n131","Maximal flow was reached"
"n137","Maximal flow was reached"
"n140","Maximal flow was reached"
"n142","Maximal flow was reached"
"n143","Maximal flow was reached"
"n146","Maximal flow was reached"
"n147","Maximal flow was reached"
"n148","Maximal flow was reached"
"n150","Maximal flow was reached"
"n151","Maximal flow was reached"
"n152","Maximal flow was reached"
"n155","Maximal flow was reached"
"n156","Maximal flow was reached"
"n157","Maximal flow was reached"
"n158","Maximal flow was reached"
"n159","Maximal flow was reached"

"n160","Maximal flow was reached"
"n165","Maximal flow was reached"
"n168","Maximal flow was reached"
"n169","Maximal flow was reached"
"n170","Maximal flow was reached"
"n171","Maximal flow was reached"
"n174","Maximal flow was reached"
"n177","Maximal flow was reached"
"n179","Maximal flow was reached"
"n181","Maximal flow was reached"
"n182","Maximal flow was reached"
"n183","Maximal flow was reached"
"n184","Maximal flow was reached"
"n187","Maximal flow was reached"
"n188","Maximal flow was reached"
"n192","Maximal flow was reached"
"n193","Maximal flow was reached"
"n194","Maximal flow was reached"
"n195","Maximal flow was reached"
"n197","Maximal flow was reached"
"n199","Maximal flow was reached"
"n201","Maximal flow was reached"
"n202","Maximal flow was reached"
"n203","Maximal flow was reached"
"n205","Maximal flow was reached"
"n212",930,"n212",18.50724
"n232","Maximal flow was reached"
"n235","Maximal flow was reached"
"n241","Maximal flow was reached"
"n242","Maximal flow was reached"
"n246","Maximal flow was reached"
"n249","Maximal flow was reached"
"n251","Maximal flow was reached"
"n253","Maximal flow was reached"
"n256","Maximal flow was reached"
"n257","Maximal flow was reached"
"n261","Maximal flow was reached"
"n266","Maximal flow was reached"
"n267","Maximal flow was reached"
"n272","Maximal flow was reached"
"n274",1250,"n274",19.24873
"n277","Maximal flow was reached"
"n287","Maximal flow was reached"
"n290","Maximal flow was reached"
"n291","Maximal flow was reached"
"n300","Maximal flow was reached"
"n305","Maximal flow was reached"
"n308","Maximal flow was reached"
"n314","Maximal flow was reached"
"n315","Maximal flow was reached"

"n316", "Maximal flow was reached"
"n320", "Maximal flow was reached"
"n323", "Maximal flow was reached"
"n324", "Maximal flow was reached"
"n325", "Maximal flow was reached"
"n332", 1140, "n332", 19.74809
"n333", 1180, "n333", 19.75958
"n334", "Maximal flow was reached"
"n335", "Maximal flow was reached"
"n336", 660, "n26", 19.66172
"n337", "Maximal flow was reached"
"n338", "Maximal flow was reached"
"n339", "Maximal flow was reached"
"n343", "Maximal flow was reached"
"n345", "Maximal flow was reached"
"n352", "Maximal flow was reached"
"n357", "Maximal flow was reached"
"n358", "Maximal flow was reached"
"n361", "Maximal flow was reached"
"n362", "Maximal flow was reached"
"n367", "Maximal flow was reached"
"n369", "Maximal flow was reached"
"n374", "Maximal flow was reached"
"n376", "Maximal flow was reached"
"n385", "Maximal flow was reached"
"n387", "Maximal flow was reached"
"n389", "Maximal flow was reached"
"n390", "Maximal flow was reached"
"n391", "Maximal flow was reached"
"n395", "Maximal flow was reached"
"n397", "Maximal flow was reached"
"n398", "Maximal flow was reached"
"n399", "Maximal flow was reached"
"n400", "Maximal flow was reached"
"n406", "Maximal flow was reached"
"n407", "Maximal flow was reached"
"n408", "Maximal flow was reached"
"n409", "Maximal flow was reached"
"n410", "Maximal flow was reached"
"n416", "Maximal flow was reached"
"n418", "Maximal flow was reached"
"n420", "Maximal flow was reached"
"n421", "Maximal flow was reached"
"n423", "Maximal flow was reached"
"n424", "Maximal flow was reached"
"n429", "Maximal flow was reached"
"n430", "Maximal flow was reached"
"n436", "Maximal flow was reached"
"n437", "Maximal flow was reached"
"n438", "Maximal flow was reached"

"n440","Maximal flow was reached"
"n443","Maximal flow was reached"
"n444","Maximal flow was reached"
"n445","Maximal flow was reached"
"n446","Maximal flow was reached"
"n447","Maximal flow was reached"
"n448","Maximal flow was reached"
"n449","Maximal flow was reached"
"n450","Maximal flow was reached"
"n451","Maximal flow was reached"
"n453","Maximal flow was reached"
"n457","Maximal flow was reached"
"n458","Maximal flow was reached"
"n459","Maximal flow was reached"
"n460","Maximal flow was reached"
"n467","Maximal flow was reached"
"n468","Maximal flow was reached"
"n472","Maximal flow was reached"
"n473","Maximal flow was reached"
"n475","Maximal flow was reached"
"n477","Maximal flow was reached"
"n478","Maximal flow was reached"
"n479","Maximal flow was reached"
"n480","Maximal flow was reached"
"n481","Maximal flow was reached"
"n493","Maximal flow was reached"
"n494","Maximal flow was reached"
"n495",660,"n26",19.64674
"n496","Maximal flow was reached"
"n500","Maximal flow was reached"
"n511","Maximal flow was reached"
"n512","Maximal flow was reached"
"n516","Maximal flow was reached"
"n518",1320,"n518",19.98314
"n527","Maximal flow was reached"
"1",1410,"2",19.77693
"2",1050,"2",19.89119
"3","Maximal flow was reached"
"4","Maximal flow was reached"
"5","Maximal flow was reached"
"6","Maximal flow was reached"
"7","Maximal flow was reached"
"16","Maximal flow was reached"
"17","Maximal flow was reached"
"18","Maximal flow was reached"
"8","Maximal flow was reached"
"9","Maximal flow was reached"
"12","Maximal flow was reached"
"13","Maximal flow was reached"
"14","Maximal flow was reached"

"15", "Maximal flow was reached"
"19", "Maximal flow was reached"
"20", "Maximal flow was reached"
"21", "Maximal flow was reached"
"22", "Maximal flow was reached"
"23", "Maximal flow was reached"
"24", "Maximal flow was reached"
"25", "Maximal flow was reached"
"26", "Maximal flow was reached"
"30", "Maximal flow was reached"
"31", "Maximal flow was reached"
"32", "Maximal flow was reached"
"33", "Maximal flow was reached"
"34", "Maximal flow was reached"
"35", "Maximal flow was reached"
"27", "Maximal flow was reached"
"28", "Maximal flow was reached"
"29", "Maximal flow was reached"
"36", "Maximal flow was reached"
"37", "Maximal flow was reached"
"38", "Maximal flow was reached"
"39", "Maximal flow was reached"
"40", "Maximal flow was reached"
"41", "Maximal flow was reached"
"42", "Maximal flow was reached"
"43", 940, "n78", 19.54934
"44", "Maximal flow was reached"
"45", "Maximal flow was reached"
"46", "Maximal flow was reached"
"47", "Maximal flow was reached"
"48", "Maximal flow was reached"
"49", "Maximal flow was reached"
"50", "Maximal flow was reached"
"51", "Maximal flow was reached"
"52", "Maximal flow was reached"
"53", 1480, "53", 19.96585
"54", "Maximal flow was reached"
"55", "Maximal flow was reached"
"56", "Maximal flow was reached"
"57", "Maximal flow was reached"
"58", "Maximal flow was reached"
"59", "Maximal flow was reached"
"66", "Maximal flow was reached"
"67", "Maximal flow was reached"
"68", "Maximal flow was reached"
"69", "Maximal flow was reached"
"70", "Maximal flow was reached"
"71", "Maximal flow was reached"
"60", "Maximal flow was reached"
"61", "Maximal flow was reached"

"62", "Maximal flow was reached"
"63", "Maximal flow was reached"
"64", "Maximal flow was reached"
"65", "Maximal flow was reached"
"72", "Maximal flow was reached"
"73", "Maximal flow was reached"
"74", "Maximal flow was reached"
"75", "Maximal flow was reached"
"76", "Maximal flow was reached"
"77", "Maximal flow was reached"
"78", "Maximal flow was reached"
"79", "Maximal flow was reached"
"80", "Maximal flow was reached"
"81", "Maximal flow was reached"
"82", "Maximal flow was reached"
"83", "Maximal flow was reached"
"84", "Maximal flow was reached"
"85", "Maximal flow was reached"
"86", "Maximal flow was reached"
"87", "Maximal flow was reached"
"88", "Maximal flow was reached"
"90", "Maximal flow was reached"
"91", "Maximal flow was reached"
"92", "Maximal flow was reached"
"93", "Maximal flow was reached"
"94", "Maximal flow was reached"
"95", "Maximal flow was reached"
"96", "Maximal flow was reached"
"97", "Maximal flow was reached"
"98", "Maximal flow was reached"
"99", "Maximal flow was reached"
"100", "Maximal flow was reached"
"101", "Maximal flow was reached"
"102", "Maximal flow was reached"
"103", "Maximal flow was reached"
"104", "Maximal flow was reached"
"105", "Maximal flow was reached"
"106", "Maximal flow was reached"
"107", "Maximal flow was reached"
"108", "Maximal flow was reached"
"109", "Maximal flow was reached"
"89", "Maximal flow was reached"
"110", "Maximal flow was reached"
"111", "Maximal flow was reached"
"112", "Maximal flow was reached"
"113", "Maximal flow was reached"
"114", "Maximal flow was reached"
"115", "Maximal flow was reached"
"116", "Maximal flow was reached"
"117", "Maximal flow was reached"

"118","Maximal flow was reached"
"119","Maximal flow was reached"
"120","Maximal flow was reached"
"121","Maximal flow was reached"
"122","Maximal flow was reached"
"123","Maximal flow was reached"
"124","Maximal flow was reached"
"125","Maximal flow was reached"
"126","Maximal flow was reached"
"127","Maximal flow was reached"
"128","Maximal flow was reached"
"129","Maximal flow was reached"
"130","Maximal flow was reached"
"131","Maximal flow was reached"
"132","Maximal flow was reached"
"133","Maximal flow was reached"
"134","Maximal flow was reached"
"135","Maximal flow was reached"
"136","Maximal flow was reached"
"137","Maximal flow was reached"
"138","Maximal flow was reached"
"139","Maximal flow was reached"
"140","Maximal flow was reached"
"141","Maximal flow was reached"
"142","Maximal flow was reached"
"143","Maximal flow was reached"
"144","Maximal flow was reached"
"145","Maximal flow was reached"
"146","Maximal flow was reached"
"147","Maximal flow was reached"
"148","Maximal flow was reached"
"149","Maximal flow was reached"
"150","Maximal flow was reached"
"151","Maximal flow was reached"
"152","Maximal flow was reached"
"153","Maximal flow was reached"
"154","Maximal flow was reached"
"155","Maximal flow was reached"
"156","Maximal flow was reached"
"157","Maximal flow was reached"
"158","Maximal flow was reached"
"159","Maximal flow was reached"
"160","Maximal flow was reached"
"161","Maximal flow was reached"
"162","Maximal flow was reached"
"163","Maximal flow was reached"
"164","Maximal flow was reached"
"165","Maximal flow was reached"
"166","Maximal flow was reached"
"167","Maximal flow was reached"

"169","Maximal flow was reached"
"170","Maximal flow was reached"
"168","Maximal flow was reached"
"171","Maximal flow was reached"
"172","Maximal flow was reached"
"173","Maximal flow was reached"
"174","Maximal flow was reached"
"175","Maximal flow was reached"
"176","Maximal flow was reached"
"177","Maximal flow was reached"
"178","Maximal flow was reached"
"179","Maximal flow was reached"
"180","Maximal flow was reached"
"181","Maximal flow was reached"
"182","Maximal flow was reached"
"183","Maximal flow was reached"
"184","Maximal flow was reached"
"185","Maximal flow was reached"
"186","Maximal flow was reached"
"187","Maximal flow was reached"
"188","Maximal flow was reached"
"189","Maximal flow was reached"
"190","Maximal flow was reached"
"191","Maximal flow was reached"
"192","Maximal flow was reached"
"193","Maximal flow was reached"
"194","Maximal flow was reached"
"195","Maximal flow was reached"
"196","Maximal flow was reached"
"197","Maximal flow was reached"
"198","Maximal flow was reached"
"202","Maximal flow was reached"
"204","Maximal flow was reached"
"205","Maximal flow was reached"
"206","Maximal flow was reached"
"207","Maximal flow was reached"
"208",1430,"208",18.74526
"200","Maximal flow was reached"
"201","Maximal flow was reached"
"203","Maximal flow was reached"
"199","Maximal flow was reached"

APPENDIX D

COST ESTIMATES

New Water Main W/ PRV

Replaced Existing 2" Water Main w/ 8" Pipe and PRV

Date: 7/12/2023

Concept Cost Estimate

Location:
US 89 & 3000 S

New Water Main W/ PRV

Replaced Existing 2" Water Main w/ 8" Pipe and PRV

Date: 7/12/2023

Concept Cost Estimate

Location:

New Water Main

Replace 6" Water Main w/ 10" Pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

3000 S (From 200 W to HWY 89)

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Asphalt saw-cut	3,506	lf	\$2.50	\$8,765.00	\$4,382.50
2	Asphalt removal	1,166	sy	\$9.00	\$10,494.00	\$5,247.00
3	Stub and Cap end of 10" Water Main		1 ea	\$3,500.00	\$3,500.00	\$1,750.00
4	Connect to Existing 6" main		1 ea	\$7,000.00	\$7,000.00	\$3,500.00
5	New 10" C900 PVC Pipe	1,750	lf	\$105.00	\$183,750.00	\$91,875.00
6	New 10" Valve With Concrete Collar		4 ea	\$7,000.00	\$28,000.00	\$14,000.00
7	New Asphalt (3" Thick)	205	ton	\$100.00	\$20,500.00	\$10,250.00
8	New UTBC (8" Thick)	505	ton	\$25.00	\$12,625.00	\$6,312.50
9	New Fire Hydrant Assembly (Every 500 ft)		2 ea	\$10,000.00	\$20,000.00	\$10,000.00
10	Trench Backfill (Strucutral fill)	1,980	ton	\$25.00	\$49,500.00	\$24,750.00
				SUBTOTAL =	\$344,134.00	\$172,067.00
				30%± Contingency & Engineering =	\$103,240.20	\$51,620.10
				TOTAL =	\$447,374.20	\$223,687.10

New Culinary Water Well

Replace Well #1

Date: 7/12/2023

Concept Cost Estimate

Location:
Needs to be located

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Locate and drill New Well	1	ls	\$1,000,000.00	\$1,000,000.00	\$500,000.00
2	New Well Pump Station	1	ls	\$1,500,000.00	\$1,500,000.00	\$750,000.00
3	Property Acquisition		1 acre	\$50,000.00	\$50,000.00	\$25,000.00
4	Water Right Cost (550 gpm min = 890 acre-ft)	1	ls	\$250,000.00	\$250,000.00	\$125,000.00
5	Source Protection Plan	1	ls	\$20,000.00	\$20,000.00	\$10,000.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New Water Main

Replace 6" Water Main with 8" Pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

2700 S (From 900 W to 1200 W)

New Water Tank

New Culinary Water Tank

Date: 7/12/2023

Concept Cost Estimate

Location:

Future 3200 S
Along East Bench

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Construct New (1 MG) Culinary Water Tank	1	ls	\$2,000,000.00	\$2,000,000.00	\$2,000,000.00
2	Property Acquisition	3	acre	\$50,000.00	\$170,000.00	\$170,000.00
				SUBTOTAL =	\$2,170,000.00	\$2,170,000.00
				30%± Contingency & Engineering =	\$651,000.00	\$651,000.00
				TOTAL =	\$2,821,000.00	\$2,821,000.00

New Water Main

New 12" Water Main to New Water tank

Date: 7/12/2023

Concept Cost Estimate

Location:

3200 S (8000 W to 100 W)

Item	Description	Qty	Unit	Unit Price	Total	* Impact FeeEligible
1	Connect To New Water Tank	1	ea	\$4,000.00	\$4,000.00	\$4,000.00
2	Connect to 8" Water Main on 800 West	1	ea	\$3,000.00	\$3,000.00	\$3,000.00
3	Bore New Water line under canal	1	ls	\$50,000.00	\$50,000.00	\$50,000.00
4	New 12" C900 PVC Pipe	1,150	lf	\$140.00	\$161,000.00	\$161,000.00
5	New 12" valve with Concrete Collar	1	ea	\$9,000.00	\$9,000.00	\$9,000.00
6	Trench Backfill (Structural Fill)	1,724	ton	\$25.00	\$43,100.00	\$43,100.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New Culinary Water Well

Well #5 Rehabilitation

Date: 7/12/2023

Concept Cost Estimate

Location:

3000 S & 400 W

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Drill Well to required depth for (550 gpm min)	1	ls	\$1,000,000.00	\$1,000,000.00	\$1,000,000.00
2	New Well Pump Station	1	ls	\$1,500,000.00	\$1,500,000.00	\$1,500,000.00
3	Source Protection Plan	1	ls	\$30,000.00	\$30,000.00	\$30,000.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

SUBTOTAL = \$2,530,000.00 \$2,530,000.00

30%± Contingency & Engineering = \$759,000.00 \$759,000.00

TOTAL = \$3,289,000.00 \$3,289,000.00

New Water Main & PRV's

New 10" Water Main & connection to high pressure system & PRV install

Date: 7/12/2023

Concept Cost Estimate

Location:
Valley View Drive

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee	Eligible
1	New 10" C900 PVC Pipe	1,060	lf	\$105.00	\$111,300.00		\$111,300.00
2	Connection to Existing 10" Main		3 ea	\$6,000.00	\$18,000.00		\$18,000.00
3	New 10" Valve With Collar		4 ea	\$7,000.00	\$28,000.00		\$28,000.00
4	New Fire Hydrant Assembly		1 ea	\$10,000.00	\$10,000.00		\$10,000.00
5	New Asphalt (3" Thick)		2 ton	\$100.00	\$200.00		\$200.00
6	New UTBC (8" Thick)		3 ton	\$20.00	\$60.00		\$60.00
7	Trench Import Backfill		425 ton	\$20.00	\$8,500.00		\$8,500.00
8	New 6" PRV assembly w/concrete vault		4 ea	\$120,000.00	\$480,000.00		\$480,000.00
				SUBTOTAL =	\$656,060.00	\$656,060.00	
				30%± Contingency & Engineering =	\$196,818.00	\$196,818.00	
				TOTAL =	\$852,878.00	\$852,878.00	

New Water Main

Replace 4" Water Main with 8" pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

2700 S (1200 W to I-15)

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Asphalt saw cut	3,650	lf	\$2.50	\$9,125.00	\$0.00
2	Asphalt Removal	2,100	sy	\$9.00	\$18,900.00	\$0.00
3	Stub and Cap 8" C900 PVC Pipe		1 ea	\$4,000.00	\$4,000.00	\$0.00
4	Connect Existing 6" Main		1 ea	\$5,000.00	\$5,000.00	\$0.00
5	New 8" C900 PVC Pipe	3,150	lf	\$90.00	\$283,500.00	\$0.00
6	New Asphalt (3" Thick)	470	ton	\$100.00	\$47,000.00	\$0.00
7	New UTBC (8" Thick)	1,150	ton	\$20.00	\$23,000.00	\$0.00
8	New 8" Valve With Concrete Collar		6 ea	\$5,000.00	\$30,000.00	\$0.00
9	New Fire Hydrant Assembly (Every 500 ft)		6 ea	\$10,000.00	\$60,000.00	\$0.00
10	Trench Backfill (UTBC)	2,481	ton	\$25.00	\$62,025.00	\$0.00
						SUBTOTAL = \$542,550.00 \$0.00
						30%± Contingency & Engineering = \$162,765.00 \$0.00
						TOTAL = \$705,315.00 \$0.00

New Water Main

Replace 6" Water Main with 10" Pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

HWY 89: 3000 S to 3600 S
(West Side)

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Connect to Existing 10" Main	1	ea	\$7,000.00	\$7,000.00	\$3,500.00
2	Connect to Existing 6" Main	1	ea	\$7,000.00	\$7,000.00	\$3,500.00
3	New 10" C900 PVC Pipe	4,350	lf	\$105.00	\$456,750.00	\$228,375.00
4	New 10" Valve With Concrete Collar	10	ea	\$6,000.00	\$60,000.00	\$30,000.00
5	Replace Fire Hydrant Assembly (Every 500 ft)	4	ea	\$10,000.00	\$40,000.00	\$20,000.00
6	Trench Backfill (Import Structural Fill)	10,070	ton	\$25.00	\$251,750.00	\$125,875.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New Water Main

Replace 6" Water Main with 10" Pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

HWY 89: 3000 S to 3600 S
(East Side)

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Stub and Cap New 10" main	1	ea	\$5,000.00	\$5,000.00	\$2,500.00
2	Connect to Existing 6" man	1	ea	\$7,000.00	\$7,000.00	\$3,500.00
3	New 10" C900 PVC Pipe	4200	lf	\$105.00	\$441,000.00	\$220,500.00
4	New 10" Valve With Concrete Collar	10	ea	\$7,000.00	\$70,000.00	\$35,000.00
5	New Fire Hydrant Assembly (Every 500 ft)	3	ea	\$10,000.00	\$30,000.00	\$15,000.00
6	Trench Backfill (Structural Fill)	9323	ton	\$25.00	\$233,075.00	\$116,537.50
				SUBTOTAL =	\$786,075.00	\$393,037.50
				30%± Contingency & Engineering =	\$235,822.50	\$117,911.25
				TOTAL =	\$1,021,897.50	\$510,948.75

New Water Main

Replace 6" Water Main with 10" Pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

HWY 89 (1950 S to Larsen Ave)

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Connect to Existing 6" Main	2	ea	\$7,000.00	\$14,000.00	\$5,040.00
2	New 10" C900 PVC Pipe	4350	lf	\$105.00	\$456,750.00	\$164,430.00
3	New 10" Valve With Concrete Collar	11	ea	\$7,000.00	\$77,000.00	\$27,720.00
4	Trench Backfill (Structural fill)	100	ton	\$25.00	\$251,750.00	\$90,630.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New Water Tank

New Culinary Water Tank

Date: 7/12/2023

Concept Cost Estimate

Location:

1750 North on
East Bench Foothills

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Construct New Reservoir (1 M GALLON)	1	ls	\$2,000,000.00	\$2,000,000.00	\$2,000,000.00
2	Property Acquisition	2	acre	\$50,000.00	\$79,659.09	\$79,659.09
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

SUBTOTAL = \$2,079,659.09 \$2,079,659.09

30%± Contingency & Engineering = \$623,897.73 \$623,897.73

TOTAL = \$2,703,556.82 \$2,703,556.82

New Water Main

New 12" Pipe to New Water Tank

Date: 7/12/2023

Concept Cost Estimate

Location:

1750 S (Valley View Dr.)

Item	Description	Qty	Unit	Unit Price	Total	* Impact FeeEligible
1	Connect to New Reservoir	1	ea	\$7,000.00	\$7,000.00	\$7,000.00
2	Connect to Existing 8" main	1	ea	\$7,000.00	\$7,000.00	\$7,000.00
3	Bore New Line Under Canal	1	ls	\$35,000.00	\$35,000.00	\$35,000.00
4	New 12" C900 PVC pipe	1,340	lf	\$140.00	\$187,600.00	\$187,600.00
7	New 12" Valve With Concrete Collar	1	ea	\$7,000.00	\$7,000.00	\$7,000.00
8	Trench Backfill (UTBC)	2,009	ton	\$25.00	\$50,225.00	\$50,225.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New Water Main

New 10" Water Main

Date: 7/12/2023

Concept Cost Estimate

Location:

2700 S

(Frontage Rd to Gun Range)

Item	Description	Qty	Unit	Unit Price	Total	* Impact FeeEligible
1	Stub and Cap 10" Water Main	1	ea	\$4,000.00	\$4,000.00	\$4,000.00
2	Connect to Existing 4" main	1	ea	\$3,000.00	\$3,000.00	\$3,000.00
3	New 10" C900 PVC Pipe	5,900	lf	\$100.00	\$590,000.00	\$590,000.00
4	New 10" Valve With Concrete Collar	6	ea	\$4,500.00	\$27,000.00	\$27,000.00
5	New Fire Hydrant Assembly (Every 500 ft)	13	ea	\$5,500.00	\$71,500.00	\$71,500.00
6	Trench Backfill (Strucutral fill)	8,850	tons	\$25.00	\$221,250.00	\$221,250.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New Culinary Water Well

Well # 6 (Future Well)

Date: 7/12/2023

Concept Cost Estimate

Location:

TBD

Item	Description	Qty	Unit	Unit Price	Total	* Impact FeeEligible
1	Drill New Wells	1	ls	\$1,000,000.00	\$1,000,000.00	\$1,000,000.00
2	New Well Pump Stations	1	ls	\$1,500,000.00	\$1,500,000.00	\$1,500,000.00
3	Property Acquisition	1	acre	\$50,000.00	\$50,000.00	\$50,000.00
4	Water Right Cost (550 gpm min = 890 acre-ft)	1	ls	\$250,000.00	\$250,000.00	\$250,000.00
5	Source Protection Plan	1	ls	\$20,000.00	\$20,000.00	\$20,000.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New 8" Water Main

New 8" Water Main on 800 W

Date: 7/12/2023

Concept Cost Estimate

Location:

800 W (Future) : 3000 S to 3450 S

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Connec to existing 8" Main	1	ea	\$4,000.00	\$4,000.00	\$4,000.00
2	Connect to Pump Station	1	ea	\$4,000.00	\$4,000.00	\$4,000.00
3	New Water Meter w/ Vault	1	ea	\$6,000.00	\$6,000.00	\$6,000.00
4	New 8" C900 PVC Pipe	3,750	lf	\$75.00	\$281,250.00	\$281,250.00
5	New 8" Valve With Concrete Collar	12	ea	\$4,000.00	\$48,000.00	\$48,000.00
6	New Fire Hydrant Assembly	8	ea	\$3,500.00	\$28,000.00	\$28,000.00
7	Trench Backfill (UTBC)	5,283	ton	\$20.00	\$105,660.00	\$105,660.00
8	Property Acquisition	5	acre	\$50,000.00	\$258,264.46	\$258,264.46
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

New Water Main

Replace Existing 4" Water Main w/ 8" Pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

2950 S: 1500 W to 1-15

Item	Description	Qty	Unit	Unit Price	Total	* Impact FeeEligible
1	Asphalt saw-cut	1,420	lf	\$2.50	\$3,550.00	\$2,662.50
2	Asphalt Removal	467	sy	\$9.00	\$4,200.00	\$3,150.00
3	Stub and Cap 12" C900 PVC Pipe		1 ea	\$4,000.00	\$4,000.00	\$3,000.00
4	Connect to Existing 6" main		1 ea	\$4,000.00	\$4,000.00	\$3,000.00
5	New 12" C900 PVC Pipe	700	lf	\$100.00	\$70,000.00	\$52,500.00
6	New Asphalt (3" Thick)	81	ton	\$100.00	\$8,100.00	\$6,075.00
7	New UTBC (8" Thick)	201	ton	\$20.00	\$4,020.00	\$3,015.00
8	New 12" Valve With Concrete Collar		1 ea	\$4,500.00	\$4,500.00	\$3,375.00
9	Trench Backfill (UTBC)	791	tons	\$20.00	\$15,820.00	\$11,865.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						
\$118,190.00						
\$35,457.00						
\$153,647.00						
\$88,642.50						
\$26,592.75						
\$115,235.25						

New Water Main

Replaced Existing 6" Water Main w/ 10" Pipe

Date: 7/12/2023

Concept Cost Estimate

Location:

3550 S (1200 W to 1450 W)

Item	Description	Qty	Unit	Unit Price	Total	* Impact FeeEligible
1	Stub and Cap 10" Water Main	1	ea	\$4,000.00	\$4,000.00	\$1,440.00
2	Connect to Existing 6" Main	1	ea	\$3,000.00	\$3,000.00	\$1,080.00
3	New 10" C900 PVC Pipe	1,650	lf	\$75.00	\$123,750.00	\$44,550.00
4	New 10" Valve With Concrete Collar	2	ea	\$4,500.00	\$9,000.00	\$3,240.00
5	New Fire Hydrant Assembly (Every 500 ft)	3	ea	\$7,500.00	\$22,500.00	\$8,100.00
6	Trench Backfill (Strucutral fill)	2,474	tons	\$25.00	\$61,850.00	\$22,266.00
SUBTOTAL =						
30%± Contingency & Engineering =						
TOTAL =						

Mountain View Park Tank Overflow Drainage

Detention Basin for Tank Overflow Drainage

Date: 5/29/2025

Concept Cost Estimate

Location:

Mountian View Park (2400 S)

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee	Eligible
1	12" Dual Wall HDPE w/ (7) Anchor Straps	66	lf	\$120.00	\$7,920.00		\$7,920.00
2	15" Dual Wall HDPE	334	lf	\$85.00	\$28,390.00		\$28,390.00
3	15" RCP	5	lf	\$150.00	\$750.00		\$750.00
4	18" RCP	25	lf	\$150.00	\$3,750.00		\$3,750.00
5	3'x3' Inlet Box	2	ea	\$8,000.00	\$16,000.00		\$16,000.00
6	4'x4' Inlet Box	1	ea	\$12,000.00	\$12,000.00		\$12,000.00
7	Install Air Gap Structure w/ Wing Wall	1	ea	\$14,000.00	\$14,000.00		\$14,000.00
8	15" Flared End Section	1	ea	\$2,500.00	\$2,500.00		\$2,500.00
9	New Sump Catch Basin	1	ea	\$9,000.00	\$9,000.00		\$9,000.00
10	Connect to Existing Flared End with Cast-in-place Inlet Box	1	ea	\$14,000.00	\$14,000.00		\$14,000.00
11	Rip-rap 12" Minus	54	sf	\$3.00	\$162.00		\$162.00
12	Rip-rap 18" Minus	96	sf	\$5.00	\$480.00		\$480.00
13	Excavation	1,200	cy	\$18.00	\$21,600.00		\$21,600.00
14	Import Fill Material	40	ton	\$20.00	\$800.00		\$800.00
15	Site Grading	1	ea	\$12,000.00	\$12,000.00		\$12,000.00
				SUBTOTAL =	\$143,352.00	\$143,352.00	
				30%± Contingency & Engineering =	\$43,005.60	\$43,005.60	
				TOTAL =	\$186,357.60	\$186,357.60	

New Water Main

New 8" Water Main on 1700 South

Date: 5/29/2025

Concept Cost Estimate

Location:

1700 South and HWY 89

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee Eligible
1	Saw Cut Asphalt	634	lf	\$2.50	\$1,585.00	\$1,585.00
2	Remove Asphalt	5,815	sf	\$9.00	\$52,335.00	\$52,335.00
3	Untreated Base Course (8" UTBC)	282	ton	\$20.00	\$5,640.00	\$5,640.00
4	Asphalt Pavement (3" HMA)	113	ton	\$100.00	\$11,300.00	\$11,300.00
5	New 8" C900 PVC Pipe	2,045	lf	\$90.00	\$184,050.00	\$184,050.00
6	Remove Existing 2" Water Line	2,045	lf	\$5.00	\$10,225.00	\$10,225.00
7	Connection to Existing 2" Line (Cut-in)	1	ea	\$2,500.00	\$2,500.00	\$2,500.00
8	Connection to Existing 8" Main (Cut-in)	1	ea	\$3,500.00	\$3,500.00	\$3,500.00
9	Connection to Existing 8" Main (Hot Tap)	1	ea	\$7,000.00	\$7,000.00	\$7,000.00
10	Reconnect Water Service Laterals	7	ea	\$2,400.00	\$16,800.00	\$16,800.00
11	New 8" Valve w/ Collar	8	ea	\$5,000.00	\$40,000.00	\$40,000.00
12	New 2" Valve w/ Collar	1	ea	\$2,000.00	\$2,000.00	\$2,000.00
13	New Fire Hydrant w/ Auxiliary valve	3	ea	\$10,000.00	\$30,000.00	\$30,000.00
14	Raise Valve Box to Grade w/ Concrete Collar	3	ea	\$700.00	\$2,100.00	\$2,100.00
15	Import Trench Backfill	3,560	ton	\$25.00	\$89,000.00	\$89,000.00
				SUBTOTAL =	\$458,035.00	\$458,035.00
				30%± Contingency & Engineering =	\$137,410.50	\$137,410.50
				TOTAL =	\$595,445.50	\$595,445.50

New Water Main

8" Water Main In New Road

Date:5/29/2025

Concept Cost Estimate

Location:

1200 South to 1425 South

Item	Description	Qty	Unit	Unit Price	Total	* Impact Fee	Eligible
1	Plug and Abandon Existing Culinary Water Main	2	ea	\$3,500.00	\$7,000.00		\$7,000.00
2	New 8" C900 PVC Pipe	1,300	lf	\$90.00	\$117,000.00		\$117,000.00
3	New 8" Valve With Collar	1	ea	\$5,000.00	\$5,000.00		\$5,000.00
4	New Fire Hydrant Assembly	1	ea	\$10,000.00	\$10,000.00		\$10,000.00
5	New Air / Vac Station	1	ea	\$17,000.00	\$17,000.00		\$17,000.00
6	New 6" PRV Assembly w/ Concrete Vault	1	ea	\$120,000.00	\$120,000.00		\$120,000.00
7	Reconnect Water Service Laterals	4	ea	\$2,400.00	\$9,600.00		\$9,600.00
8	Connection to Existing 8" Main	3	ea	\$5,000.00	\$15,000.00		\$15,000.00
9	Remove and Dispose of Existing Resident Structure	1	ea	\$30,000.00	\$30,000.00		\$30,000.00
10	Trench Backfill (Structural Fill)	1,760	ton	\$25.00	\$44,000.00		\$44,000.00
				SUBTOTAL =	\$374,600.00	\$374,600.00	
				30%± Contingency & Engineering =	\$112,380.00	\$112,380.00	
				TOTAL =	\$486,980.00	\$486,980.00	

RESOLUTION 2025-14
Water Conservation Plan
2025

BE IT HEREBY RESOLVED, by the City Council of Perry City Corporation, State of Utah, as follows:

WHEREAS, Perry City Corporation has a Water Conservation Plan (in accordance with U.C.A. 73-10-32) that establishes conservation planning efforts identifying water supply inventory for both present and future water requirements and establishes implementation procedures;

WHEREAS, the City Engineer has reviewed and updated the Water Conservation Plan,

WHEREAS, the City Council has reviewed the City Engineer's recommendations,

WHEREAS, a public hearing was held on August 14, 2025

NOW THEREFORE BE IT RESOLVED, Perry City hereby adopts the **2025 Water Conservation Plan**, for the geographic City boundary. The plan was updated by Brett M. Jones, City Engineer.

PASSED AND ADOPTED by the City Council of Perry City Corporation, on _____.

MAYOR: Kevin G. Jeppsen

ATTEST:

Shanna Johnson, City Recorder

Water Conservation Plan

2025

Prepared By:

Table of Contents

SECTION 1 - SYSTEM PROFILE	1
SERVICE AREA	1
SUPPLY	1
FUTURE WATER SOURCES & COST PROJECTION	2
WATER MEASUREMENT & BILLING	2
SYSTEM WATER LOSS CONTROL	3
INCREASING RATE STRUCTURE	4
WATER USE	5
USE - GALLONS PER CAPITA PER DAY	6
SECTION 2 – CONSERVATION PRACTICES	7
CURRENT CONSERVATION	7
CONTACT	8
EVALUATION OF EXISTING CONSERVATION EFFORTS	8
NEW BEST MANAGEMENT PRACTICIES & IMPLEMENTATION PLAN	8
PUBLIC INFORMATION, EDUCATION, & PROGRAMS	10
CITY ORDINANCES & STANDARDS IN PLACE	10

SECTION 1 - SYSTEM PROFILE

SERVICE AREA

Perry City serves all areas within the City boundaries, approximately 8 square miles (See Map 1). The City currently provides culinary water to approximately 6,051 people through 1,792 connections. This water is intended for indoor, sanitary, and commercial uses. Water for outdoor and landscaping needs is provided and managed by Pineview Water Systems, Three Mile Creek Irrigation Company, and the Perry Irrigation Company.

Table 1.1 below lists each type of connection and the total number of each for 2024.

Table 1.1 - Number of Connections

Connection Type	Total
Residential / Domestic	1,736
Commercial	43
Institutional	10
Industrial	3
Unmetered	0
	1,792

SUPPLY

Perry City obtains its water from four wells and one spring. The City does not contract with any outside agency for supplemental water. The City is currently finalizing the construction of a fifth well to aid in ensuring enough supply through 2060.

City ordinances do not allow culinary water to be used for irrigation unless irrigation service is unavailable. Secondary or irrigation water is supplied and managed by Pineview Water Systems, Three Mile Creek Irrigation Company, and the Perry Irrigation Company and is not included as part of this Plan.

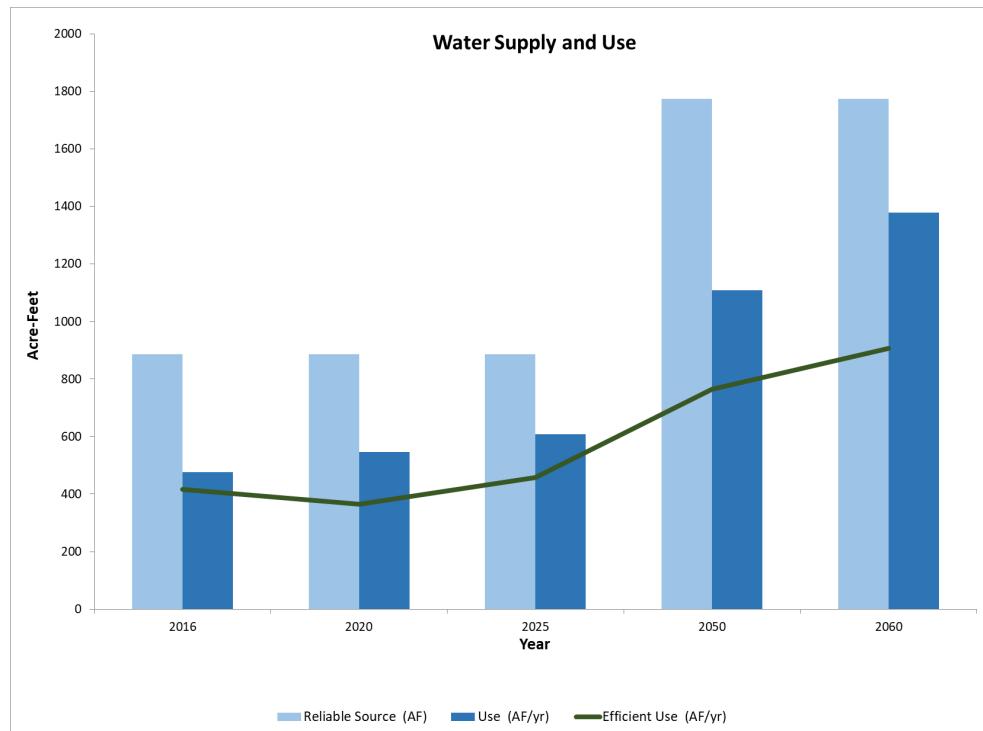

Table 1.2 below shows a breakdown of the 2024 production diverted at each source type.

Table 1.2 - Existing Water Sources Used

Source Used	Volume (Acre-Feet)	Total (Acre-Feet)
Wells	640.60	640.60
Springs	78.33	78.33
Sold	0	0
		718.93

As illustrated in graph 1.1 below, the City's water supply verses projected use provides a sufficient amount of water through the year 2060.

Graph 1.1 - Water Supply and Use

FUTURE WATER SOURCES & COST PROJECTION

The Perry City Capital Facilities and Impact Fee Analysis, completed in 2024, indicates that the City has enough capacity for water supply. Based on the residential, commercial, and institutional growth projections the build-out population will be 29,680 or 9,275 Equivalent Residential Units (ERUs). Additional water will be required to maintain the current level of service beyond 2060. This is mainly due to summer peaking requirements and Perry's specific well management needs. The reliable source reflected in the foregoing table assumes that some of the City's wells drop in production during summer months and recharge during winter months. The best usage estimate currently shows a demand of about 1,378 acre-feet per year in 2060. With the addition of the fifth well; which has been drilled and tested; it is anticipated that the City has adequate sources to provide water until that time. The City is also continuing to update and repair the infrastructure throughout the system to minimize system losses.

As noted previously, the City has sufficient water rights and sources to support anticipated growth through 2060. Conservation of these resources will help the supply to last over a longer period of time and/or allow additional water supply for additional users. By delaying or eliminating the need for additional water, the City can save a significant amount of money, as well.

WATER MEASUREMENT & BILLING

Meters: All of the connections to the water system are metered and read using the automated system. This is a fixed-base system that can be read at any time, but in general, meters are read monthly as part of utility billing. Table 1.3 below shows the percentage of the City's metered connections as of December 2024.

Table 1.3 – Metered Connections

Connection Type	Percentage of System	Reading Frequency	Calibration Schedule	Replacement Schedule
Residential	97%	Daily	Per Manufacturer	As Needed
Commercial	>1%	Daily	Per Manufacturer	As Needed
Industrial	>1%	Daily	Per Manufacturer	As Needed
Institutional	>1%	Daily	Per Manufacturer	As Needed

SYSTEM WATER LOSS CONTROL

Table 1.4 below shows the population, annual use, and percentage loss in relation to used source.

Table 1.4 – Annual Information*

Year	Population	Annual Use (AF)	Return	Percentage Loss
2009	4,500	575.03		36.48%
2010	4,500	570.81		66.74%
2011	1,500	0.00		100%
2012	0	0.00		0%
2013	5,100	567.74		23.24%
2014	0	80.05		100%
2015	4,566	0.59		100%
2016	4,630	479.90		0.75%
2017	4,717	560.07		17.16%
2018	4,828	698.17		9.10%
2019	4,971	673.20		6.13%
2020	5,250	546.15		32.43%
2021	5,555	477.60		37.13%
2022	5,900	442.24		40.88%
2023	6,060	477.76		35.73%
2024	6,051	490.69		31.75%

*There are errors in data reporting in various years between 2011 and 2016. Data used in the above table is taken directly from what was reported to the State of Utah. The City has worked since 2016 to remedy and prevent additional reporting errors.

The City monitors the amount of water taken at each of its sources. The amount of water produced from year to year from the wells and springs will vary depending on groundwater and snowpack conditions. The largest discrepancy in the available source verse the source used can be contributed to leaks, tank overflows/spills, meter reading errors and software reporting problems.

Water loss is controlled by:

SCADA System: Each storage reservoir is connected to the City's SCADA system that provides continual monitoring of water storage. In the event there are issues with the pressure or levels of water, the City's designated employees are immediately alerted and able to quickly resolve the issue.

Independent Audit: In addition to this, the City conducts an annual audit of the amount of water billed verse the amount of water used. This ensures the water being used is being paid for and usage is accurately being tracked. This audit is in addition to the City's annual fiscal budget audit.

New Development: All new developments are required to follow Title 14, Subdivisions, of the City Code and follow the adopted Public Works Standards for Development, Design, and Construction. As part of the approval process, the City Engineer checks the available water sources and distribution system to ensure adequacy and responsible use of Perry's water resource. If a proposed development meets the requirements of the water distribution model and planned water source use, then the development is allowed to proceed through the approval process. During construction of the development, City staff oversees and inspects the water system to ensure the installation meets City Standards.

INCREASING RATE STRUCTURE

The following table outlines the current water rate schedule associated with the City's various connections adopted by Resolution on July 1, 2025. To continue to encourage conservation, these rates have been significantly increased. Beginning in Fiscal Year 2022, there has been an automatic three percent (3%) base rate increase implemented annually.

Table 1.5 - Water Rate Schedule (As of 2025)

Connection	\$ Base Rate / Month	Allotment (Gal)	Additional Fee / 1,000 Gal
Resident With Secondary Water	\$26.74	0-10,000	Included in Base
		10,001 – 20,000	\$0.95
		20,001 +	\$2.00
Resident Without Secondary Water	\$26.74	0-15,000	Included in Base
		15,001 – 30,000	\$0.95
		30,001 +	\$2.00

WATER USE

Potable Water: Table 1.6 below shows the water inflow versus the water outflow for each type of use between 2005 and 2024.

Table 1.6 –Water Use

Year	INFLOW				OUTFLOW					Total (AF)	% Diff.
	Total (AF)	Res	Com	Ind	Inst.	Whole -sale	Other Uses	Un-meter ed	Total (AF)		
2005	612.25	409.57	70.62	5.13	3.22	0	0	0	488.54	20.21%	
2006					Not Reported						
2007	694.13	0	0	0	0	0	0	0	0	100%	
2008	661.99	460.33	108.63	3.36	2.71	0	0	0	575.03	13.14%	
2009	905.23	460.33	108.63	3.36	2.71	0	0	0	575.03	36.48%	
2010	1716.15	406.37	55.24	0	9.21	0	0	0	570.81	66.74%	
2011	923.52	0	0	0	0	0	0	0	0	100%	
2012	0	0	0	0	0	0	0	0	0	0%	
2013	739.63	469.54	89	0	9.21	0	0	0	567.74	23.24%	
2014	2073**	42.71	7.98	2.29	27.10	0	0	0	80.05	96.14%	
2015	7.12**	0.48	0.12	0	0	0	0	0	0.59	91.71%	
2016	480.50	414.30	61.38	0	1.23	0	0	0	476.90	0.75%	
2017	676.11	420.44	138.10	0	1.53	0	0	0	560.07	17.16%	
2018	768.08	543.19	153.44	0	1.53	0	0	0	698.17	9.10%	
2019	717.14	564.86	41.65	54.73	11.96	0	0	0	673.20	6.13%	
2020	808.27	499.22	16	13.98	16.95	0	0	0	546.15	32.43%	
2021	759.70	425.57	21.98	28.25	1.81	0	0	0	477.60	37.13%	
2022	747.99	353.53	32.39	52.67	3.65	0	0	0	442.24	40.88%	
2023	743.31	345.77	85	38.76	8.23	0	0	0	477.76	35.73%	
2024	718.93	383.12	49.22	17.55	40.80	0	0	0	490.69	31.75%	

*Information obtained from Utah Division of Water Rights Water Records/Use Information

**Amount reported in gallons (assumed), converted to AF.

The data reflected above, as reported to the Division of Water Rights, obviously shows discrepancies and large swings in inflow and outflow data. This analysis shows an average loss (deficiency) of 37.94% per year in the distribution system between 2005 and 2024. However, when the four years' worth of reporting that contained errors (2006, 2007, 2011, 2012) are removed, the average percentage loss improves slightly to 37.2% per year.

In the 2020 Conservation Plan, one of the goals was to reconcile reporting issues. The City has audited all the existing connections' billing classifications to ensure correct reporting of usage. They have also created a Standard Operating Procedure for ensuring correct reporting for the annual Water Survey. This progress is evidenced by the more accurate inflow/outflow reported between 2020 and 2024, with an average loss in this time period being 35.58% annually.

The goal of the City is to continue to improve the amount of loss as additional improvements are made to the water infrastructure. Some of the improvement over time can be attributed to improvements in the infrastructure as well as improved efficiency. Water unaccounted for generally comes from system leaks, fire hydrant use, and meter errors.

Non-potable Water: The City does not provide or monitor non-potable water (secondary) as this is provided through and monitored by the Pineview Water Systems, Three Mile Creek Irrigation Company, and the Perry Irrigation Company.

USE - GALLONS PER CAPITA PER DAY

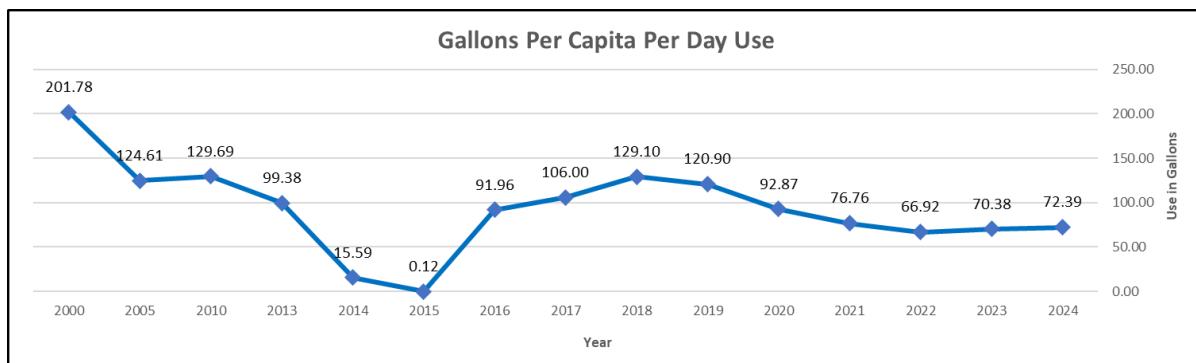

Table 1.7 below outlines the gallons per capita per day in 2024.

Table 1.7 –Water Use

2024 Total GPCD	
Residential	56.52
Commercial	7.26
Institutional	6.02
Industrial	2.59
Total	72.39

Graph 1.2 below illustrates the Gallons per Capita Per Day Use trend, indicating an overall decrease in water use and increase in conservation. It is evident, due to reporting changes, that data in 2014 and 2015, was not accurately reported. 2011 and 2012 were deleted from the graph as no data was reported for these years.

Graph 1.2 – Gallons Per Capita Per Day Use

SECTION 2 – CONSERVATION PRACTICES

CURRENT CONSERVATION

Perry City places a high value on the conservation of water and is already practicing the following:

- The City has SCADA system on three reservoirs and four wells to monitor and control components of the water system.
- Perry City utilizes radio-read meters. This allows the City to obtain meter readings as needed (typically read once a month) and detect possible leaks on each service as well as obtain accurate data for the water budget.
- The City has automated the watering of all their parks and park strips. This helps the City to avoid overwatering these areas. This also allows the City to water these areas at night when watering is most effective.
- The City provides water conservation education and public outreach through:
 - Providing conservation tips on City's Website.
 - Information in City's Newsletter.
 - Providing a copy of the Annual Consumer Confidence Report with a utility bill.
- The City maintains memberships in supporting organizations such as American Water Works Association, Water Environment Federation and The Rural Water Association that educate their personnel and keep up to date on source protection, public education and current regulations.
- The City requires the use of secondary water for all outdoor uses, where available.
- The current water pricing and billing system was updated and adopted by resolution on July 1, 2022. The new pricing and billing are adequate to cover expenses in the water enterprise account and is tiered so as to discourage excessive water use. The rate also includes an automatic annual three percent (3%) increase to ensure the fund can accommodate future needs.
- The City continues to complete infrastructure projects identified in the Capital Improvement Plan.

CONTACT

Mayor, Kevin Jeppsen & All Members of the City Council

1950 South HWY 89

Perry, UT 84302

kjeppsen@perrycityut.gov

Public Works Director, Zach Allen

1950 South HWY 89

Perry, UT 84302

zallen@perrycityut.gov

EVALUATION OF EXISTING CONSERVATION EFFORTS

In the 2020 Water Conservation Plan, the City established four goals based upon the issues identified. The goals and status of each are provided below:

Goal 1 – Increase Reporting Accuracy: Over the past five years, the City has had substantial data entry issues and staff turnover. Based on the reports submitted to the Division of Water Rights, it is apparent that use may not have been reported accurately, and data entry used to obtain usage has not been consistent. It is believed that the overall amount of water used is correct in recent years, but in the past years may not be. Over the next five years, the City will work to create a standard for labeling users with the appropriate category and entering user data consistently. This will provide more accurate reporting of where water is being used.

Status: The City has audited all the existing connections' billing classifications to ensure correct reporting of usage. They have also created a Standard Operating Procedure for ensuring correct classification and reporting for the annual Water Survey. This progress is evidenced by the more accurate inflow/outflow reported between 2020 and 2024.

Goal 2 – Water Rate Update. Over the next five years, the City will implement a water rate increase that is consistent with State requirements and the needs of the City's overall water system.

Status: In 2020, the City conducted an extensive water rate study to determine the financial needs of the system. This Study included reviewing current and projected future needs of operation costs; completing identified capital improvements to address existing deficiencies; and system replacement and facilities maintenance between 2020 and 2026. Because the required rate increase up front was significant, the City elected to (1) adopt a lower initial rate increase, (2) change the tiered structure of gallons allowed to one that is more conservation focused, and (3) include an automatic annual rate increase of three percent (3%) to ensure the fund can continue to grow. The rate increase will help the City be able to budget and plan for needed system improvements.

Goal 3 - Reduce the City's Per Capita Water Use Rate By 5% by 2024: The water use rate is currently 122 gallons per capita per day (gcpd). The goal is to bring this down approximately 5% to 116 gcpd. The savings will be measured in acre-feet and will be analyzed every five years by using the data that is submitted to the Division of Water Rights.

Overall Status: In 2024, the City's Per Capita Water Use was 72.39 gcpd. This is a 40% decrease in total water use per capita per day. This can largely be attributed to increased accuracy in data reporting and user classification.

This goal will be implemented by:

1. Implementation of Goals established in this report.

Status: The City is actively working to implement each goal established.

2. Read and collect data on City-owned property water use (meters read monthly).

Status: All City-owned facilities have had meters added and each meter is read monthly.

3. Completing a yearly auditing of 1% of all meters to ensure properly functioning.

Status: The City has increased the annual budget for meter replacements. On a monthly basis, the Public Works Department audits a section of meters to ensure proper functioning. Meters are replaced as needed. To ensure the continued proper functioning of all City meters, this will is a continuous goal for the City.

4. Run "zero consumption" report every other month and investigate and resolve found issues.

Status: The City runs a "zero consumption" report every other month and investigates and resolves issues found.

Goal 4 – Increase Public Awareness & Education Efforts: Currently, the City only utilizes the City's website to provide information about water conservation. Over the next five years, the City plans to provide bi-annual flyers/information with the monthly utility bill utilizing existing messages from Slow the Flow, DWRs's Conserve Utah, and WaterSense. In addition to this, the City plans to promote the use of weather based smart timers and provide information for how to obtain these tools.

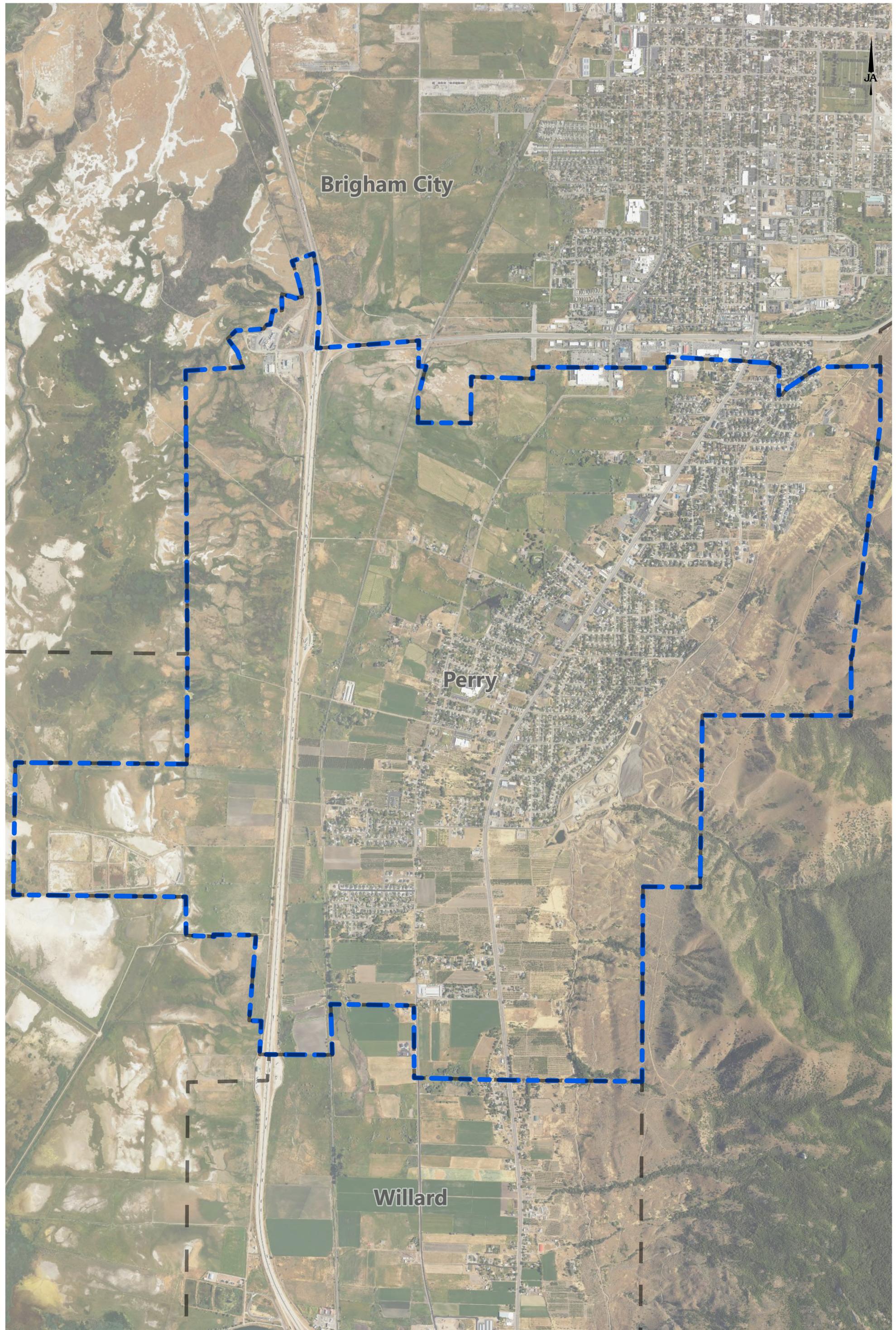
Status: This goal has not been fully implemented by the City. Some messaging has been distributed, but not to the extent outlined in the goal. The City will incorporate this goal into the new best management practices and implementation plan.

NEW BEST MANAGEMENT PRACTICES & IMPLEMENTATION PLAN

Goal 1 – Reduce the City’s Per Capita Water Use Rate by 5% over the next five years. The water use rate is currently 72.39 gallons per capita per day (gcpd) and will be reduced to 68.77 gcpd by 2030. The savings will be measured in acre-feet and will be analyzed annually by using the data that is submitted to the Division of Water Rights. The goal will be implemented as the City continues to implement system improvement projects, rate structures, and public education and outreach.

Note: The City’s gallons per capita per day is 72.39 which is 30% under the established Box Elder County Regional Water Conservation Goal of 249 gcpd and 35% under the Statewide Goal of 202 by 2030. The City also considered the overall percentage decrease of 18% proposed by the State; however, this does not seem realistic for the five-year timeframe for which this goal has been established.

PUBLIC INFORMATION, EDUCATION, & PROGRAMS


The City currently provides regular information to residents and educates them on wise watering practices through the City’s website and social media platforms.

CITY ORDINANCES & STANDARDS IN PLACE

The following ordinances and standards have been adopted and are currently in place:

- Water Management Plan, 2014
- Public Work Standards for Development, Design, & Construction were updated and adopted in April 2025
 - Incorporates the Manual of Standard Plans, published by Utah LTAP Center, Utah State University (commonly known as APWA)
 - Includes information for Low Impact Developments (using rainwater, collecting rain water, etc.)
- City Code, Title 14 Subdivision Regulations

DESIGNED JTS
DRAWN JTS
CHECKED BMJ

SCALE:
1" = 2,000'
DATE:
6/3/2025

JONES & ASSOCIATES
CONSULTING ENGINEERS
6080 Fashion Point Dr, South Ogden, UT 84403
(801) 476-9767

PERRY CITY CORPORATION
WATER CONSERVATION PLAN
SERVICE AREA MAP

SHEET:
1
OF 0 SHEETS
0

**PERRY CITY
RESOLUTION 2025-17**

INTERLOCAL AGREEMENT FOR INSPECTION SERVICES

**A RESOLUTION OF PERRY CITY, UTAH, ADOPTING THE
INTERLOCAL AGREEMENT FOR INSPECTION SERVICES WITH
BRIGHAM CITY; AND EFFECTIVE DATE.**

WHEREAS, Perry City (hereafter “City”) is a municipal corporation duly organized and existing under the laws of the state of Utah;

WHEREAS, Brigham City provides certain building code and inspection services that the City requires;

WHEREAS, the Utah Interlocal Cooperation Act set forth in Title 11, Chapter 3 of the *Utah Code Annotated* permits governmental bodies to enter into agreements with one another for the purpose of exercising on a joint and cooperative basis powers and privileges that will benefit their citizens and make the most efficient use of their resources;

WHEREAS, City is desirous of entering the attached Interlocal Agreement in Exhibit “A” incorporated herein by this reference for the services as outlined and in order to comply with State Law;

WHEREAS, City and Brigham City have negotiated this Interlocal Agreement for the purposes contained therein;

WHEREAS, City and Brigham City find mutual benefit in this Interlocal Agreement;

NOW, THEREFORE, BE IT RESOLVED by the City Council of Perry City, Utah, that the Interlocal Agreement for Inspection Services (“Agreement”) attached hereto as Exhibit “A” and incorporated herein by this reference is approved and adopted for the purposes contained therein. The City Council hereby authorizes and directs the Mayor to execute said Interlocal Agreement along with any subsequent documents relating thereto for and on behalf of the City.

PASSED AND APPROVED by the Perry City Council this _____ day of _____, 2025.

Mayor

ATTEST:

City Recorder

INTERLOCAL AGREEMENT FOR INSPECTION SERVICES

This Interlocal Agreement for Inspection Services (“Agreement”) is made and entered into by and between Brigham City Corporation, a municipal corporation organized pursuant to the laws of the State of Utah, (“Brigham City”), and Perry City, a municipal corporation organized pursuant to the laws of the State of Utah, (“Perry City”) and collectively referred to as the “Parties” to this Agreement.

RECITALS

WHEREAS, the Utah Interlocal Cooperation Act, Title 11, Chapter 13, Utah Code Annotated 1953, as amended, permits public agencies to enter into agreements with one another for the purpose of exercising, on a joint and cooperative basis, powers and privileges that will benefit their citizens and make the most efficient use of their resources; and

WHEREAS, all of the Parties hereto are public agencies as defined by the Interlocal Cooperation Act; and

WHEREAS, Brigham City has a Building Official and Building Inspector and staff who provide inspection services for Brigham City; and

WHEREAS, Perry City desires to use Brigham City’s Inspection staff for their building inspection and building official needs on an “as needed” basis to provide certain inspection services; and

WHEREAS, the Parties agree that it is in their respective and collective best interest to collaborate to provide these services;

NOW, THEREFORE, based upon the above recitals and other consideration, the Parties enter into this Agreement and agree to the following:

1. **OPERATION** When requested by Perry City, Brigham City agrees to provide qualified, competent and licensed Brigham City staff to assist Perry City with performing and scheduling inspections, fielding questions from public/applicants, coordinating with Perry City planning, engineers, and public works staff regarding development and building activities, etc.

2. **CODE ADOPTION** Perry City is responsible to adopt the applicable Codes in order for Brigham City to carry out this Agreement.

3. **COMPENSATION** Perry City shall compensate Brigham City at 45% of the fully burdened rate of the inspector which upon execution of this agreement is \$134,000.00, per year. This amount is subject to change in July of each year based upon the Brigham City budget. Payment will be made either monthly or annually as determined by the Parties.

4. **TERM** The term of this Agreement shall be for a period of one (1) year commencing September 2, 2025, and shall automatically renew annually unless terminated as set forth herein.

5. **TERMINATION**. Either Party may terminate this Agreement for any reason by giving a written six month notice to the other Party.

6. **ADMINISTRATION** This Agreement shall be administered and managed by Brigham City Administrator or their designee and the Perry City Administrator, or their designee. Accordingly, at the conclusion of each term of this Agreement, the terms and provisions of this Agreement shall be reviewed and evaluated, with recommendations being made to Brigham City and Perry City by their respective representative.

7. **LIABILITY AND INDEMNIFICATION** The parties agree and promise to indemnify and hold harmless the other City, its officers, agents, officials and employees, and volunteers harmless and release them for and from any liability, costs or expenses arising from any action, causes of action, claims for relief, demands, damages, expenses, costs, fees or compensation, whether or not said actions, causes of action, claims for relief, demands, damages, costs, fees, expenses, and/or compensation are known or unknown, are in law or equity, and without limitation, all claims of relief which can be set forth through a complaint or otherwise that may arise out of the acts or omissions, or otherwise, except negligence, of Brigham City's officers, agents, officials, members, employees or volunteers in the performance of this Agreement.

9. **REPRESENTATIONS** As an inducement to the Parties to enter into this Agreement, the Parties hereby represent and warrant as follows:

Representations and Warranties of Brigham City. Brigham hereby represents and warrants as follows as of the Effective Date that Brigham has full power and authority to enter into this Agreement, to carry out its obligations hereunder and to consummate the transactions contemplated hereby. The execution and delivery by Brigham City of this Agreement, the performance by Brigham City of its obligations hereunder and the consummation by Brigham of the transactions contemplated hereby have been duly authorized by all requisite legal action. This Agreement has been, and upon its execution will have been, duly executed and delivered by Brigham City; and, assuming due execution and delivery by both Parties hereto, this Agreement constitutes, and upon its execution will constitute, a legal, valid and binding obligation of Brigham City enforceable against Brigham City in accordance with its terms.

Representations and Warranties of Perry City. Perry City hereby represents and warrants as follows as of the Effective Date Perry City has full power and authority to enter into this Agreement, to carry out its obligations hereunder and to consummate the transactions contemplated hereby. The execution and delivery by Perry City of this Agreement, the performance by Perry City of its obligations hereunder and the consummation by Perry City of the transactions contemplated hereby have been duly authorized by all requisite legal action. This Agreement has been, and upon its execution will have been, duly executed and delivered by Perry City; and, assuming due execution and delivery by both Parties hereto, this Agreement constitutes, and upon its execution will constitute, a legal, valid and binding obligation of Perry City enforceable against Perry City in accordance with its terms.

10. MISCELLANEOUS PROVISIONS

No Assignment. Neither Party may assign its interest in this Agreement without the written consent of the other Party.

No Third-Party Beneficiaries. This Agreement shall not confer any rights or remedies upon any person or entity other than the Parties and their respective successors-in-interest.

Inducement. The making and execution of this Agreement has not been induced by any representation, statement, warranty or agreement other than those herein expressed.

No Recourse. This Agreement shall not create or be deemed to create or permit any personal liability or obligation on the part of any direct or indirect officer, employee, or representative of the Parties.

Binding Effect. This Agreement shall be binding upon and inure to the benefit of the Parties hereto and their respective successors and assigns.

Business Relationship. This Agreement does not acknowledge the existence of or establish a partnership, joint venture, or any other form of business relationship between the Parties other than as expressly set forth herein, and this Agreement is limited solely to the purposes and interests expressed herein.

Severability. If any term or provision of this Agreement shall, to any extent, be determined by a court of competent jurisdiction to be void, voidable, or unenforceable, such void, voidable or unenforceable term or provision shall not affect the enforceability of any other term or provision of this Agreement; and the Parties agree to attempt in good faith to reform such void or unenforceable provision to the extent necessary to render such provision enforceable and to carry out its original intent.

Entire Agreement. This Agreement contains the entire agreement between the Parties with respect to the subject matter, and no statements, promises, or inducements made by any Party or agents of any Party that are not contained in this Agreement shall be binding or valid.

Notice. Any notice required or desired to be given pursuant to this Agreement or otherwise relating to this Agreement shall be in writing, addressed to the Party at the address listed below, and shall be deemed effective: (i) upon personal delivery, or (ii) three business days following deposit in the United States Mail, postage prepaid, certified mail, return receipt requested.

To: **Brigham City Corporation**
20 North Main
Brigham City, Utah 84302
Attn: City Administrator

To: **Perry City**
1950 South Hwy 89

Perry, Utah 84302
Attn: City Administrator

Either Party hereto may change its address for the purpose of receiving notices as herein provided by serving written notice given in the manner aforesaid.

Applicable Law. This Agreement shall be governed by and interpreted in accordance with the laws of the State of Utah.

11. INTERLOCAL COOPERATION ACT REQUIREMENTS

In satisfaction of the requirements of the *Utah Interlocal Cooperation Act*, the Parties agree as follows:

- a. This Agreement shall be conditioned upon the approval and execution of this Agreement by the Parties pursuant to and in accordance with the provisions of the *Utah Interlocal Cooperation Act*, as set forth in Utah Code Title 11, Chapter 13, including the adoption of resolutions of approval, but only if such resolutions of the legislative bodies of the Parties are required by the *Utah Interlocal Cooperation Act*.
- b. In accordance with the provisions of Utah Code §11-13-202.5(3), this Agreement shall be submitted to the attorney authorized to represent each Party for review as to proper form and compliance with applicable law before this Agreement may take effect.
- c. A duly executed copy of this Agreement shall be filed with the keeper of records of each Party, pursuant to §11-13-209 of the *Utah Interlocal Cooperation Act*.
- d. No separate legal entity is created by the terms of this Agreement. To the extent that this Agreement requires administration other than as set forth herein, it shall be administered by the chief executive officer of each Party.

IN WITNESS WHEREOF, the Parties have caused this Agreement to be executed on the dates indicated by the signatures of the respective Parties.

THE REMAINDER OF THIS PAGE IS INTENTIONALLY BLANK

SIGNATURE PAGE TO FOLLOW

BRIGHAM CITY CORPORATION

Mayor Dennis J. Bott

Date: _____

ATTEST:

Brigham City Recorder

APPROVED AS TO FORM AND AS
COMPATIBLE WITH STATE LAW:

Brigham City Attorney

PERRY CITY CORPORATION

Mayor Kevin Jeppsen

Date: _____

ATTEST:

City Recorder

APPROVED AS TO FORM AND AS
COMPATIBLE WITH STATE LAW:

Perry City Attorney