Official Draft Public Notice Version July 11th, 2025

The findings, determinations, and assertions contained in this document are not final and subject to change following the public comment period.

STATE OF UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF WATER QUALITY UTAH WATER QUALITY BOARD SALT LAKE CITY, UTAH 84114-4870

Ground Water Discharge Permit Permit No. UGW350015

In compliance with the provisions of the Utah Water Quality Act, Title 19, Chapter 5, Utah Code Annotated 1953, as amended, the Act,

Kennecott Utah Copper LLC 4700 Daybreak Parkway South Jordan, UT 84009

hereafter, referred to as the Permittee, is granted a Ground Water Discharge Permit for the operation of the Magna Process Water Reservoir Facility in Magna, Salt Lake County, Utah.

The Magna Process Water Reservoirs are located on the following tracts of land (Salt Lake Base and Meridian):

Township 1 South, Range 2 West - SW 1/4 of Section 19 Township 1 South, Range 2 West - NW 1/4 of Section 30 Township 1 South, Range 3 West - SE 1/4 of Section 24 Township 1 South, Range 3 West - NE 1/4 of Section 25

The permit is based on representations made by the Permittee and other information in the administrative record. It is the responsibility of the Permittee to read and understand all provisions of this permit.

The facility shall be maintained and operated in accordance with the conditions set forth in the permit and the Utah Ground Water Quality Protection Rules (UAC R317-6).

This Ground Water Quality Discharge Permit for the Magna Process Water Reservoir supersedes all other Ground Water Discharge Permits for the North Concentrator facility previously issued.

This modified permit shall become effective on day, month, year.	
This permit and the authorization to operate shall expire at midnight on,	2030.
Signed this date	

John K. Mackey, P.E. Director Utah Division of Water Quality

TABLE OF CONTENTS

PART	I SPECIFIC PERMIT CONDITIONS	1
A.	GROUND WATER CLASSIFICATION	1
В.	GROUND WATER COMPLIANCE LIMITS	
C.	BEST AVAILABLE TECHNOLOGY PERFORMANCE STANDARD	1
D.	PERMITTED FACILITIES	
E.	MONITORING	
F.	DEMONSTRATION OF COMPLIANCE	
G.	NON-COMPLIANCE FOR BEST AVAILABLE TECHNOLOGY	6
H.	REPORTING REQUIREMENTS	6
I.	COMPLIANCE SCHEDULE	6
PART	II MONITORING, RECORDING AND REPORTING REQUIREMENTS	8
A.	REPRESENTATIVE SAMPLING	8
B.	ANALYTICAL PROCEDURES	8
C.	PENALTIES FOR TAMPERING	8
D.	REPORTING OF MONITORING RESULTS	8
E.	COMPLIANCE SCHEDULES	8
F.	ADDITIONAL MONITORING BY THE PERMI TTEE	8
G.	RECORDS CONTENTS	
Н.	RETENTION OF RECORDS	-
I.	TWENTY-FOUR-HOUR NOTICE OF NONCOMPLIANCE AND SPILL REPORTING	
J.	OTHER NONCOMPLIANCE REPORTING	
K.	INSPECTION AND ENTRY	9
PART	III COMPLIANCE RESPONSIBILITIES	
A.	DUTY TO COMPLY	10
В	PENALTIES FOR VIOLATIONS OF PERMIT CONDITIONS	
C.	NEED TO HALT OR REDUCE ACTIVITY NOT A DEFENSE	10
C. D.	NEED TO HALT OR REDUCE ACTIVITY NOT A DEFENSE DUTY TO MITIGATE	
		10
D. E.	DUTY TO MITIGATEPROPER OPERATION AND MAINTENANCE	10 10
D. E. PART	DUTY TO MITIGATE PROPER OPERATION AND MAINTENANCE IV GENERAL REQUIREMENTS	10 10 11
D. E. PART A.	DUTY TO MITIGATE PROPER OPERATION AND MAINTENANCE IV GENERAL REQUIREMENTS PLANNED CHANGES	10 10 11
D. E. PART A. B.	DUTY TO MITIGATE PROPER OPERATION AND MAINTENANCE IV GENERAL REQUIREMENTS PLANNED CHANGES ANTICIPATED NONCOMPLIANCE	10 10 11 11
D. E. PART A. B. C.	DUTY TO MITIGATE PROPER OPERATION AND MAINTENANCE IV GENERAL REQUIREMENTS PLANNED CHANGES ANTICIPATED NONCOMPLIANCE PERMIT ACTIONS	10 11 11 11
D. E. PART A. B. C. D.	DUTY TO MITIGATE	1011111111
D. E. PART A. B. C. D. E.	DUTY TO MITIGATE	101111111111
D. E. PART A. B. C. D. E. F.	DUTY TO MITIGATE	10111111111111
D. E. PART A. B. C. D. E. F. G.	DUTY TO MITIGATE	10111111111111
D. E. PART A. B. C. D. E. F. G. H.	DUTY TO MITIGATE	1011111111111111
D. E. PART A. B. C. D. E. F. G. H. I.	DUTY TO MITIGATE PROPER OPERATION AND MAINTENANCE IV GENERAL REQUIREMENTS PLANNED CHANGES ANTICIPATED NONCOMPLIANCE PERMIT ACTIONS DUTY TO REAPPLY DUTY TO PROVIDE INFORMATION OTHER INFORMATION SIGNATORY REQUIREMENTS PENALTIES FOR FALSIFICATION OF REPORTS AVAILABILITY OF REPORTS	101111111111111111
D. E. PART A. B. C. D. E. F. G. H. I. J.	DUTY TO MITIGATE	10111111111111111111
D. E. PART A. B. C. D. E. F. G. H. I. J. K.	DUTY TO MITIGATE PROPER OPERATION AND MAINTENANCE IV GENERAL REQUIREMENTS PLANNED CHANGES ANTICIPATED NONCOMPLIANCE PERMIT ACTIONS DUTY TO REAPPLY DUTY TO PROVIDE INFORMATION OTHER INFORMATION SIGNATORY REQUIREMENTS PENALTIES FOR FALSIFICATION OF REPORTS AVAILABILITY OF REPORTS	101111111111111111111111
D. E. PART A. B. C. D. E. F. G. H. I. J. K. L.	DUTY TO MITIGATE	101111111111111112121313
D. E. PART A. B. C. D. E. F. G. H. I. J. K.	DUTY TO MITIGATE PROPER OPERATION AND MAINTENANCE IV GENERAL REQUIREMENTS PLANNED CHANGES ANTICIPATED NONCOMPLIANCE PERMIT ACTIONS DUTY TO REAPPLY DUTY TO PROVIDE INFORMATION OTHER INFORMATION SIGNATORY REQUIREMENTS PENALTIES FOR FALSIFICATION OF REPORTS AVAILABILITY OF REPORTS PROPERTY RIGHTS SEVERABILITY	101111111111111112121313
D. E. PART A. B. C. D. E. F. G. H. I. J. K. L. M. N. Figure	DUTY TO MITIGATE	1011111111111111131313
D. E. PART A. B. C. D. E. F. G. H. I. J. K. L. M. N.	DUTY TO MITIGATE	10111111111111111313131313

Table 3	Kennecott Magna Process Water Reservoir Permit by Rule Facilities
Table 4	Kennecott Magna Process Water Reservoir Operational Monitoring Points
Appendix A	Kennecott Best Management Practices Plan
Appendix B	Kennecott Magna Reservoir Sampling Plan
Appendix C	Kennecott Pipeline Inspection and Maintenance Program
Appendix D	Kennecott Ground Water Characterization and Monitoring Plan (GCMP)

PART I SPECIFIC PERMIT CONDITIONS

A. GROUND WATER CLASSIFICATION

The ground water classification for the uppermost aquifer in the area of the Magna Process Water Reservoir is generally Class II Drinking Water Quality ground water. Ground water at each compliance monitoring well has been classified based on historical monitoring data provided by the permittee.

B. GROUND WATER COMPLIANCE LIMITS

The ground water compliance limits for monitoring wells associated with this permit are listed in Table 1.

C. BEST AVAILABLE TECHNOLOGY PERFORMANCE STANDARD

The enforceable performance standard for this permit to achieve protection of ground water quality will be discharge minimization of process fluids to ground water from the permitted facilities listed in Table 2. The permittee is responsible for implementing and maintaining the best available technology (BAT) noted in Table 2 to minimize discharge of process fluids from the permitted facilities to ground water. Maintenance of this performance standard will be demonstrated by:

- 1. Adherence to the performance criteria in Table 2.
- 2. No ground water degradation beyond permit limits established in Table 1 and measured by compliance monitoring wells.
- 3. Implementation of the Best Management Practices Plan (Appendix A) to ensure the prompt cleanup of any spills and the proper handling of process waters, as well as an ongoing inspection and maintenance program for facilities covered under this permit.
- 4. <u>Closure</u> The Magna Process Water Reservoirs shall undergo closure in accordance with the closure plan submitted in Section 7 of the permit application.

D. PERMITTED FACILITIES

The Facilities authorized under this permit are listed in Table 2. These facilities constitute those not permitted by rule, where there is potential for the release of fluids to ground water. The facilities listed in Table 3 under the "Permit By Rule" heading are for unit processes not specifically addressed by this permit. However, no discharge of pollutants from these sites to ground water is allowed. Operational Monitoring Points are listed in Table 4.

Kennecott Utah Copper LLC (Kennecott) formerly included the Utah Power Plant (UPP) as part of the 2020 permit renewal. Kennecott has removed reference to the UPP Plant as a permittee facility as this former power plant is in various stages of demolition and will not discharge ground water during the demolition process. The existing pipeline infrastructure at the historic UPP will be utilized to route construction wash water and stormwater from demolition activities to the existing tailings pipeline.

E. MONITORING

1. General Provisions

- a) Future Modification of the Monitoring Network If at any time the Director determines the monitoring program to be inadequate for determining compliance with BAT, applicable permit limits, or ground water protection levels, Kennecott shall submit within 30 days of receipt of written notice from the Director a modified monitoring plan that addresses the inadequacies noted by the Director.
- b) Monitoring Well Abandonment If any construction should result in the abandonment of monitoring wells listed in Part I.E.2., or make them unsafe to sample, Kennecott shall pursue one of the following alternatives: replace the wells in a suitable location, recommend existing wells as replacements, or present an alternative monitoring plan that will assess best management practices for the protection of ground water throughout the term of the permit.
- c) Compliance Monitoring Period Monitoring shall continue throughout the life of this permit. For compliance monitoring wells that are installed during the term of this permit, monitoring shall commence upon completion of the well installation and development.
- d) Laboratory Approval All water quality analyses shall be performed by a laboratory certified by the State of Utah to perform such analyses.
- e) Water Level Measurement In association with each well sampling event, the water level shall be measured in each monitoring well prior to the removal of any water from the well bore. These measurements will be made from a permanent single reference point clearly demarcated on the top of the well or surface casing. Water level measurements will be made to the nearest 0.01 foot.
- f) Sampling Protocol The Permittee shall collect, handle, and analyze water quality samples in conformance with the Ground Water Characterization and Monitoring Plan (GCMP) approved by the Director and included in Appendix D.
- g) Constituents Sampled The following analyses will be conducted on all ground water samples collected:
 - i) Field Parameters pH, specific conductance, and temperature.
 - ii) Laboratory Parameters including:
 - a. Major Ions: alkalinity, chloride, sulfate, sodium, potassium, magnesium, and calcium;
 - b. TDS (total dissolved solids), and
 - c. Metals (dissolved): arsenic, boron, lead, barium, cadmium, chromium, copper, selenium, and zinc.

g) Analytical Procedures - Water sample analysis will be conducted according to test procedures specified under Utah Admin. Code (UAC) R317-6-6.3L. The GCMP details the analytical and field procedures that comply with the above-referenced UAC code.

2. Operational Monitoring

- a) Kennecott shall characterize the fluids utilized in the Magna Process Water Reservoirs and Pumping Facilities with grab samples for the unit process sites listed in Table 4.
- b) Monitoring Frequency Operational monitoring shall occur monthly for the Magna Water Reservoirs.

3. <u>Monitoring Frequency</u>

Well Monitoring Frequency - All existing compliance monitoring wells will be sampled semiannually throughout the term of this permit. For any new compliance monitoring wells that are installed, the permittee shall collect at least eight independent samples (quarterly) at equal time intervals over a two-year period from each well. The samples shall be analyzed for major ions and the parameters listed in Part I.E.1.f.

4. <u>Post-Closure Monitoring</u>

Kennecott shall conduct post-closure monitoring in accordance with the post-closure monitoring program included in the closure plan in Section 7 of the permit application.

F. DEMONSTRATION OF COMPLIANCE

1. Probable Out of Compliance for Ground Water Compliance Limits

If the concentration of a pollutant from any compliance monitoring well sample exceeds the protection level (Table 1), Kennecott shall:

- a) Notify the Director in writing within 30 days of receipt of the data;
- b) Resample the well(s) to confirm the probable out-of-compliance status within 60 days of receipt of the data and immediately initiate quarterly sampling if the value exceeds both the background concentration of the pollutant by two standard deviations and the applicable permit limit unless the Director determines that other periodic sampling is appropriate, for a period of two quarters or until the compliance status of the facility can be determined.

2. Out of Compliance Status for Ground Water Compliance Wells Limits

- a) Out of compliance status shall be defined as follows:
 - i) Two or more consecutive samples from the compliance monitoring well

are about the protection level for the constituents listed in Table 1 or;

- ii) The concentration of any pollutant in two or more consecutive samples is statistically significantly higher than the applicable ground water protection level. Statistical significance shall be determined using methods described in Statistical Method for Evaluating Ground Water Monitoring Data from Hazardous Waste Facilities, Vol. 53, No. 196 (Federal Register, October 11, 1988)
- b) Upon determining that an out of compliance situation exists, Kennecott shall:
 - i. Notify the Director of the out-of-compliance status within 24 hours of detection, followed by a written notice within 5 days of the detection.
 - ii. Initiate quarterly sampling unless the Director determines that another periodic sampling is appropriate until the facility is brought into compliance.
 - iii. Submit a Source Assessment and Compliance Plan and schedule to the Director for review within 30 days of detection of the out-of-compliance status. The Source Assessment and Compliance Plan shall outline the requirements listed in R317-6-6.15.
 - iv. Kennecott shall implement the approved Source Assessment and Compliance Plan and provide a report to the Division.
- c) Corrective Action If, after review of ground water monitoring data, the Source and Contamination Assessment Report, and other relevant information, the Director determines that utilization of the Magna Reservoir Facilities have caused an exceedance of ground water protection levels at any compliance monitoring point, the permittee shall conduct a Contamination Investigation to determine the extent and severity of contamination present. The permittee shall submit a proposed Contamination Investigation Plan including a schedule for review by the Director within 30 days following the confirmation of commination. The permittee shall prepare a Contamination Investigation Report that adheres to the criteria and timelines outlined in R317-6-6.15.D of the Utah Administrative Code.

After review of the results of the Contamination Investigation Report, the Director may require the permittee to develop a Corrective Action Plan to remediate the contamination identified in the Contamination Investigation Report.

3. Out of Compliance with Allowable Leakage Rate

- a) If the leakage rate is in excess of the Allowable Leakage Rate (ALR), stated in Appendix B, Kennecott shall:
 - i. Sample the effluent from the sump for water quality field and lab constituents noted in Part I.C.5 and report analytical results in the corresponding quarterly report.
 - ii. Notify the Director or the permit writer within 24 hours of the discovery that the leak detection system has exceeded the Tier II ALR. This notification shall be followed up with a written statement confirming the oral report within five days of the failure, along with a proposed schedule for implementing the Leak Detection and Repair Program.
 - iii. Submit for Director approval a schedule to implement the approved Leak Detection and Repair Program (approved under Part I.G) or proceed otherwise as directed by the Director.
 - iv. Remove water affected continuously from the sump.
- 4. <u>Unit Processes with Best Management Practices</u>

Kennecott shall operate the Magna Process Water Reservoir Containment and Pumping facilities in accordance with the Best Management Practices specified in Appendix A.

DWQ-2025-002902 5

G. NON-COMPLIANCE FOR BEST AVAILABLE TECHNOLOGY

- 1. Kennecott is required to maintain the Best Available Technology in accordance with the approved design and practice for this permit. Failure to maintain the BAT or adhere to the approved design and practice shall be a violation of this permit. In the event a compliance action is initiated against the permittee for violation of permit conditions relating to best available technology, Kennecott may affirmatively defend against that action by demonstrating the following:
 - a) Kennecott submitted notification in accordance with UAC R317-6-6.13;
 - b) The failure was not intentional or caused by Kennecott's negligence, either in action or in failure to act;
 - c) Kennecott has taken adequate measures to meet permit conditions in a timely manner or has submitted an adequate plan and schedule for meeting permit conditions for the Director's approval, and
 - d) The provisions of UAC 19-5-107 have not been violated.

H. REPORTING REQUIREMENTS

- 1. Semiannual Ground Water Monitoring Reporting
 - a) Monitoring Reports Water quality sampling results with any supporting data for compliance monitoring wells shall be submitted two times per year to the Director as follows:

Quarters Sampled In	Results Due On		
January through June	August 15		
July through December	February 15		

- b) Failure To Submit Reports submitted outside the specified time frame shall be deemed as noncompliance and may result in enforcement action.
- 2. Electronic Filing Requirements
 - a) The permittee shall submit electronically the required ground water monitoring data in the electronic format specified by the Director. The data may be submitted via e-mail, compact disc, or other approved transmittal mechanism.
- 3. Changes to Operational Processes
 - a) The permittee shall notify the Division of any changes in the operational status of the Magna Process Water Reservoir facilities within seven (7) days.

I. COMPLIANCE SCHEDULE

1. Within one year of permit issuance, Kennecott shall submit to the Director, for review and approval, a series of contour maps covering the site-wide facility area. The contour maps shall display the average concentrations of selenium, arsenic, chloride, and ground water elevations. The contour maps will include years 2010, 2015, 2020, and 2025, corresponding to previous permit renewal years, to track changes in water elevation and analyte concentrations over time to support future groundwater permit renewal applications.

PART II MONITORING, RECORDING AND REPORTING REQUIREMENTS

A. <u>REPRESENTATIVE SAMPLING</u>

Samples collected in compliance with the monitoring requirements established under Part I shall be representative of the monitored activity.

B. ANALYTICAL PROCEDURES

Water sample analysis must be conducted according to test procedures specified under UAC R317-6-6.12 unless other test procedures have been specified in this permit.

C. PENALTIES FOR TAMPERING

The Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000 per violation or by imprisonment for not more than six months per violation, or by both.

D. <u>REPORTING OF MONITORING RESULTS</u>

Monitoring results obtained for each monitoring period specified in the permit shall be submitted to the Director, Utah Division of Water Quality, at the following address no later than 45 days after the end of the monitoring period (unless specified otherwise in this permit):

State of Utah
Division of Water Quality
P.O. Box 144870
Salt Lake City, Utah 84114-4870
Attention: Ground Water Protection Section
Electronic reporting submission portal: https://deq.utah.gov/water-quality/water-quality-electronic-submissions

E. COMPLIANCE SCHEDULES

Reports of compliance or noncompliance with, or any progress reports on interim and final requirements contained in any Compliance Schedule of this permit shall be submitted no later than 14 days following each schedule date.

F. ADDITIONAL MONITORING BY THE PERMITTEE

If the permittee monitors any pollutant more frequently than required by this permit, using approved test procedures as specified in this permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted. Such increased frequency shall also be indicated.

G. RECORDS CONTENTS

Records of monitoring information shall include:

- 1. The date, exact place, and time of sampling or measurements:
- 2. The individual(s) who performed the sampling or measurements;
- 3. The date(s) and time(s) analyses were performed;
- 4. The individual(s) who performed the analyses;
- 5. The analytical techniques or methods used; and,
- 6. The results of such analyses.

H. RETENTION OF RECORDS

The permittee shall retain records of all monitoring information, including all calibration and maintenance records and copies of all reports required by this permit, and records of all data used to complete the application for this permit for a period of at least three years from the date of the sample, measurement, report or application. This period may be extended at the Director's request at any time.

I. TWENTY-FOUR-HOUR NOTICE OF NONCOMPLIANCE AND SPILL REPORTING

- 1. The permittee shall verbally report any noncompliance, or spills subject to the provisions of UAC 19-5-114, which may endanger public health or the environment as soon as possible but no later than twenty-four (24) hours from the time the permittee first became aware of the circumstances. The report shall be made to the Utah Department of Environmental Quality 24-hour number, (801) 536-4123, AND to the Division of Water Quality, Ground Water Protection Section at (801) 536-4300, during regular business hours (8:00 am 5:00 pm Mountain Time).
- 2. A written submission shall also be provided to the Director within five days of the time that the permittee becomes aware of the circumstances. The written submission shall contain:
 - a) A description of the noncompliance and its cause;
 - b) The period of noncompliance, including exact dates and times;
 - c) The estimated time noncompliance is expected to continue if it has not been corrected; and
 - d) Steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.
- 3. Reports shall be submitted to the addresses in Part II D, Reporting of Monitoring Results.

J. OTHER NONCOMPLIANCE REPORTING

Instances of noncompliance not required to be reported within 24 hours shall be reported at the time that monitoring reports for Part II D are submitted.

K. INSPECTION AND ENTRY

The permittee shall allow the Director, or an authorized representative, upon the presentation of credentials and other documents as may be required by law, to:

- 1. Enter upon the permittee's premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of the permit;
- 2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
- 3. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and,
- 4. Sample or monitor at reasonable times to assure permit compliance or, as otherwise authorized by the Act, any substances or parameters at any location.

PART III COMPLIANCE RESPONSIBILITIES

A. DUTY TO COMPLY

The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Act and is grounds for enforcement action; for permit termination, revocation and re-issuance, or modification; or for denial of a permit renewal application. The permittee shall provide advance notice to the Director of any planned changes to the permitted facility or activity that may result in noncompliance with permit requirements.

B PENALTIES FOR VIOLATIONS OF PERMIT CONDITIONS

The Act provides that any person who violates a permit condition implementing provisions of the Act is subject to a civil penalty not to exceed \$10,000 per day of such violation. Any person who willfully or negligently violates permit conditions is subject to a fine not exceeding \$25,000 per day of violation. Any person convicted under Section 19-5-115(2) of the Act a second time shall be punished by a fine not exceeding \$50,000 per day. Nothing in this permit shall be construed to relieve the permittee of the civil or criminal penalties for noncompliance.

C. NEED TO HALT OR REDUCE ACTIVITY NOT A DEFENSE

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

D. DUTY TO MITIGATE

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

E. PROPER OPERATION AND MAINTENANCE

The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also include adequate laboratory controls and quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems, which are installed by a permittee, only when the operation is necessary to achieve compliance with the conditions of the permit.

PART IV GENERAL REQUIREMENTS

- A. <u>PLANNED CHANGES</u> The permittee shall give notice to the Director as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required when the alteration or addition could significantly change the nature of the facility or increase the quantity of pollutants discharged.
- B. <u>ANTICIPATED NONCOMPLIANCE</u> The permittee shall give advance notice of any planned changes in the permitted facility or activity that may result in noncompliance with permit requirements.
- C. <u>PERMIT ACTIONS</u> This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the permittee for permit modification, revocation and re-issuance, or termination, or notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- D. <u>DUTY TO REAPPLY</u> If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a permit renewal or extension. The application should be submitted at least 180 days before the expiration date of this permit.
- E. <u>DUTY TO PROVIDE INFORMATION</u> The permittee shall furnish to the Director, within a reasonable time, any information which the Director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish the Director, upon request, with copies of records required to be kept by this permit.
- F. <u>OTHER INFORMATION</u> When the permittee becomes aware that it failed to submit any relevant facts in a permit application or submitted incorrect information in a permit application or any report to the Director, it shall promptly submit such facts or information.
- G. <u>SIGNATORY REQUIREMENTS</u> All applications, reports or information submitted to the Director shall be signed and certified.
 - 1. All permit applications shall be signed as follows:
 - a) For a corporation: by a responsible corporate officer;
 - b) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively.
 - c) For a municipality, State, Federal, or other public agency: by either a principal executive officer or ranking elected official.

- 2. All reports required by the permit and other information requested by the Director shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a) The authorization is made in writing by a person described above and submitted to the Director, and,
 - b) The authorization specified either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position.)
- 3. Changes to Authorization. If an authorization under Part IV G 2. is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of Part IV G 2. must be submitted to the Director prior to or together with any reports, information, or applications to be signed by an authorized representative.
- 4. Certification. Any person signing a document under this section shall make the following certification:
 - "I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."
- H. <u>PENALTIES FOR FALSIFICATION OF REPORTS</u> The Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance shall, upon conviction be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than six months per violation, or by both.
- I. <u>AVAILABILITY OF REPORTS</u> Except for data determined to be confidential by the permittee, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Director. As required by the Act, permit applications, permits, effluent data, and ground water quality data shall not be considered confidential.

- J. <u>PROPERTY RIGHTS</u> The issuance of this permit does not convey any property rights of any sort, or any exclusive privileges, nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations.
- K. <u>SEVERABILITY</u> The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.
- L. <u>TRANSFERS</u> This permit may be automatically transferred to a new permittee if:
 - 1. The current permittee notifies the Director at least 30 days in advance of the proposed transfer date;
 - 2. The notice includes a written agreement between the existing and new permittee containing a specific date for transfer of permit responsibility, coverage, and liability between them; and,
 - 3. The Director does not notify the existing permittee and the proposed new permittee of his or her intent to modify, or revoke and reissue the permit. If this notice is not received, the transfer is effective on the date specified in the agreement mentioned in paragraph 2 above.
- M. <u>STATE LAWS</u> Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable state law or regulation under authority preserved by Section 19-5-117 of the Act.
- N. <u>REOPENER PROVISION</u> This permit may be reopened and modified (following proper administrative procedures) to include the appropriate limitations and compliance schedule, if necessary, if one or more of the following events occur:
 - 1. If new ground water standards are adopted by the Board, the permit may be reopened and modified to extend the terms of the permit or to include pollutants covered by new standards. The permittee may apply for a variance under the conditions outlined in UAC R317-6-6.4(D).
 - 2. If alternate compliance mechanisms are required.
 - 3. If the water quality of the facility is significantly worse than represented in the original permit application.

FIGURE 1
KENNECOTT MAGNA RESERVOIRS MONITORING WELLS AND PERMITTED OR PERMIT BY RULE FACILITY LOCATIONS

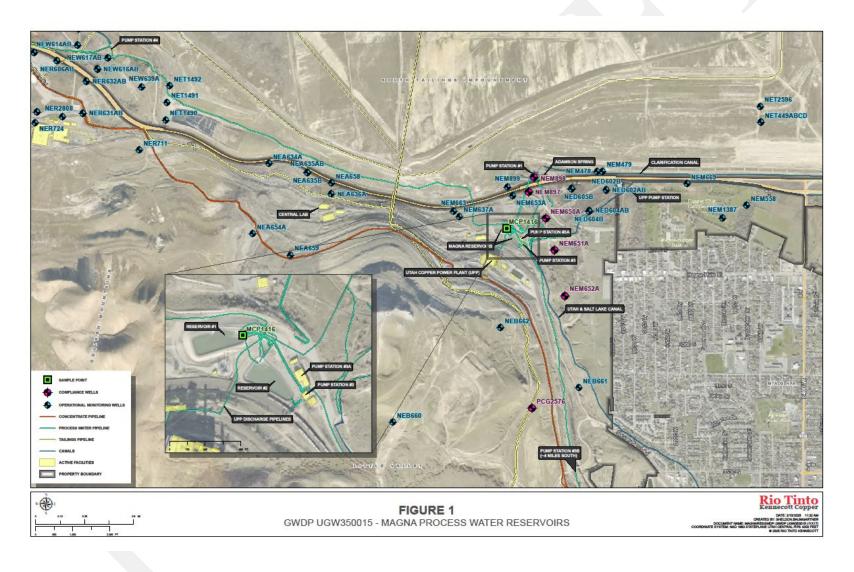


TABLE 1 KENNECOTT MAGNA PERMIT COMPLIANCE LIMITS

Well	Permit Limit	pН	TDS	Sulfate	Arsenic	Boron	Cadmium	Chromium	Copper	Lead	Selenium	Zinc
NEM650A	Protection Level	6.5 - 8.5	1364	231	0.013	0.16	0.0025	0.025	0.325	0.005	0.013	1.250
NEM651A	Protection Level	6.5 - 8.5	1626	540	0.013	0.2	0.0025	0.025	0.325	0.005	0.026	1.250
							· ·					
NEM652A	Protection Level	6.5 - 8.5	1597	585	0.022	0.5	0.0025	0.025	0.325	0.005	0.025	1.250
NEM897	Protection Level	6.5 - 8.5	2468	400	0.019	0.23	0.0025	0.025	0.325	0.005	0.013	1.250
NEL COO	D T . 1	6.5.0.5	2005	200	0.02	0.24	0.0025	0.025	0.225	0.005	0.012	1.050
NEM898	Protection Level	6.5 - 8.5	2095	300	0.02	0.24	0.0025	0.025	0.325	0.005	0.013	1.250
PCG2576	Protection Level	6.5 - 8.5	1057	228	0.013	0.078	0.0025	0.025	0.325	0.005	0.013	1.250
1 CG2570	1 Totection Level	0.5 - 6.5	1037	220	0.013	0.076	0.0023	0.023	0.323	0.003	0.013	1.230
Ground Wat	or Quality			1			1			I		
Ground Wat Standards	er Quarity	6.5 - 8.5	3000	n/a	0.05	n/a	0.005	0.10	1.30	0.015	0.05	5.00

NOTES:

units: milligrams per liter (mg/L), except for pH; Ground water protection levels and compliance limits are established in accordance with R317-6-4. Only the highest allowable value is shown in Table 1.

Last Revision date: June 2020

TABLE 2 MAGNA PROCESS WATER RESERVOIR POINT SOURCE COMPONENTS

Facility	Fluids Handled	BAT Description	Operation and Maintenance	Performance Criteria
Magna Process Water Reservoir	Process water No. 1 pump station No. 4 pump station	Double HDPE liner with leak detection	Process water recycledInspections as per BMP plan	 Prompt repair of leaks Adherence to Appendix B
No. 3 Pump Station	Process water	Concrete basin	• Inspections as per BMP plan	 Prompt repair of leaks Adherence to BMP plan (Appendix A)
No. 3A and 3B Pump Station	Process water Water pumped from the Magna Process Water Reservoir via Pump Station No. 3A to the Copperton Process Water Reservoir	Concrete basin	Daily inspection	Weekly inspection
UPP Pump Station	Potable Water • Section 21	Concrete basin	• Inspections as per BMP plan	 Prompt repair of leaks Adherence to BMP plan

TABLE 3 MAGNA PROCESS WATER RESERVOIR FEATURES PERMITTED BY RULE

Facility	Fluids Handled	BAT Description	Regulatory Status	Operation and Maintenance	Performance Criteria
UPP discharge pipelines to	Construction washdown water and	12" HDPE pipeline, non-	De Minimis	Weekly Inspection	None
Magna Reservoir	stormwater	vented			

TABLE 4

MAGNA PROCESS WATER RESERVOIR OPERATIONAL MONITORING POINTS

Operational Monitoring Site	Sample ID	Sampling Location
Magna Process Water Reservoir	MCP1416	Grab sample of reservoir water

APPENDIX A

BEST MANAGEMENT PRACTICES PLAN

FOR

MAGNA RESERVOIRS GROUND WATER DISCHARGE PERMIT Permit No. UGW350015

INTRODUCTION

The Kennecott Utah Copper LLC (Kennecott) has been issued Ground Water Discharge Permit #UGW350015 for the Magna Reservoirs. The Magna Reservoirs physical permit boundaries includes the Power Plant and the Magna Process Water Containment and Pumping Facilities that route process water for Kennecott operations. Based on topographical maps the permit area covers approximately 65 acres. The permit specifies monitoring conditions, performance criteria, Best Available Technology (BAT) and development and implementation of a Best Management Practices (BMP) plan to reduce or eliminate the loss of process fluids to ground water.

As directed in the permit, the BMP plan forms Appendix A of the Magna Reservoirs Ground Water Discharge Permit and is intended to ensure prompt cleanup of any spills and proper handling of process fluids and materials as well as an ongoing inspection and maintenance program for permitted facilities.

INSPECTION AND MAINTENANCE PROCEDURES

OPERATIONS

Operations at the Magna Reservoir facilities are controlled and monitored 24 hours a day via a combination of distributed control systems, video imagery, alarms, and operator visual inspections. Every section of both facilities is assigned operators that are responsible for inspecting areas at least once a day to verify systems integrity and operations. Operators are also responsible for rectifying any deficiencies found in system components or equipment in a timely manner. The maximum allowable leakage rate (ALR) is described below.

MAINTENANCE

Each operational area at the Magna Reservoirs has been assigned personnel responsible for repair and maintenance of all equipment. Scheduling of maintenance activities is part of a comprehensive preventive maintenance program (PM). The overall maintenance program utilizes computer assisted preventive maintenance scheduling. A PM schedule has been developed for each key piece of equipment.

Tracking of the PM schedule, as well as the PM procedures, is done via a computerized maintenance program called SAP. SAP is utilized as an information management system for scheduling maintenance tasks and compiling equipment, material and supply data. Based on information from the control system, feedback from operator inspections, and preset schedule inputs, SAP assists maintenance planners in tracking and scheduling PMs. When a PM is due, the computer system triggers the PM process for a specific piece of equipment. Equipment associated with the storage and transfer of process fluids is included in the SAP program.

Pre-established job procedures are printed out for the PM. Maintenance schedulers then assign an employee the responsibility of completing the work.

After PM work is completed, the employee returns a signed PM checklist to the maintenance scheduler. Items noted during inspections that require additional repairs are noted by the maintenance planner. A work order is then written for any additional repair work and the work will be scheduled. The work order tracking system is intended to ensure that proper and complete implementation of required repairs occurs. The SAP system will continue to remind maintenance planners weekly until the job work order is completed and closed out.

Systems that store, transfer or otherwise handle process solutions including pumping systems are included in the PM program. Pumping system components are inspected at a minimum of once every three months. Many system components are inspected more frequently. PM procedures for process fluid pumping systems include lubrication fluid check, inspecting foundations and mounting assemblies, pump vibrations, noise, etc., and inspection of associated piping and fittings.

Process fluid storage systems are included in the PM program and are tracked through SAP. Process fluid storage reservoirs are visually inspected when facility downtime periods allow drainage. Tank containment and sumps and associated piping are inspected monthly.

The following table specifies inspection frequency for both point and area sources listed in the Magna Reservoirs Ground Water Discharge Permit:

Inspection Area	Fluids Handled	Performance Criteria
21st South Pumps	Section 21 potable water via section 21 pump station	Prompt Repair of leaks
Station Service Pumps	Process Water	Prompt Repair of leaks

Magna Reservoirs Point Source Inspection Schedule

HOUSEKEEPING

All operational Kennecott facilities at the Magna Reservoirs adhere to strict Housekeeping standards. Housekeeping standards are enforced by area supervisors via employee training and housekeeping inspections. Kennecott housekeeping standards require prompt cleanup of spilled materials, and areas are to be kept reasonably free of excess dirt, grease and oil. Kennecott personnel are trained annually on environmental aspects of proper housekeeping.

SPILL PREVENTION / SPILL CLEANUP / SPILL REPORTING

The Magna Reservoirs areas have site specific cleanup procedures. The plans specify procedures to be followed for spill response and spill prevention. Spills are contained and cleaned up as quickly as possible.

A verbal report of any noncompliance, or spills subject to the provisions of UCA 19-5-114 which may endanger public health or the environment are made as soon as possible, but no later than twenty-four hours from the time Kennecott first became aware of the incident. The verbal report will be made to the Utah Department of Environmental Quality 24-HOUR response NUMBER, (801) 536-4123 or to the Division of Water Quality, Ground Water Protection Section at (801) 536-4300, during normal business hours. A written report containing specific details of the incident will be submitted to the Director within five days of the time Kennecott becomes aware of the incident. MATERIALS HANDLING

Kennecott enforces the Occupational Safety and Health Administration (OSHA) requirements for Hazard Communications at all facilities including the former Power Plant and Magna Process Water Reservoirs.

The following is a list of key OSHA standards enforced:

- Labels and/or appropriate warning concerning chemicals are in place
- MSDSs are maintained and readily available for all chemicals on site.
- Employees are informed and trained regarding chemicals and Hazardous Communications
- Contractor employees are informed concerning chemicals at RTKC

EMPLOYEE TRAINING

All new employees are given an overview of Kennecott's Health, Safety, and Environmental (HSE) policy and procedures. Plant personnel receive annual standards training covering key elements of Kennecott's safety and environmental standards including SPCC, RCRA, Housekeeping, MSHA and OSHA Hazardous Communications. Represented employees receive the standards training from SAP online training. Kennecott encourages employees to actively participate in employee suggestion and improvement programs in an effort to enhance corporate environmental and safety performance.

RECORD KEEPING

Records that document compliance with the elements required in the BMP will be maintained for a minimum of three years. Copies of records are kept at the Tailings and Water Services record keeping centers.

APPENDIX B

Magna Reservoir Leak Detection & Water Quality Sampling Plan (Revised March 2014)

1.0 Introduction

The Magna Reservoir System, located in the Magna Process Water Reservoirs facilities area, acts as a central hub for industrial process waters. Flows from the No. 1 and No. 4 Pump Stations are discharged into the reservoir (approximately 35,000 gpm) where the combined flows are routed to the Copperton Concentrator via Pump Station 3A and 3B, and or to the Tailing Lines via Pump Station 3.

This plan presents the sampling, analysis and quality assurance guidelines to be performed by Kennecott for water quality sampling of the groundwater protection features of the Magna Reservoir System.

1.1 System Description

The Magna Reservoir system consists of two reservoirs located adjacent to each other. The reservoirs were designed to be operated primarily in series with flow typically first entering Reservoir No. 1, flowing to Reservoir No. 2, and then to Pump Stations 3, 3A, and 3B. However, each reservoir has an inlet, outlet, and overflow that can be isolated from the other reservoir so that the reservoirs can be operated independently during periods of maintenance, modification or repair. A common overflow system, linked to both reservoirs, allows excess flows to passively flow over a weir and into a pipeline conveying excess flows to the Clarification Canal located influent from Kennecott Pump Station 1 within the Tailings Impoundment.

The reservoirs have identical leak detection and seepage barrier construction.

1.1.1 Construction

The reservoirs include an identical, double containment liner system as the seepage barrier:

- A primary liner consisting of an 80-mil HDPE geomembrane with micro spikes for surface traction is located on top.
- A secondary liner consisting of a 60-mil HDPE geomembrane with drainage nubs is located beneath the primary liner.

The drainage nubs provide separation between the two liners and allow for leakage through the primary liner to be collected in the leak detection system.

Reservoir No. 1 is constructed with engineered fill at 2:1 side slopes. Under normal operating conditions, water is first conveyed to Reservoir No. 1 which includes a concrete floor at the bottom of the reservoir to facilitate removal of any sediment that may accumulate. This concrete floor is located above and is independent of the HDPE liner system. Reservoir No. 2 is also constructed with engineered fill at 2:1 side slopes but does not include a concrete floor.

If leakage occurs through the primary liner, it is collected at a single point for each reservoir – at the east end of Reservoir No. 1 and in the northwest corner for Reservoir No. 2. See Figure 1.

Leakage flow from each reservoir is conveyed by gravity through a 6-inch diameter HDPE pipeline to independent meter vaults where the continuous flow is measured using an area velocity type flow metering system and V-notch weir. Tail water from the individual reservoir meter vaults is conveyed to the Clarification Canal located influent from Kennecott Pump Station 1 through the existing area drainage system to be circulated back to the Magna Reservoir System for use.

The continuous quantity of leakage flow rate (GPM) from each reservoir is measured in the meter stations and, via electronic 4 to 20 ma and fiber optics signals, remotely monitored and recorded in the Kennecott plant SCADA system at the Tailings Control room.

In addition to the continuous flow being recorded, the volume of leakage (in total gallons) is determined each day by logic programmed into the dedicated PLC. If the total daily volume exceeds the allowable leakage rate an alarm will be activated and Tailings Operations will conduct a site investigation to determine the source of the increased leakage rate. The initial response will be to confirm leakage flow rates and initiate inspections and repairs as required. In addition to the total daily volume alarm being activated for excess leakage, the SCADA logic system shall be programmed for early warning alert. During a variable time period (typically shorter than 24 hours) flows can be monitored and a projected 24-hour total volume determined. On this occurrence an alert can be monitored at the control room. If it is determined that a flow meter is not operating correctly, Tailings personnel will measure the leakage flow manually and record the value in the Tailings control room.

Kennecott maintains an Operations and Maintenance Manual for Magna Reservoir that includes specifications for equipment, recommended inspections, and operations and maintenance recommendations.

1.1.2 Allowable Leakage Rate

Liner leakage flow from reservoir No. 1 or No. 2, if present, will report to a respective flow meter station where it can be read remotely or in the field by Tailings personnel.

Kennecott utilizes a two tier approach with respect to allowable leakage rate for the Magna Reservoir System. Tier I leaks are based upon liner manufacturer specifications and are designed to alert Kennecott personnel to an escalation in leakage rate, possible minor liner separation or flow meter station malfunction. Tier II leaks are based upon EPA guidance for allowable leakage rates for double lined surface impoundments (Bonaparte & Gross, 1993) and are designed to trigger UDWQ notification that the allowable leakage rate for the respective reservoir has been exceeded. The Tier I and II leakage rates were further developed using total liner surface area for each respective reservoir and are consistent with US EPA methodology. Allowable leakage rates are summarized in Table 1.

Table 1: Tier I and Tier II Allowable Leakage Rates (ALR)

	()								
	Reservoir	Liner surface area (acres)	Tier I ¹ (gallons/day)	Tier II ² (gallons/day)					
ŀ	No. 1	1.38	720	1380					
	No. 2	1.49	720	1490					

¹ Based upon guarantee by installer and manufacturer stating maximum leakage through primary geomembrane liner not to exceed 50 gallons per acre, per day (gpd/ac).

Repair requirements and a leak investigation are triggered if the allowable leakage rate for the respective reservoir exceeds Tier I over a 24-hour period. Immediate action will be required if the ALR continues past the Tier II leakage rate which will include isolating the reservoir, lowering the water level below the leak, notifying the environmental department and subsequent notification of the DWQ within 24-hours Kennecott first became aware of the incident.

2.0 Facility Organization and Responsibilities

The Kennecott Manager – Environment or designee will serve as the Compliance Project Manager and will have overall responsibility for direction of the sampling and compliance program, quality control,

² Based upon US EPA recommended ALR requirements for surface impoundments of 10,000 liters per acre, per day or approximately 1000 gallons per acre, per day.

notifications and reporting. The Kennecott Sampling Supervisor will serve as technical director and will be responsible for execution of all activities in accordance with this sampling plan.

The Kennecott Tailings Superintendent - Operations or designee is responsible for monitoring and recording daily flows reporting to the Magna Reservoir leak detection sump. The same personnel will also be responsible for maintaining the leak detection monitoring equipment and ensuring it is fully functional on a daily basis. In the event a leak detection sump exceeds compliance limits as outlined in Section 4.2. The same personnel are responsible for notification to the Manager, Environment or designee and coordinating efforts to maintain compliance and subsequent repairs as necessary.

The Kennecott Sampling Technicians have the responsibility of collecting all water quality samples required by the permit in accordance with this sampling plan and the GCMP.

The Kennecott Manager – Tailings and Water Services will report results of water quality sampling and volume pumped from leak detection sumps in the event compliance limits are exceeded to the Director of the Utah Water Quality Board. Maintenance, repair and monthly inspections will be the responsibility of the RTKC Tailings staff.

Kennecott Laboratory Manager will ensure all water quality samples are analyzed using the appropriate methods and within the specified holding times in accordance with this sampling plan and GCMP.

3.0 Analytical Parameters

All water quality samples from the monitoring sump and reservoir will be analysed for the field measurements (pH, specific conductance, and temperature), major ions (alkalinity, chloride, sulfate, potassium, sodium, magnesium, and calcium), dissolved metals (arsenic, barium, boron, cadmium, chromium, copper, lead, mercury, selenium, and zinc) and TDS. All samples will be analysed using EPA approved methods as specified in Utah Regulation R317-6-6.3.

4.0 Schedule for Water Quality Monitoring and Reporting

4.1 Reservoirs

Water quality samples representing both zones of the Magna Reservoir System are collected on a monthly basis. The sample ID is MCP1416 and is collected from pump station 3A which is the Magna Reservoir System discharge point under normal operation. Water quality sampling results will be submitted to the Director in the form of semi-annual reports of the corresponding half year in which the sampling was conducted.

4.2 Leak Detection Sumps

Piping from respective Reservoirs No.1 and No.2 of the Magna Reservoir System report to respective flow meter stations. The flow meter stations are monitored through a control room on a continuous basis and alarms are programmed to sound in the event threshold allowable leakage rates are exceeded

- The control room will receive an alarm if allowable leakage rates outlined in Table 1 are exceeded.
- Reporting requirements are triggered as outlined in Section I Part F of the permit if the Tier II allowable leakage rate for a respective reservoir is exceeded.

4.3 Monitoring Wells

A series of groundwater monitoring wells listed in Table 1 of the permit are located adjacent to the Magna Reservoir System. These wells monitor groundwater quality and will aid in detection of reservoir failure should in the unlikely occurrence the early detection system fail in detection. All sampling will be in compliance with the current Kennecott Ground Water Characterization and Monitoring Plan (GCMP).

5.0 Water Quality Sampling Procedures

5.1 Reservoirs

Water quality representing both Reservoir No. 1 and Reservoir No. 2 of the Magna Reservoir System is collected from a sample port from within pump station 3A (MCP1416). Water quality sampling results will be submitted to the Director in the form of semi-annual reports of the corresponding month in which the sampling was conducted.

5.2 Leak Detection Sumps

Kennecott will collect a sample from the corresponding leak detection sump in the event the allowable leakage rate is exceeded.

- Magna Reservoir No.1 flow meter station MCP2817
- Magna Reservoir No.2 flow meter station MCP2818

All field measurements and water quality sampling will be collected in accordance with the GCMP. Results will be reported in the corresponding semi-annual report.

5.3 Monitoring Wells

All sampling will be compliant with the current Kennecott GCMP.

6.0 Sample Custody

6.1 Field Operations

The following records and actions will be taken as part of the water quality sampling of the Magna Reservoir System.

- Field Logs: A complete record of all field sampling activities will be kept by the sampler. The field logs will document the date, time, and location of sampling and the name of the person(s) performing the sampling, as well as any other pertinent information.
- Sample Labels- Sample containers will be labeled with the information necessary to prevent misidentification of samples. Each sample container will be clearly labeled with the sample location, date and time of collection, preservative(s), filtered or unfiltered, and the name of the person(s) performing the sampling.
- Chain-of-Custody Record: In order to establish the documentation necessary to trace sample possession, a chain-of-custody record will be filled out to accompany every sample shipment from the time of collection through receipt by the analytical laboratory. The samples will be delivered to the laboratory for analysis as soon as possible.
- All sampling will be noted and recorded as required in the GCMP.

6.2 Laboratory Operations

The primary laboratory to be used for analysis of the water quality samples will be the Kennecott Environmental Laboratory (KEL). KEL is certified by the State of Utah (certification No. E-21). Any other laboratories used, if necessary, will be certified by the State of Utah. The laboratories will maintain internal chain-of-custody control in accordance with their own standard quality assurance program. The date and time of analysis, name of person(s) performing the analysis, and methods used, will be documented by the laboratory.

7.0 Internal Quality Control Checks

7.1 Overview

All internal quality control checks will be conducted in accordance with the current GCMP.

7.2 Field Operations

The following description refers to all sampling incorporated into the GCMP and may or may not include a sample specific to this permit or Appendices based upon the random nature of the sampling. Blind field duplicates will be prepared and submitted to the laboratory by the sampler. One out of every 20 samples or at least one sample per year will be a blind field duplicate. Sample splitting for duplications will be conducted as specified in the GCMP. The results of these duplicate analyses will be reported as required by the GCMP.

7.3 Laboratory Operations

The certified laboratory will conduct its own internal quality control checks in accordance with its own quality assurance program as part of State of Utah certification. This will include running at least 5 percent duplicate, spike, and control samples for all samples collected within the GCMP. Laboratory equipment maintenance will be in accordance with the Laboratory QA Plan.

8.0 References

Bonaparte, R. and Gross, B.A. 1993. US EPA Project Summary, LDCRS Flow from Double-Lined Landfills and Surface Impoundments.

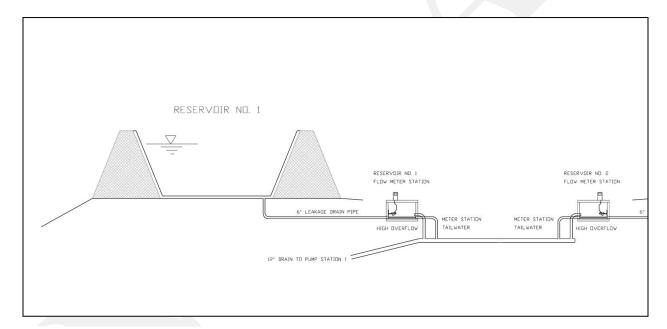


Figure 1 Schematic of Magna Reservoir Leak Detection System

APPENDIX C

Pipeline Inspection and Maintenance Program

FOR

MAGNA RESERVOIRS GROUND WATER DISCHARGE PERMIT Permit No. UGW350015

INTRODUCTION

The Kennecott Utah Copper LLC (Kennecott) has been issued Ground Water Discharge Permit #UGW350015 for the Magna Reservoirs. The Magna Reservoirs physical permit boundaries includes the Magna Process Water Containment and Pumping Facilities that route process water for Kennecott operations. Based on topographical maps the permit area covers approximately 65 acres. The permit specifies monitoring conditions, performance criteria, Best Available Technology (BAT) and the development and implementation of a Best Management Practices (BMP) plan to reduce or eliminate the loss of process fluids to ground water.

The pipeline inspection and maintenance plan forms Appendix C of the Magna Reservoirs Ground Water Discharge Permit and is intended to ensure prompt response and cleanup of any spills including proper handling of process fluids and materials as well as an ongoing and robust inspection and maintenance program for permitted facilities. The majority of the pipelines in this permit are located in the subsurface. However, there are areas where the pipelines are above ground:

• The process water pipelines from pump station #1 and pump station #4 are above ground when they enter the permit footprint;

INSPECTION AND MAINTENANCE PROCEDURES

OPERATIONS

Pipelines at the Magna Reservoirs are controlled and monitored 24 hours a day via a combination of distributed control systems, video imagery, alarms and operator visual inspections. Every section of both facilities pipelines have assigned operators that are responsible for inspecting areas at least once a day to verify systems integrity and operations. Operators are also responsible for rectifying any deficiencies found in piping components or equipment in a timely manner.

MAINTENANCE

Each operational area in the permit area has been assigned personnel responsible for repair and maintenance of all equipment including pipelines. Scheduling of maintenance activities is part of a comprehensive preventive maintenance program (PM). The overall maintenance program utilizes computer assisted preventive maintenance scheduling. A Standard Operating Procedure has been developed for specific pipelines and processes for times of repair and inspection.

INSPECTIONS

The pipelines which are above ground are visually inspected twice per day by operational personnel.

Pipelines located in the subsurface are monitored by pressure switches and/or flow meters which have differential alarm settings in the control room of Tailings. If there is an emergency the operational control room at Tailings is immediately notified. Otherwise a maintenance notification is entered into Kennecott's system as explained in Appendix A of this permit.

Standard Operating Procedures exist for:

- Drain down and Startup of Process Water 3A and 3B (TASOP300-211) which is a guideline for process startup of the pump stations to fill the Copperton Concentrator Reservoir.
- Planned/Unplanned Plant Shutdown Process Water Management (TASOP300-234) which describes the water management plan for shutdowns.
- Magna Reservoir System including pipeline and proper process water valve operation and settings (TASOP300-232) which describes normal operating alignment of water entering the Magna Reservoirs.
- 21st South Pumps (KEJSAUX33) describes the operation and startup of the pump station.

APPENDIX D

Ground Water Characterization Monitoring Plan (GCMP)

FOR

MAGNA RESERVOIRS GROUND WATER DISCHARGE PERMIT Permit No. UGW350015

RIO TINTO KENNECOTT Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001

Rev.: 21

INTRODUCTION

Kennecott Environmental and Industrial Hygiene Laboratory (KEIHL) is a component of Rio Tinto Kennecott Corporation (RTKC) and has provided analytical services to RTKC for over 40 years. KEIHL is in the Central Laboratory at 2500 South 9180 West, Magna, Utah. The laboratory provides in-house analytical services for environmental, industrial hygiene, geochemical, and process monitoring programs for RTKC only. KEIHL does not provide analytical services to outside clients and will review all new work proposed to ensure the appropriate facilities and resources exist before commencing work.

Laboratory Environment

KEIHL is a state-of-the-art facility. The building provides large test areas, energy sources, lighting, heating, and ventilation for the proper performance of test methods. The environmental monitoring systems within the building monitor, control, and record all environmental conditions as appropriate. Such environmental conditions may include dust, humidity, main voltage, and temperature. The work areas are effectively separated for possible incompatible work areas. KEIHL maintains good housekeeping standards to ensure that any contamination does not adversely affect data quality. Access is controlled by Rio Tinto Kennecott Corporation (RTKC) by using a card key system and limited to

RIO TINTO KENNECOTT Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001

Rev.: 21

KEIHL personnel and RTKC's Health, Safety and Environmental Quality (HSEQ) department employees and authorized visitors. The laboratory area where environmental samples are stored and analyzed is considered a Resource Conservation Recovery Act (RCRA) secure area. A facility diagram can be found in *Section 1 Appendix A*.

Definition

This Quality Assurance Program Plan (QAPP) was developed using four regulatory guidelines. The first guideline is NELAC Chapter 5 Quality Systems. The second guideline is the State of Utah Rule for the Certification of Environmental Laboratories, Rule 444-14. KEIHL used a combination of NELAC Chapter 5 and R444-14-7 to compile a list of essential items required for a quality assurance plan. The Third guideline used is the U.S. Environmental Protection Agency (EPA) documented in "Interim Guidelines and Specifications for Preparing Quality Assurance Program Plans," QAPPS 005/80 December 29, 1980, issued by the Office of Monitoring Systems and Quality Assurance Office of Research and Development. The fourth guideline is the AIHA/ISO 17025 for Industrial Hygiene procedures. KEIHL is in conformance with these four guidelines listed above and the Quality Assurance (QA) policy is stated in Section 2.0.

RIO TINTO KENNECOTT Kennecott Environmental and Industrial Hygiene Laboratory

2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001

Rev.: 21

<u>Purpose</u>

The purpose of this QAPP is to present an overview of the essential elements of KEIHL's quality assurance program. Elements not specified in the EPA and AIHA guidance documents are included in this QAPP to provide additional QA program elements required to meet the objectives of the QA policy. The QA policies and procedures described herein are designed to eliminate systematic errors and minimize the occurrence of other errors. However, no QA program can eliminate all errors which may occur during analysis. The QA program provides the framework for minimizing errors and identifying and correcting the errors that may occur. These QA policies and procedures must be coupled with the professional judgment of the technical staff to ensure that quality data is consistently produced.

Laboratory Organization

The organization of Kennecott Environmental and Industrial Hygiene Laboratory is described in *Section 3* of this document. Safety guidelines for the laboratory are provided in the Chemical Hygiene Plan, which is found in Bentley, a site-wide commercial document control system utilized at RTKC.

Rio Tinto Kennecott Corporation Safety Policies and Procedures can be found on the company intranet.

RIO TINTO KENNECOTT Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001

Rev.: 21

A list of analytical services and corresponding Standard Operating Procedures (SOP) are in Bentley.

KEIHL monitoring programs are strengthened by a variety of certification, accreditation, or licensing programs. A brief synopsis of current accreditation and staff experience certifications is provided in *Section 1 Appendix B*. A list of KEIHL's instrumentation is provided in *Section 1 Appendix C*.

Code of Ethics

The purpose of this code is to provide a standard of ethical conduct to ensure the principles of integrity, accountability, independence, and impartiality are demonstrated by all employees at the Kennecott Environmental and Industrial Hygiene Laboratory. This code will:

- Maintain the highest level of integrity and professional competence.
- Produce data that is legally defensible.
- Follow the guidelines of NELAC, AIHA and KEIHL's Quality Assurance Program Plan (QAPP).
- Protect confidential information. (See Section 1 Appendix D.)
 Personnel, including any committee members, contractors, personnel of external bodies, or individuals' action on the laboratory's behalf, shall keep confidential all information obtained or created during the performance of laboratory activities, except as required by law.
- Be objective in the application of recognized scientific methods and in the interpretation of findings.
- Disseminate scientific knowledge for the benefit of employees, society, and the profession.
- Comply with Rio Tinto Kennecott Copper's policy on Principles of Business Conduct. (See Section 1 Appendix E.)

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001

Rev.: 21

 Maintain an objective attitude toward the recognition and evaluation of safety and health issues, regardless of external influences since the health and welfare of workers is of paramount importance.

The Laboratory is obligated to provide accurate and precise analytical data in a timely manner to support the various programs at RTKC. Laboratory employees are required to do all possible within their means to ensure that analytical results are of the highest quality. All data will be completed promptly with a quality sufficient to meet the needs of RTKC management and to ensure the health and safety of the individual employee.

All Laboratory employees must ensure all analytical methods, quality assurance and documentation procedures are followed. No undue pressure should be applied by any employee, manager or group that would cause a laboratory employee to compromise their work and the analytical results provided by the laboratory in any manner. If an employee has cause or feels that any form of unjustified pressure is being applied to their position, they can bring this immediately to the attention of the Laboratory Director. An employee can choose to contact the Human Resource Department if they are unable or unwilling to bring the issue to the Laboratory Director.

Quality Assurance Program Plan

Section 1 Introduction

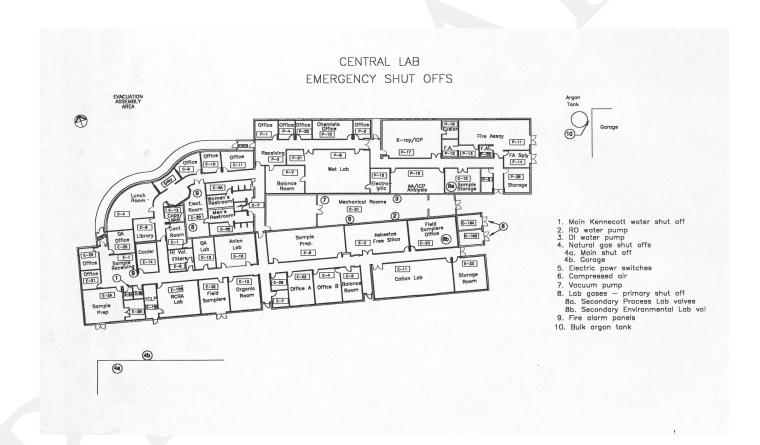
Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

MOC#	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/04
TS00085	Revision and review for 2006.	Melissa Olsen	08/02/06
TS00113	Statement added regarding the review of new work in first paragraph.	Melissa Olsen	04/13/07
9006	Revision and review for 2008. Updated instrumentation list.	Melissa Olsen	10/10/08
	Review for 2009.	Melissa Olsen	01/21/09
11532	Review for 2010. Updated laboratory address. Removed ELPAT from certifications and updated analytical instrumentation list.	Melissa Olsen	02/22/10
17479	Review for 2011. Updated instrumentation list to include Rigaku XRD and Perkin Elmer ICP-OES 7300 DV.	Melissa Olsen	10/11/2011
23199	Review for 2013. Updated Appendix C-Instrumentation List.	Melissa Olsen	04/25/2013
26233	Review for 2014. Updated instrumentation list. Removed "testing of biological sterility" under "Laboratory Environment". Updated branding.	Melissa Olsen	05/22/2014
30091	Review for 2015. Updated instrumentation list-added new mercury analyzer, NAG pH meters, etc.	Melissa Olsen	03/24/2015
31572	Review for 2016. Removed references to biological/clinical samples, removed clinical license from Appendix B. Updated Appendix C, Analytical Instrumentation.	Melissa Olsen	03/08/2016
43586	Review for 2017. No changes made.	Melissa Olsen	02/06/2017
53081	Review for 2018. Updated Appendix C-Instrumentation List.	Melissa Olsen	05/15/2018
58723	Review for 2019. Updated Appendix C-Instrumentation List. Removed statement regarding participation in USGS inter-laboratory studies from Appendix B.	Melissa Olsen	08/16/2019
60468	Added statements under Code of Ethics regarding impartiality and Confidentiality.	Melissa Olsen	01/03/2020

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21


MOC#	Description of Change	Prepared By	Date
67192	Review for 2020. Updated equipment list.	Melissa Olsen	09/15/2020
79250	Review for 2021. No changes made.	Melissa Olsen	09/02/2021
94373	Review for 2022. Updated instrumentation list.	Melissa Olsen	11/30/2022
102982	Updated instrumentation list. Rev. 20 to 21	Melissa Olsen/Angie Zuniga	09/06/2023

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001

Appendix A - KEL Building Plan

Rev.: 21

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001

Rev.: 21

Appendix B - Laboratory Accreditation and Certifications

Accreditation, Certification and Professional Experience

- Certified by the State of Utah, Environmental Testing is performed under the Safe Drinking Water Act (SDWA) the Clean Water Act (CWA) and the Resource Conservation and Recovery Act (RCRA). Certification # UT0019 (1979) (UT0019 since September 1979)
- Accredited by the American Industrial Hygiene Association (AIHA) for respirable silica and metals under the IHPAT program. Accreditation # 121 (1978)

Professional Experience and Certifications

Professional Experience

The professional staff of environmental scientists have earned college degrees in chemistry or related disciplines.

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

Appendix C KEIHL Analytical Instrumentation

KEL Analytical Instrumentation

INSTRUMENT	VENDOR	SERIAL NUMBER	LOCATION
Oven - Honeywell	Grieve	620140	E-2
Rotap	WS Tyler	27430	E-2
(2) Ring and Puck	TM Engineering	NA	E-2
Jaw Crusher	Morse	2000-028	E-2
Mini Flex II	Rigaku	HD209711	E-3
Particle Size 2000	Malvern	MAL1060772	E-3
Balance-AB104-S	Mettler	1126481482	E-5
Balance-AB104-S	Mettler	1127140437	E-5
Balance-M104S	Mettler	B245502124	E-5
Oven-TFO-10	Cascade Tek	9018811	E-5
Secura 324-IS	Sartorius	36001909	E-5
Balance-MX5	Mettler	1127442247	E-6
Oven-Thermlyne	Thermo Scientific	152470301100730	E-8
Oven-732	Lindberg	927131	E-8
Hot Block 1	Environmental Express	3994CEC1863	E-8
Hot Block 2	Environmental Express	6843CECW3221	E-8
Hot Block 3	Environmental Express	3826CEC1851	E-8
Hot Block 4	Environmental Express	3994CEC1873	E-15
Hot Block 5	Environmental Express	2018CECW5024	E-8
Hot Block 6	Environmental Express	5837CEC2673	E-21
C/S Analyzer SC832 HT	LECO	54801	E-8
C/S Analyzer SC632	LECO	3268	E-8
Dionex AS-AP	Thermo Scientific	17121215	E-10
Integrion HPIC	Thermo Scientific	17121215	E-10
Dilutor-Microlab 500	Hamilton	MD91KB5266	E-10
311 Auto Sampler	Astoria	4625A10988	E-10
302 D	Astoria	302330	E-10
303 A	Astoria	303427	E-10
305 D	Astoria	305666	E-10
311 Auto Sampler	Astoria	4632A11095	E-10
Rapid Flow Analyzer-A2	Astoria	200102	E-10
311 Auto Sampler	Astoria	4721A12048	E-10
Rapid Flow Analyzer-A2	Astoria	200168	E-10
8900 ICP-MS	Agilent	17450348	E-13
Rapid Flow Analyzer-303A	Astoria	303427	E-10
Optima 8300 DV	Perkin Elmer	078S1211194	E-11
ASX-520	Cetac	091257A520	E-11

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

INSTRUMENT	VENDOR	SERIAL NUMBER	LOCATION
Chiller for 7700X	Polyscience	1D12A0915	E-11
7700X	Agilent	JP11441372	E-11
M-7600 Hg	Cetac	101406Q76	E-11
ASX-260	Cetac	081428A560	E-11
ASX-500	Agilent	US0813203A520	E-11
Chiller	Dimplex	39266	E-11
7300 DV	Perkin Elmer	077C1072201	E-11
Dilutor-Microlab 500	Hamilton	ML600CL4187	E-11
5110 ICP	Agilent	MY18411003	E-11
G2392A Chiller	Agilent	5Q12B1695	E-11
SPS 4 Autosampler	Agilent	AU17253185	E-13
Balance-AE 50	Mettler	K54461	E-15A
Balance-MS6001S/03	Mettler	B332650103	E-15A
Centrifuge-5804	Eppendorf	5804YN814874	E-15A
Conductivity Meter-126	Orion	41567041	E-15A
Conductivity Meter-124	Orion	34664087	E-15A
Conductivity Meter-2052B	VWR (Amber)	906026	E-15A
Conductivity Meter	Traceable	192367356	E-15A
PH Meter	Oakton	558890	E-15A
PH Meter	Oakton	84146	E-15A
PH Benchtop Meter	Thermo	B22723	E-15A
PH Benchtop Meter	Thermo	X20832	E-15A
Conductivity Meter Colilert Quantitray-Sealer	Thermo	H06567	E-15A
Plus	Idexx	QTP13163701348	E-15B
Incubator-BOD	Fisher Scientific Model 307	10300096	E-15A
	Thermo Scientific-		
Incubator-BOD	Precision	WB13554787	E-15B
Balance-AUX220	Shimadzu	D449511535	E-29
MA-3000 Hg	NIC	11740081	E-29
Balance-AE163	Mettler	E01679	NA
Optima 7300 Chiller	Polyscience	1911-01855	E-11
Agilent 5110 Chiller	Agilent	2208-02506	E-11
Agilent 8900 Chiller	Agilent	1710-04668	E-13
Rigaku XRD Chiller	Haskris	HB22292	E-3
Autosampler In-Motion Flex	Mettler	C201292652	E-10
Autosampler In-Motion Flex	Mettler	C202371211	E-10
Centrifuge-5702	Eppendorf	5702kr756137	E-10
Furnace- lindburg blue M	Thermo Fisher	1145492201220222	E-5
ASX-520	Cetac	030632A520	E-11
M-7600 Hg	Cetac	U22045001	E-11
ASX-560	Cetac	112136A560	E-11
SPS 4 Autosampler	Agilent	AU18154834	E-11

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

INSTRUMENT	VENDOR	SERIAL NUMBER	LOCATION
Chiller for ICAP-RQ	Agilent	2208-02506	E-11
iCAP RQ	Thermo	ICAPRQ 03257	E-11
ASX-560	Teledyne Cetac	012247A560	E-11
Thermoflex 2500 chiller	Thermo	1171864801220200	E-11
MA-3000 Hg	NIC	21740743	E-29
T9 Autotitator	Mettler	C147030229	E-10
Dosing unit	Mettler	C148066397	E-10
Dosing unit	Mettler	C148066395	E-10
Sonicator	Branson	RMA10106024G	E-10

Acronym Description

ICP/AES: Inductively Coupled Plasma Atomic Emission Spectroscopy

ICP-MS Inductively Coupled Plasma-Mass Spectrometry

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

<u>Appendix D - Corporate Confidentiality and Legal Agreement</u>

In consideration of my employment or continued employment with Rio Tinto Kennecott Corporation, its successors, or assigns ("Company"), and in further consideration of the salary or other compensation to be paid to me by Company, I agree to the following terms and conditions:

- 1. NONDISCLOSURE OF CONFIDENTIAL INFORMATION. I acknowledge that during my employment with Company, I have obtained or will obtain information or access to information regarding Company including but not limited to its trade secrets, customer lists, customer purchasing histories and plans, costs, budgets, policies, procedures, processes, methods of operations, pricing, marketing plans, financial information, personnel information, compensation programs, vendor sources, vendor identities and capabilities, research, machine and component histories, engineering data, designs and drawings, design standards, formulas, computer software and programs. Inventions (as defined below), and other data, as well as information, which Company receives from a third party and holds in confidence (collectively, "Confidential Information"). Confidential Information may be oral or written and may reside in works which I have originated or will originate or which otherwise have come or will come into my possession or knowledge. I understand that Confidential Information does not include information concerning Company and its business which is widely disclosed to the public in published form, nor does it include generally available information concerning principles of business operations. I agree that I shall not at anytime during my employment with Company or at any time thereafter, directly or indirectly disclose to any person or entity or use any Confidential Information except in the normal course of my duties as an employee of Company.
- 2. <u>OWNERSHIP OF MATERIALS AND RETURN</u>. All books, records, papers, notes, documents or catalogs, compilations of information, drawings, correspondence, recordings, information stores for use in or with or from computers, tools, equipment, and other items and materials, including copies thereof, that I have developed or will develop or which have come or will come into my possession or control during my employment by Company, which relate to the business of Company, are the property of Company. Further, I shall promptly deliver all such materials and items to Company on termination of my employment or at any time Company may so request.
- 3. <u>INVENTIONS</u>. All inventions, discoveries, improvements, or ideas (jointly or severally, "Inventions") made, developed or conceived by me, individually or jointly with others, during the term of my employment that relate to Company's present or future business, or that are capable of beneficial use by Company shall be the property of Company. Without further salary or other compensation. I shall promptly disclose in writing such Inventions to my immediate supervisor and execute any patent applications, assignments, and other instruments deemed necessary by Company that relate to the Inventions. Company shall have exclusive control over all such Inventions. I shall cooperate fully, even after my termination, in a lawful manner and at the reasonable expense of Company, other than for my time, in the prosecution of patent applications and in any legal actions and proceedings concerning such Inventions.
- 4. CREATIONS. I hereby assign, convey, and transfer to Company, any and all manuscripts, writings, pictorial materials, computer programs or software, and other creations (collectively, "Creations") created by me, either individually or jointly with others, during my employment which relate to the present or future business of Company or which are capable of beneficial use by Company. All such Creations shall be "work made for hire," as this is defined in the Copyright Act, Title 17 of the United States Code. If for whatever reason a work is deemed other than a "work made for hire." I hereby assign all copyright interests to Company. Company shall have the full right to seek and procure copyright registration on the Creations, and I shall cooperate fully, even after my termination, in a lawful manner and at the reasonable expense of Company, other than for my time, in securing copyrights and in any legal actions and proceedings concerning the Creations.
- 5. <u>POST-TERMINATION RIGHTS</u>. Without diminishing the rights granted to Company above, if within one (1) year after leaving the employ of Company, an Invention related to existing or potential products, services, or business of Company is described in a patent application or is disclosed to third parties by me, or if a Creation relating to existing or potential products, services or business of Company is published or is disclosed to third parties by me, there shall be a presumption that the Invention or the Creation was conceived, made, developed, acquired, or created by me during my employment by Company and the Invention or Creation shall belong to Company.
- 6. <u>REMEDIES</u>. Irreparable damage shall result to Company in the event of the breach by me of this Agreement. In the event of a breach or threatened breach by me, Company shall be entitled to all remedies, including money damages, as well as injunctive relief and such other equitable relief to prevent or restrain any breach or threatened breach of this Agreement. Each remedy of Company shall be cumulative and not in limitation of any injunctive relief or other rights or remedies which Company is or may be entitled at law or in equity. Company shall be entitled to its reasonable

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

attorney's fees, expert witness fees, and other expenses and costs it incurs in enforcing this Agreement or pursuing damages for my breach of this agreement.

- 7. NO EMPLOYMENT AGREEMENT. The employment relationship between Company and me is one of employment-at-will and no rights to employment for a definite period of time are created by this Agreement. I acknowledge this Agreement survives the termination of my employment with Company.
- **SEVERABILITY**. Any provision of this Agreement which is unenforceable in any jurisdiction shall, as to such jurisdiction, be ineffective to the extent of such unenforceability without invalidating the remaining provisions hereof or affecting the validity or enforceability of such provision in any other jurisdictions.
- 7. GOVERNING LAW. This Agreement shall be construed and interpreted in accordance with the laws of the State of Utah, and the District Courts of Salt Lake County or the United States District Court for the Central District of Utah in session in Salt Lake City shall have exclusive and concurrent jurisdiction to entertain any action arising under this Agreement.
- 8. <u>ASSIGNABILITY</u>. This Agreement and the rights and obligations of Company hereunder may be assigned by Company. No rights or obligations of mine under this Agreement may be assigned or transferred by me.
- 9. NOTICES TO EMPLOYERS. For five (5) years following the termination of my employment with Company, I will disclose the terms of this Agreement to the persons or entities by which I may become employed, or to which I may render services, for example as a consultant, prior to accepting such employment or performing such services.

Appendix E - Code of Conduct and Ethical Statement

General Code Of Conduct

RIO TINTO KENNECOTT Kennecott Environmental and Industrial Hygiene Laboratory

2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

Notice To All Rio Tinto Kennecott Corporation:

All employees of Rio Tinto Kennecott Corporation are expected to use sound and prudent judgment in their approach to all employmentrelated matters. This approach requires employees to appropriately apply their skills, knowledge, and training with due respect for the rights and property of others to promote a safe, productive, and harmonious work environment. Employees who do not conform to this general code of conduct will be subject to discipline, up to and including termination. When in doubt about what this general code of conduct requires of you in a particular situation, ask your supervisor or Employee Relations Representative.

Violations of the general code of conduct include but are not limited to the following:

- Failure to comply with established health and safety rules and regulations or operating procedures, or performing acts or engaging in behavior which endangers the safety of any employee or other person doing business with the company or on company property, including:
 - Working without required personal protective equipment (PPE).
 - b. Operating equipment or performing a task without required and documented training.
 - Working at heights without fall prevention or protection equipment c.
 - d. Entering into a confined space without following entry procedures.
 - Working on plant or equipment without following lockout/isolation procedures. e.
 - Failing to immediately report accidents and incidents which occur to yourself and/or others. f.
 - Violating traffic rules while operating or being transported in mobile equipment. g. h.
 - Failing to follow established safe-work procedures.
 - Tampering with or making safety devices inoperable.
 - Failing to perform a pre-operation or other required inspection prior to operating the responsibilities of the job.
- 2. Insubordination; failure or refusal to comply with instructions, perform work assignments, or complete the responsibilities of
- Bringing onto company property, posting, or distributing literature which is libelous, defamatory, scurrilous, abusive, or 3. insulting; unauthorized distribution of literature during working time or in work areas; or unauthorized solicitations of employees during working time.
- 4. Leaving the job (work station) during working hours without supervisory permission.
- 5. Interfering with the work of others.
- 6. Damaging, destroying, or misusing company property or that of another employee or person doing business with the
- Violation of the Drug and Alcohol Abuse Policy, including failure to submit to testing pursuant to that Policy, bringing onto 7. company property, having possession of, being under the influence of, having or not being free from the presence of, using or consuming, transferring, selling or attempting to sell, any form of intoxicant, narcotic, depressant, stimulant, hallucinogen, or any mind-or perception-altering drug or substance (excepting only the taking, with notification to the supervisor for the purpose of determining any appropriate work restrictions, of a prescribed drug under the direction of a physician) at any time during working hours, or on company property.
- Unexcused, chronic, or excessive tardiness, absenteeism, or early departure from work. 8.
- Falsifying company records or making false statements or reports concerning company business, including false wage or 9.
- Sleeping, loafing, malingering, or unauthorized reading on the job. 10.
- 11. Theft, concealment, or unauthorized possession of company property or that of another employee or others doing business with the company.
- 12. Fighting or threatened or actual violence against another employee or other persons doing business with the company, whether on or off the job; gambling, playing cards or other games, horseplay, or other disorderly conduct on the job.
- 13. Harassment of other employees or other persons doing business with the company, including but not limited to verbal and physical conduct or unwelcome advances with regard to or on the basis of sex, race, color, national origin or ancestry, citizenship, age, religion, marital status, status as a Vietnam era or disabled Veteran or disabled person, or union or non
- Engaging in non-job-related activities during working time.

Quality Assurance Program Plan

Section 1 Introduction

Effective Date: 12/06/2022 Document Number: CLMN4423-0001 Rev.: 21

- 15. Entering company property during off-duty hours without authorization.
- 16. Engaging in sexual acts or lewd behavior on company property.
- 17. Carrying or having firearms or other weapons on company property without written management authorization.
- 18. Unauthorized disclosure of confidential or proprietary information concerning company business, its customers, suppliers, employees or personnel associated with the company.
- 19. Unsatisfactory safety or work performance.
- 20. Unauthorized solicitation of vendors or contractors for non-company-sponsored events.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 2 Quality Assurance Policy

Effective Date: 9/8/2021 Document Number: CLMN4423-0002

Rev.: 13

QUALITY ASSURANCE POLICY

The objective of the Kennecott Environmental and Industrial Hygiene Laboratory (KEIHL) is to provide analytical data that is accurate, reliable, and adequate for the intended purpose. The quality assurance program will be continuously maintained to ensure the production and documentation of quality data that is legally and scientifically defensible. Laboratory management and personnel will perform due diligence and strive to ensure that all tests and calibrations comply with International Standard 17025, NELAP regulatory methods, and client requirements. The data generated by KEIHL will be used to support the Data Quality Objectives (DQOs) and monitoring programs of Rio Tinto Kennecott Corporation (RTKC). Therefore, the primary objective of the QAPP is to ensure that all results generated by the laboratory are valid representations of the environmental material in the samples at the time of sampling. It is the policy of Kennecott Industrial Hygiene and Environmental Laboratory to ensure all personnel familiarize themselves with, and subsequently implement, the policies addressed in this Quality Assurance Program Plan (QAPP) and all associated Standard Operating Procedures (SOPs). To meet the QAPP objective, it is essential that the following secondary goals be met:

- Maintain accreditation and certification from the following organizations:
 - 1. American Industrial Hygiene Association (AIHA) ISO17025, Laboratory Accreditation program.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 2 Quality Assurance Policy

Effective Date: 9/8/2021 Document Number: CLMN4423-0002 Rev.: 13

- 2. State of Utah, Environmental Testing Certification performed under the Safe Drinking Water Act (SDWA), Clean Water Act (CWA), and the Resource Conservation and Recovery Act (RCRA)
- Participate regularly in Inter laboratory Performance Evaluation testing for the Environmental Protection Agency (EPA), and Proficiency Analytical Testing (PAT) performance evaluations.
- Evaluate regularly and continuously the quality of the measurement process performed in the laboratory using Schuart type quality control charts for both accuracy and precision of all analyses performed.
- Review the Quality Assurance Program Plan (QAPP) and Standard Operating Procedures (SOP) at least once per year. It may be necessary to update the QAPP and/or SOPs more often to ensure that KEIHL is current with the most recent methods available for Industrial Hygiene and environmental analyses.
- Maintain the integrity of accepted samples. Perform analysis within the deadlines required by project managers and Sampling Analysis Plans (SAP).
- Adhere to Good Laboratory Practice (GLP) recommendations found in the Code of Federal Regulation 40 (CFR) Part 160, Revision July 1, 1997.
- Determine the accuracy and precision of all methods by analyzing duplicates, blanks, matrix spikes and matrix spike duplicates.
- Provide and document training of personnel for laboratory operations.
- Analyze samples using accepted laboratory methods and protocols published by EPA, NIOSH, ASTM, Standard Methods, and Agronomy Society.
- Report KEIHL performance measures including QA objectives and performance samples to Kennecott management.
- Remain committed to implementing effective processes which promote continuous improvement to remain a sustainable service.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 2 Quality Assurance Policy

- · Maintain all data records for Environmental work for five years.
- Maintain all data records for Industrial Hygiene work for ten years.

MOC#	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/2004
TS00046	2005 Review and improvement for ISO17025	Janna Hardman	03/30/2005
TS00085	Review for 2006	Melissa Olsen	08/04/2006
	Review for 2008.	Melissa Olsen	10/10/2008
	Review for 2009. No changes.	Melissa Olsen	01/27/2009
11532	Added statement regarding continuous improvement and the familiarization of all policies and procedures in the QAPP by laboratory personnel. Removed ELPAT. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes.	Melissa Olsen	06/15/2011
23199	Review for 2013. No changes.	Melissa Olsen	04/19/2013
26233	Review for 2014. Changed KEIHL to KEIHL. Removed KUC logo and replaced with Rio Tinto. Updated branding.	Melissa Olsen	04/21/2014
	Review for 2015. No changes.	Melissa Olsen	04/17/2015
31572	Review for 2016. Removed all references to clinical laboratory certification.	Melissa Olsen	03/08/2016
43586	Review for 2017. Removed participation in USGS proficiency testing studies.	Melissa Olsen	03/23/2017
53081	Review for 2018. No changes made.	Melissa Olsen	05/15/2018
58723	Review for 2019. Removed DMRQA proficiency testing.	Melissa Olsen	08/16/2019
60468	Review for 2020. No changes made.	Melissa Olsen	01/03/2020
67192	Review for 2020. No changes made.	Melissa Olsen	09/15/2020
79250	Review for 2021. No changes made.	Melissa Olsen	09/02/2021
94373	Review for 2022. No changes made.	Melissa Olsen	12/02/2022
102982	Review for 2023. No changes made.	Melissa Olsen	09/06/2023

Rev.: 13

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022

Document Number: CLMN4423-0003

Rev.: 27

ORGANIZATION AND RESPONSIBILITY

Kennecott Environmental and Industrial Hygiene Laboratory (KEIHL) continuously strives to implement an effective QA program in a laboratory that performs a broad scope of analytical services. This requires the commitment and attention of both management and staff. The organization chart for KEIHL is found in *Section 3 Appendix A, B, C, and D*. The QA/QC Officer coordinates the QA program. The Laboratory Director is responsible for the quality of data produced by the laboratory. The laboratory analysts assist both the QA/QC Officer and the Laboratory Director in daily operation of the QA program. Specific QA requirements and responsibilities of laboratory personnel are described in this section.

Certified Laboratory

A certified laboratory must meet the criteria listed below with regards to the Laboratory Personnel.

- A certified laboratory must have a laboratory director who meets the qualification requirements. The laboratory director may also serve as the laboratory supervisor or the laboratory quality assurance officer.
- A certified laboratory must have a laboratory supervisor who meets the qualification requirements. The laboratory supervisor may also serve as the laboratory director.
- A certified laboratory must have a laboratory quality assurance officer who meets the qualification requirements. The laboratory quality assurance officer may also serve as the Laboratory Director.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022

Document Number: CLMN4423-0003

Rev.: 27

- A certified laboratory must specify and document the responsibility, authority, and interrelation of all personnel who manage, perform, or verify work affecting the quality of testing.
- A certified laboratory must supervise its technical employees to assure quality test results.
- A certified laboratory must have job descriptions and describe the lines of responsibility for all key personnel and technical employees.
- A certified laboratory must maintain documentation of the qualifications of all key personnel.
- A certified laboratory must maintain a record of training for all key personnel and technical employees.

<u>Laboratory Director/ Laboratory Supervisor/Superintendent/Technical Manager</u>

The Laboratory Director is ultimately responsible for the quality of data produced by the laboratory. Accordingly, only the Laboratory Director has the authority to approve the release of analytical results and give final approval of analytical methods and SOPs. The Laboratory Director must meet one of the following qualification requirements.

- The Laboratory Director must have an earned doctoral degree in the medical, biological, chemical, or physical sciences from an institution of higher education, plus three years experience in a certified laboratory.
- The Laboratory Director must have a master's degree in biological, chemical, or physical sciences from an institution of higher education plus four years experience in a certified laboratory.
- The Laboratory Director must have a bachelor's degree in the biological, chemical, or physical sciences from an institution of higher education, plus six years work experience in a certified laboratory.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022 Document Number: CLMN4423-0003 Rev.: 27

 The Laboratory Director at KEIHL has the credentials found in NELAC Chapter 5.6.2.

The Laboratory Director at KEIHL is responsible to perform the following activities.

- The Laboratory Director at KEIHL defines the minimum qualifications, experience, and skill necessary for all technical employees.
- The Laboratory Director at KEIHL supervises the quality assurance officer and ensures the production and quality of all results reported by the laboratory.
- The Laboratory Director at KEIHL administers the use of accurate and current analytical methods and SOPs in the laboratory.
- The Laboratory Director is responsible for ensuring the effectiveness and integrity of the ISO17025 compliant quality management system.
- Ensures that all technical staff have documented capability in the activities for which they are responsible.
- The Laboratory Director at KEIHL maintains a work environment that emphasizes the importance of data quality.
- The Laboratory Director at KEIHL maintains a safe working environment for all personnel.
- The Laboratory Director at KEIHL provides management support to the QA Officer.
- The Laboratory Director at KEIHL ensures all analysts are trained to perform analytical methods with proper QA procedures.
- The Laboratory Director at KEIHL pursues and maintains external accreditation, licensing, and certification programs.
- The Laboratory Director at KEIHL participates in internal and external system audits.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022

Document Number: CLMN4423-0003

Rev.: 27

- The Laboratory Director at KEIHL participates in performance evaluation audits.
- The Laboratory Director at KEIHL reviews and approves data reports before release.
- The Laboratory Director at KEIHL assumes the responsibility if QA/QC Officer in the absence of the QA/QC Officer.

QA/QC Officer

The QA/QC Officer is directly responsible for the ongoing implementation of the QA program. The QA/QC Officer must meet the requirements found in NELAC Chapter 5.4.2.

- The QA Officer at KEIHL must serve as the focal point for quality assurance and oversee and review quality control data.
- The QA Officer at KEIHL must have documented training or experience in quality assurance procedures and be knowledgeable in the quality assurance requirements.
- The QA Officer at KEIHL must have knowledge of the NELAC and AIHA requirements and approved methods the laboratory uses and verify the laboratory is following them.
- The QA Officer at KEIHL is responsible for maintaining and improving the ISO17025 compliant Quality Management System.
- The QA Officer at KEIHL cannot analyze samples as part of the regular certified analyses performed by the laboratory.
- The QA Officer at KEIHL must have access to the highest level of management at which decisions are taken on laboratory policy and resources.
- The QA Officer at KEIHL must objectively evaluate data and objectively perform assessments, independent of outside influence.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022

Document Number: CLMN4423-0003

Rev.: 27

- The QA Officer at KEIHL must oversee all aspects of sample handling, testing, and reporting.
- The QA Officer at KEIHL must be responsible for an annual review of the entire technical operation of the laboratory.
- The QA Officer must notify laboratory management of deficiencies in the quality system and monitor corrective action.

The QA/QC Officer has the authority to discontinue the use of analytical methods and SOPs and can delay the release of sample data until QA requirements are achieved and corrective action has taken place, if required. Additionally, the QA/QC Officer is responsible for performing the following activities.

- The QA/QC Officer ensures laboratory participation in external system audits.
- The QA/QC Officer ensures that internal performance and system audits are conducted and documented.
- The QA/QC Officer provides QA reports and internal and external systems audit reports to the Laboratory Director.
- The QA/QC Officer oversees all aspects of sample handling, testing, report collation and distribution to produce high quality results.
- The QA/QC Officer identifies corrective action procedures and monitors their implementation.
- The QA/QC Officer ensures that all analysts are trained to perform their QA procedures at the bench level.
- The QA/QC Officer ensures laboratory participation in accreditation, licensing, and certification programs.
- The QA/QC Officer maintains an archive of all QC data, analytical methods, QA reports, and SOPs.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022

Document Number: CLMN4423-0003

Rev.: 27

- The QA/QC Officer maintains stocks of certified reference materials for use as check standards.
- The QA/QC Officer reviews all data produced for adherence to QA program requirements.
- The QA/QC Officer maintains the QC databases.
- The QA/QC Officer reports results of statistical analyses of QC data to the Laboratory Director and laboratory staff.
- The QA/QC Officer conducts and documents internal performance audits and system audits.

The QA/QC Officer is responsible for reviewing the Certificates provided for the Groundwater Characterization Monitoring Program (GCMP). The GCMP is a specific program within Kennecott Utah Copper. The QA/QC Officer is responsible to perform the following activities:

- The QA/QC Officer monitors status of the samples in the GCMP program.
- The QA/QC Officer reviews the certificates of analysis to ensure the samples meet the DQO's established for the GCMP program.
- The QA/QC Officer produces a rerun sheet for those samples that do not meet DOO's for GCMP.
- The QA/QC Officer prints final Certificates for the GCMP samples and gives the final certificates to the Laboratory Director for review and approval.

Laboratory Section Supervisors and Analysts

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022 Document Number: CLMN4423-0003

Rev.: 27

Each laboratory section Supervisor or analyst is responsible for ensuring that QC criteria are met for the type of analysis they perform. The laboratory Supervisors must meet one the following educational requirements:

- The laboratory Supervisors must have an earned doctoral degree in the medical, biological, chemical, or physical sciences from an institution of higher education, plus two years experience in a certified laboratory.
- The laboratory Supervisors must have a master's degree in biological, chemical, or physical sciences from an institution of higher education plus four years experience in a certified laboratory.
- The laboratory Supervisors must have a bachelor's degree in the biological, chemical, or physical sciences from an institution of higher education, plus six years work experience in a certified laboratory.
- The laboratory Supervisors must ensure competency annually for each technical employee. KEIHL requires analysts to analyze a blank sample and laboratory fortified blank with every analytical batch. In addition, analysts must participate in and pass one proficiency test annually. Proficiency testing documentation will be kept with the QA/QC Officer.

The analyst is responsible for following the QA program while achieving a productive, compliant, and cohesive work environment. Accordingly, the laboratory analysts are required to perform the following activities.

- The analyst follows approved analytical methods and SOPs.
- The analyst must demonstrate the ability to produce reliable results through accurate analysis of Certified Reference Materials, proficiency testing samples or in-house control samples. This demonstration must be done every 6 months for AIHA and annually for NELAC certification.
- The analyst maintains the integrity of the analysis by charting the accuracy and precision of the system controls on control charts to ensure the quality of the data.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022 Document Number: CLMN4423-0003 Rev.: 27

- The analyst reviews all QC and sample data to ensure that QC criteria are achieved.
- The analyst evaluates and documents performed corrective actions as needed.
- The analyst maintains logbooks for instrument maintenance, standards, run logs, and instrument specific electronic data.
- The analyst performs and participates in peer review and data entry.
- The analyst reports and documents corrective action via the QA/QC manager.
- The analyst prepares and documents traceable standards and certificates of analysis.

Laboratory Technician

Laboratory Technicians work under the direction of the Laboratory Analysts, QA/QC Manager, and Laboratory Director. Laboratory technicians perform the following activities.

- The technician must demonstrate ability to produce reliable results through accurate analysis of Certified Reference Materials, proficiency testing samples or in-house control samples. This competency must be demonstrated every 6 months for AIHA and annually for NELAC certification.
- A Laboratory Technician follows approved analytical methods and SOPs.
- A Laboratory Technician prepares samples for analysis.
- A Laboratory Technician performs analysis under the direction of the Laboratory Analyst.
- A Laboratory Technician participates in peer review.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022

Document Number: CLMN4423-0003

Rev.: 27

- A Laboratory Technician performs data entry.
- To ensure compliance with the annual competence for each technical employee, KEIHL requires the analyst to analyze a blank sample and laboratory fortified blank with every analytical batch. In addition, the analyst must participate in and pass one proficiency test annually. The proficiency documentation will be kept with the QA/QC Officer.

Laboratory Training

Rio Tinto Kennecott Corporation (RTKC) encourages individual training for all employees. The trainers and contract personnel teach formalized training courses in computer skills, management, supervisory skills, emergency response, and MSHA/OSHA required instruction. In addition, the company mandates online training courses which are required annually for all employees. Also, the employee or the Laboratory Director may wish to attend additional training courses such as the following: instrument manufacturers training seminars, professional development courses, university courses, in-house courses and reviews, and courses taught by the State or Regulatory Agencies. Certificates of completion are kept in the individuals training file. The training file includes the training courses, method training records, instrument training records and performance evaluation records for each employee. Training records are updated as often as needed. (See Section 7 for training details.)

The Laboratory Director will complete an annual performance review with each employee. The review includes a personal interview and verbal or written comments

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022 Document Number: CLMN4423-0003 Rev.: 27

on performance, goals and objectives. Performance reviews are part of the confidential Human Resource records and are not available for review by outside auditors.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

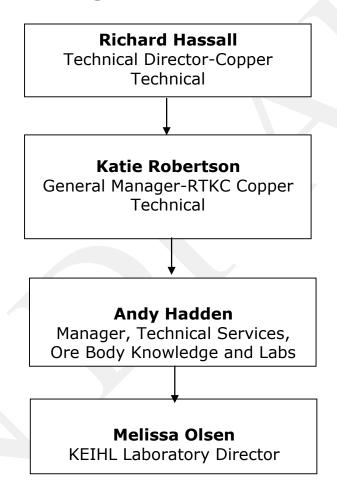
Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022 Document Number: CLMN4423-0003 Rev.: 27

мос#	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/04
TS00085	Revision and Review for 2006	Melissa Olsen	08/02/06
TS00113	Updates to organizational charts.	Melissa Olsen	04/13/07
9006	Updates to organizational charts.	Melissa Olsen	09/15/08
	Updated laboratory training to include the mandatory online training courses. Updated organization charts.	Melissa Olsen	01/21/09
11532	Review for 2010. Updated organization charts.	Melissa Olsen	02/22/2010
17479	Review for 2011. Updated organization charts.	Melissa Olsen	02/28/2011
	Inserted statements regarding the commitment of Lab Director and QA officer to comply with the ISO17025 standard.	Melissa Olsen	01/12/2011
23199	Review for 2013. Updated organization charts.	Melissa Olsen	04/23/2013
23227	Updated organization charts. Removed Donna Smith .	Melissa Olsen	07/15/2013
25673	Updated org. charts. Designated a deputy for the Technical Manager in case of absence in Appendix D. Removed Hyun Ah Choi from Environmental Org. Chart.	Melissa Olsen	12/07/2013 03/10/2014
26233	Updated Appendix A (removed Mick Routledge)and Appendix D (changed from manager to superintendent, process laboratory). Updated branding.	Melissa Olsen	04/22/2014
30091	Updated Appendix A: removed Stephan Leblanc and replaced with Nigel Steward. Updated Appendix B: Removed JaDee Bodell and added Tamara May. Appendix C: Removed JaDee Bodell, added Adam Sharp as analyst.	Melissa Olsen	04//17/2015
	Updated Org. Charts: Removed Josh Mackay and replaced with Tiffany Robinson; removed JD Bodell and Xiaoli Wang; replaced Scott Bruce with Ian Billinglsey to reflect new reporting relationship	Melissa Olsen	03/08/2016
43586	Removed Nigel Steward and replaced with Marc Cameron, Removed Ian Billingsley and replaced with Andrew Miller	Melissa Olsen	04/08/2017
53081	Updated Org. Charts. Removed Andrew Miller and replaced with Bill Forsyth and Saskia Duyvesteyn. Added contractors: Dane Schofield and Keyana Watson.	Melissa Olsen	05/15/2018
58723	Updated org. charts. Added Andy Hadden, Malcolm Reeves, and Jack Swanson. Rev. 22 to 23	Melissa Olsen	08/15/2019
N/A	No changes made.	Melissa Olsen	01/03/2020
67192	Updated Org. Charts. Removed Marc Cameron, Bill Forsyth and added Stephen Jones, Geraldine Lyons, Nadjla Borges.	Melissa Olsen	09/15/2020
79250	Updated Org. Charts. Removed Stephen Jones, replaced with Bhuvanesh Malhotra. Removed Jack Swanson as project contractor and added Chemist I, Arunjit Shergill. Updated Tiffany Robinson to Chemist II. Rev. 24 to 25.	Melissa Olsen	07/13/2021
94373	Updated Org. Charts. Removed Malcolm Reeves and added vacant Chemist II position. Rev. 25 to 26	Melissa Olsen	12/02/2022
102982	Updated Org. Charts. Replaced Bhuvanesh Malhotra with Richard Hassall. Replaced Geraldine Lyons with Katie Robertson. Added Jake Fisher in vacant Chemist II position. Removed Cation/Anion sections from Lab org. chart.Rev. 26 to 27	Melissa Olsen	09/07/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044


Quality Assurance Program Plan

Section 3 Organization and Responsibility

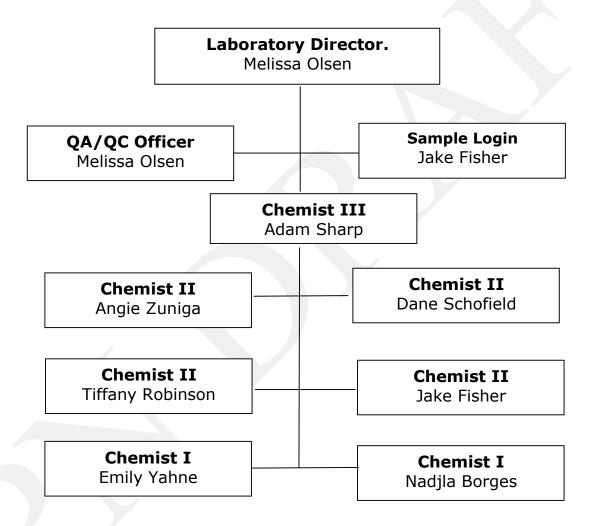
Effective Date: 12/06/2022 Document Number: CLMN4423-0003

Rev.: 27

Rio Tinto Copper Operations Organization Chart

Appendix A - Organizational Chart

Effective Date: 12/06/2022


RIO TINTO KENNECOTT

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan Section 3 Organization and Responsibility

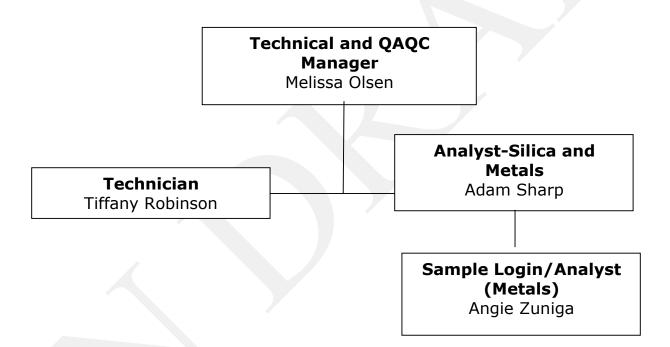
Kennecott Environmental Laboratory Organization Chart

Document Number: CLMN4423-0003

Appendix B - KEIHL Environmental Organizational Chart

Rev.: 27

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044


Quality Assurance Program Plan

Section 3 Organization and Responsibility

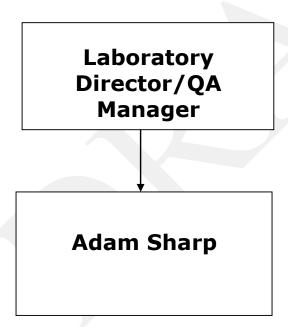
Effective Date: 12/06/2022 Document Number: CLMN4423-0003

Rev.: 27

Kennecott Industrial Hygiene Laboratory Organization Chart

Appendix C - KEIHL Industrial Hygiene Organizational Chart

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044


Quality Assurance Program Plan

Section 3 Organization and Responsibility

Effective Date: 12/06/2022 Document Number: CLMN4423-0003

Rev.: 27

KEIHL - Organizational Chart for Nominated Deputies in case of absence

Appendix D - KEIHL in case of Absence

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan Section 4 Laboratory Services Effective Date: 9/8/2021 Document Number: CLMN4423-0004 Rev.: 13

Laboratory Services

KEIHL'S activities encompass all processes from the review of vendors for external products and services to sample, equipment, supply, and data handling and reporting within the laboratory. The laboratory is *not* responsible for any sampling activities.

Environmental Analytical Services

KEIHL's analytical services include the routine analysis of samples of groundwater, drinking water, surface water, soil, sludge, waste, and air (particulate). A complete list of methods used by KEIHL is found in Section 6 - Analytical Methods of this manual. KEIHL's standard operating procedures (SOPs) are dynamic and follow approved EPA methodology for analysis of the following:

- Metals by inductively coupled plasma/atomic emission spectroscopy (ICP/AES), ICP/mass spectrometry (ICP/MS) methods, and classical wet chemistry procedures.
- Anions by Ion Chromatography as well as continuous flow analysis methodology.
- Cyanide by colorimetric methods.
- Physical parameters by conventional techniques.
- Volumetric, Gravimetric, Titrimetric, Colorimetric, and X-ray Techniques.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan				
Section 4 Laboratory Services				
Effective Date: 9/8/2021	Document Number: CLMN4423-0004	Rev.: 13		

Industrial Hygiene Analytical Services

KEIHL's analytical services for Industrial Hygiene samples include analysis for metals, silica, and gravimetric dust. KEIHL maintains Industrial Hygiene Standard Operating Procedures (SOPs) for all Industrial Hygiene methods, which include the following:

- Crystalline silica analysis performed according to the NIOSH Method 7500 by XRD (SOP number CLSOP4423-7009).
- Metals analysis performed according to the NIOSH Method 7300 by ICP-MS (SOP number CLSOP4423-7021.).
- Gravimetric analysis performed according to the NIOSH Method 0500 and NIOSH 0600 (SOP number CLSOP4423-7020)

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 4 Laboratory Services

Effective Date: 9/8/2021 Document Number: CLMN4423-0004 Rev.: 13

MOC#	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/2004
TS00085	Review for 2006.	Melissa Olsen	08/02/06
	Review for 2008. No changes.	Melissa Olsen	10/07/2008
	Review for 2009. Updated Environmental Analytical Services section to reflect current methodologies.	Melissa Olsen	01/21/09
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011.	Melissa Olsen	06/28/2011
23199	Review for 2013. No changes.	Melissa Olsen	04/23/2013
25673	Updated IH methods and SOP references	Melissa Olsen	12/17/2013
26233	Removed ion chromatography (IC) from under Environmental Analytical Services. Updated branding.	Melissa Olsen	04/22/2014
	Review for 2015. No changes.	Melissa Olsen	04/17/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/08/2016
43586	Review for 2017. No changes.	Melissa Olsen	02/07/2017
53081	Review for 2018. No changes.	Melissa Olsen	05/16/2018
58723	Review for 2019. Removed NIOSH 0500 and 0600 from IH methods. Rev. 10 to 11.	Melissa Olsen	08/16/2019
60468	Added Laboratory Services section to describe the range of laboratory activities. Changed title from Analytical Services to Laboratory Services. Rev. 11 to 12.	Melissa Olsen	12/13/2019
67192	Added ion chromatography to analytical services	Melissa Olsen	09/15/2020
79250	Review for 2021. No changes made.	Melissa Olsen	09/02/2021
94373	Review for 2022. No changes made.	Melissa Olsen	12/02/2022
102982	Review for 2023. No changes made.	Melissa Olsen	09/07/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022 Document Number: CLMN4423-0005

Rev.: 19

SAMPLE CUSTODY

Every sample or group of samples submitted to KEIHL must have a completed Analytical Request Sheet (Section 5 Appendix A). The Analytical Request Sheet is a standard form used to record sample description, collection date and time, number of bottles, analytical field data, and the requested analyses. The Analytical Request Sheet serves as the sample Chain of Custody (COC).

Sampling Materials

KEIHL does not provide any sampling materials. Rio Tinto Kennecott Corporation (RTKC) has specific departments for Environmental Sampling and Industrial Hygiene sampling.

Sample Clerk

The Sample Clerk reviews the Analytical Request Sheets and sample containers are inspected for the criteria listed below prior to samples being accepted by KEIHL.

- Proper chain-of-custody documentation.
 - Sample identification Number of Bottles Collection Date and time
- The sample bottles must include the following information:
 Sample identification

Sample location, date, and time of collection Collectors name

Preservative added

Matrix

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022 Document Number: CLMN4423-0005

- Adequate volume for the requested testing.
- Any special remarks concerning the samples.
- Condition and temperature of the samples and sample containers.
- Proper sample preservation is verified and documented in LIMS.
- Agreement between the Analytical Request Sheet and sample labels.
- A list of analyses ordered.
- Special instructions or precautions for handling.

Sample Acceptance/Client Communication

If the criteria listed above are not met, the samples are unacceptable, and the sample-receiving clerk is responsible for initiating action. The sample receiving clerk contacts the individual who submitted the samples to complete the COC properly. The Laboratory Director can accept samples at their discretion, even though some information is still incomplete if it is noted on the COC, and the final report.

Once the Analysis Request Sheet has been completed appropriately, the sample receiving clerk is then responsible for performing the activities listed below.

- Sign and accept the sample.
- Each Chain of Custody Sheet is considered a Login Group. Each Login
 Group is assigned a unique number.
- The Sample Clerk assigns each sample, including duplicates, matrix spikes and laboratory control samples a unique laboratory number by logging the samples into the LIMS system.

Rev.: 19

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022 Document Number: CLMN4423-0005

Rev.: 19

 The LIMS program prints barcode labels. The labels are attached to the appropriate corresponding sample containers. The barcode label number is explained below:

Example: GA00001 (+Subcategory ID)

The first two letters in the number indicates the year, i.e. FA= 2023 back to GA = 2022

The following five numeric characters are the numbers of samples received for the year. In the above example the sample would be the first sample of the year.

1. Each individual sample container received at the laboratory is given a unique laboratory number. The unique laboratory identification number is documented on the chain of custody. The sample container subcategories are listed below.

NUT2 = Nutrients non-preserved #2 (SO4) T1 = Total Metal preserved with HNO3 #1 T2 = Total Metal preserved with HNO3 #2 D = Dissolved Metal preserved with HNO3 HG= Mercury preserved with HNO3 NO3 = Nitrate preserved with H2SO4

SO4 = Sulfate preserved with HCl

NUT1 = Nutrients non-preserved #1

CN = Cyanide preserved with NaOH

COLI1 = Fecal Coliform

COLI2 = Total Coliform TML = Total Metals Soil

TCLD = TCLD Soil

TCLP = TCLP Soil

SPLP = SPLP Soil

MISC1 = Misc #1

MISC2 = Misc #2

SPLIT = Split #1 SPLIT = Split #2

The laboratory numbers are generated by the LIMS system to ensure that no number can be repeated.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022 Document Number: CLMN4423-0005

Rev.: 19

- The laboratory identification number is recorded on the original Analytical Request Sheet.
- All samples which require thermal preservation are placed in a refrigerator that can maintain temperatures ± 4°C. Samples that are hand delivered to the laboratory immediately after collection may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.
- Samples are stored away from all standards, reagents, food and other potentially contaminating sources. Samples are stored in a manner to prevent cross contamination.
- All documentation, such as memos or transmittal forms, that may be brought to the laboratory by the sample transmitter are retained with the COC file.

Subcontracting Samples

Kennecott Environmental and Industrial Hygiene Laboratory (KEIHL) does not subcontract industrial hygiene samples. If RTKC Industrial Hygiene Group requires testing that KEIHL does not provide, the Industrial Hygiene Group must submit their samples to another laboratory. This is handled independent of KEIHL.

Sample Tracking

Samples are tracked through the laboratory by using the computerized Laboratory Information Management System or LIMS Progress Report. The progress report may contain the following information:

- Date samples are received.
- Date samples are logged into the LIMS system.
- Sample due date.
- Collection Date.
- The person to whom the results are reported.
- The laboratory sample numbers.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022 Document No

Document Number: CLMN4423-0005

- The sample matrix.
- The analytes requested.

The LIMS System is "LABWORKS Desktop for Windows", version 7.2.0.0, Build 7.2.0.135, serial number 91410206. The LIMS software operates on a P.C. based NT/SQL network, which includes an interface for analytical instrumentation. The LIMS program provides the means for assigning a unique sample identification number for samples. The unique sample identification number is then used for real-time scheduling, backlog management, accounting, sample tracking, quality assurance, audit trailing, reporting, archival data storage, data search, and data retrieval. Following analyst review, peer review, and the bench level quality control review, the analytical data is entered into LIMS either manually or imported directly from instrumentation data files. There are additional reviews including site history checks, ion balance checks, and total dissolved solids balance. The reporting of GCMP (Groundwater Characterization Monitoring Plan) samples typically involve comparability checks against historical data to identify trends and outlying data points. Once data is found compliant with agreed data quality objectives, analytical certificates are issued. Validation by the QA Manager and Laboratory Director is required prior to final reporting. Laboratory personnel can generate control charts. The QA/QC Officer can monitor data quality using LIMS and the SQL interface. LIMS database and the SQL interface are maintained by a designated in-house specialist or by contract help.

Rev.: 19

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022 Document Number: CLMN4423-0005

Rev.: 19

Upon completion of analysis, the samples are returned to the designated storage place and archived for up to six months after the analytical results are released. After the archive time elapses, the QA/QC Officer arranges for proper disposal of the samples (refer to CLMAN4400-0006 Central Laboratory Waste Identification and Management).

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022 Document Number: CLMN4423-0005 Rev.: 19

MOC#	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/04
TS00085	Review for 2006	Melissa Olsen	08/03/06
	Review for 2008. Updated Labworks information (version, build number and update).	Melissa Olsen	10/07/08
	Review for 2009. No changes.	Melissa Olsen	01/21/09
11532	Revision and review for 2010. Added Appendix B-Chain of Custody for Industrial Hygiene samples. Updated laboratory address in header.	Melissa Olsen	02/22/10
17479	Modified section on subcontracting samples.	Melissa Olsen	08/29/11
23199	Updated version of Labworks.	Melissa Olsen	05/20/13
26233	Review for 2014. Changed KEL to KEIHL. Updated branding. Added reference to CLMAN4400-0006 CL Waste Identification and Management.	Melissa Olsen	04/23/14
	Review for 2015. No changes.	Melissa Olsen	04/17/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/08/2016
43586	Updated current Labworks version	Melissa Olsen	02/07/2017
53081	Review for 2018. No changes.	Melissa Olsen	05/17/2018
58723	Review for 2019. Updated Labworks version. Revision 16 to 17.	Melissa Olsen	08/16/2019
60468	Review for 2020. No changes.	Melissa Olsen	12/13/2019
67192	Review for 2020. No changes.	Melissa Olsen	09/15/2020
79250	Review for 2021. No changes.	Melissa Olsen	09/03/2021
94373	Updated Labworks version, build and serial number. Rev. 17 to 18	Melissa Olsen	12/02/2022
102982	Updated Labworks version and build. Removed Perkin Elmer as the distributor of Labworks. Updated description for barcode label identification. Rev. 18 to 19	Melissa Olsen	09/08/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan Section 5 Sample Custody Effective Date: 12/06/2022 Document Number: CLMN4423-0005 Rev.: 19

Appendix A - Chain of Custody/Analytical Request Sheet.

?	S ENVIRONM	KENNECOTT IENTAL LABORATORY 00 South Magna, Utah 84044	,			CAL REQU le Chain of			-		Sheet R	No equest No. Ise Only
#	Lab I.D. # (Lab Use Only)	Sample Description	Date Collected	Time Collected	Total # of Containers	Fie	eld Da	nta			Analyses Reques	ited
1												
2												
3					L		_					
4			_				4	_				
5			1		_		4	_				
6			_	_	-		+	+	-			
7			+	_	⊢		+	_	_			
8			_	_	┡		+	+	+			
9			+		⊢	$\overline{}$	+	-	_			
10			+	_	⊢		+	+	+			
11			+	-	\vdash		+	-	+			
12			+	-	\vdash		+	+	+			
14			+	_	\vdash		+	\rightarrow	+	-		
15			+	-	\vdash		+	+	+			
16			+		\vdash	+	+	+	+			
						elephone #						
	Sampler:		Sam	pling S	ite:					Sampling	Date:	Time:
	Surrendered E	ly:			Re	ceived By:					Date/Time:	
		endered By:									Date/Time:	
		ly:									Date/Time:	
Co	mments / Speci	al Instructions:			_							

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 5 Sample Custody

Effective Date: 12/06/2022	Document Number: CLMN4423-0005	Rev.: 19

<u>Appendix B - Chain of Custody/Analytical Request Sheet for Industrial</u> Hygiene Samples

(Kennecott Utah Copper A member of the RIO TINTO Group ENVIRONMENTAL LABORATORY 3325 So. 9200 W. Magna, Utah 84044				ANALYTICAL REQUEST SHEET Sample Chain of Custody For Industrial Hygiene			Shee	Group No.
#	Lab I.D. # (Lab Use Only)	Sample Description	Date Collected	Time Collected	Fie	eld Data Flow Rate	Time	Analyses Requ	uested
1									
3			-						
4	-		+						
5			-					-	
6			1					-	
7			1						
8			1						
9									
10									
11									
12									
13									
14 15				-					
16									
	le Submitted by:	-			Telephone #			Fax #	
								Fax #	
	Sampler:		Sam	pling S	ite:			Sampling Date:	Time:
	Surrendered By	r:			Received By:			Date/Time:	
								Date/Time:	
	Surrendered By	·			Received By: _			Date/Time:	
Co	nments / Specia	I Instructions:			-				

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 6 Analytical Methods

Effective Date 12/6/2022

Document Number: CLMN4423-0006

Rev.: 16

ANALYTICAL METHODS

Analyses performed by KEIHL are designed to comply with regulatory guidelines and standards. Therefore, the laboratory analytical methods are predominantly based on those published by regulatory agencies. The methods used are those specified by federal agencies, state agencies, and professional organizations, as provided in the references listed below.

- "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act.", 40 CFR Part 136
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 (revised March 1994).
- Methods for the Determination of Metals in Environmental Samples, EPA-600/4-91/010 (June) EPA 1989
- Test Methods for Evaluating Solid Waste (SW-846). Office of Solid Waste and Emergency Response. Office of Solid Waste and Emergency Response, EPA
- Standard Methods for the Examination of Water and Wastewater, 20th Edition, American Public Health Association, American Water Works Association, Water Pollution Control Federation Washington, D.C. (1998)
- Standard Methods for the Examination of Water and Wastewater, 22nd Edition, American Public Health Association, American Water Works Association, Water Environment Federation (2012)
- Official Methods of Analysis, 16th Edition, Association of Official Analytical Chemists Arlington, Virginia (1996)
- Annual Book of ASTM Standards, Volumes 11.01 and 11.02, 11.03
 American Society for Testing and Materials (ASTM), Philadelphia Pennsylvania (1996)

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 6 Analytical Methods

Effective Date 12/6/2022

Document Number: CLMN4423-0006

Rev.: 16

- Techniques of Water Resources Investigations of the USGS, Book 5, Laboratory Analysis, United States Geological Survey (USGS), Washington D.C. (1979)
- NIOSH Manual of Analytical Methods, NMAM Fourth Edition. National Institute for Occupational Safety and Health Division of Physical Sciences and Engineering, Cincinnati, Ohio (1994)
- OSHA Analytical Methods Manual, Second Edition August 1991, Occupational Safety and Health Administration (1991)
- Methods of Soil Analysis, Parts I and II. American Society of Agronomy, No. 9.
- Modified Sobek Method for Acid Base Accounting.

KEL analytical methods and analytical methodologies are listed in Section 6 Figure 1.

- 1. <u>Methods for the Chemical Analysis of Water and Wastewater</u> U.S. Environmental Protection Agency (EPA), EPA-600/4-79-020, March.
- 2. <u>Standard Methods for the Examination of Water and Wastewater</u>, 20th Edition, 1998 and 22nd Edition, 2012
- 3. <u>Test Methods for Evaluating Solid Waste</u> U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. SW-846 November 1986 Third Edition.

Standard Operating Procedures

Kennecott Environmental and Industrial Hygiene Laboratory have Standard Operating Procedures (SOP) for each analytical method. All SOPs for the laboratory are located in Bentley, a commercial online document control system. All SOPs are accessible for all personnel. The SOPs contains the following items:

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 6 Analytical Methods

Effective Date 12/6/2022

Document Number: CLMN4423-0006

Rev.: 16

- 1. Identification of the test method.
- 2. Applicable matrix.
- 3. Detection limit.
- 4. Scope and application.5. Summary of the test method.
- 6. Definitions
- 7. Interferences.
- 8. Safety.
- 9. Equipment and Supplies.
- 10. Reagents and Standards.
- 11. Sample Collection, preservation, and storage.
- 12. Quality Control
- 13. Calibration and Standardization.
- 14. Procedure.
- Calculations
- 16. Method Performance
- 17. Pollution Prevention.
- 18. Data Assessment and sample acceptance.
- 19. Corrective Action
- 20. Contingencies for handling out-of-control data.
- 21. Waste Management
- 22. Reference.

On the title page or in the header section of every SOP, the following items are found effective date, revision number, signatures of approval and page numbers. Prior to the implementation of a new method or SOP, or any other significant change in instrument type or personnel, a new demonstration of capability is completed. The demonstration of capability record is filed in the personnel training records.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 6 Analytical Methods

Effective Date 12/6/2022 Document Number: CLMN4423-0006

Rev.: 16

	r	r	
Mei	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/2004
TS00045	Updated the Method List	Janna Hardman	03/21/2004
TS00085	Review for 2006	Melissa Olsen	08/04/2006
9006	Revisions to analytical methods list to comply with 40 CFR 136 method updates.	Melissa Olsen	09/16/2008
	Review for 2009. No changes.	Melissa Olsen	01/27/2009
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes.	Melissa Olsen	10/11/2011
	Review for 2012. No changes.	Melissa Olsen	10/01/2012
23199	Review for 2013. No changes.	Melissa Olsen	04/19/2013
26233	Removed kinetic testing using humidity cells and selenium hydride generation. Updated branding.	Melissa Olsen	04/24/2014
30091	Added reference: Standard Methods 22 nd Edition (2012)	Melissa Olsen	04/20/2015
31572	Reviewed for 2016. Added NIOSH 7300 and 7500 to analytical methods listed in Figure 1	Melissa Olsen	03/08/2016
43586	Review for 2017. Removed Documentum and replaced with Bentley.	Melissa Olsen	02/07/2017
53081	Review for 2018. No changes made.	Melissa Olsen	05/17/2018
58723	Review for 2019. No changes made.	Melissa Olsen	08/16/2019
60468	Review for 2020. No changes made.	Melissa Olsen	1/3/2020
67192	Review for 2020. Added method 300.1 to list. 14.2 to 15	Melissa Olsen	09/15/2020
79250	Review for 2021. No changes made.	Melissa Olsen	09/03/2021
94373	Review for 2022. Fixed minor grammatical errors. Rev. 14 to 15	Melissa Olsen	12/02/2022
102982	Removed RFA anion methods in list of methods. Rev. 15 to 16.	Melissa Olsen	11/03/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 6 Analytical Methods

Effective Date 12/6/2022 Document Number: CLMN4423-0006

Rev.: 16

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 6 Analytical Methods

Effective Date 12/6/2022

Document Number: CLMN4423-0006

Rev.: 16

Section 6 Figure1 - KEIHL Analytical Methods

Method #	Method Description
120.1	EPA - Conductivity
200.2	EPA - Water Preparation
200.7	EPA - Metal by Inductively Coupled Plasma (ICP)
200.8	EPA - Metals by Inductively Coupled Plasma Mass Spectroscopy (ICPMS)
245.2 (1974)	EPA - Mercury by Cold Vapor
300.1	EPA-Analysis of Ions by Chromatography
310.1	EPA - Alkalinity
335.4 (1993)	EPA – Cyanide, Total
350.1 (1993)	EPA – Ammonia
1311	SW-846 - TCLP
1312	SW-846 - SPLP
2310 B	Standard Methods – Acidity
2320 B	Standard Methods - Alkalinity (Titration)
2340 B	Standard Methods – Hardness by Calculation
2540 C	Standard Methods-Total Dissolved Solids
2540 D	Standard Methods-Total Suspended Solids
3005A	Acid Digestion of Waters for Total Recoverable or Dissolved Metals for
	Analysis by FLAA or ICP.
3010A	Acid Digestion of Aqueous Samples and Extracts for Total Metals for
	Analysis by FLAA or ICP.
3050B	Acid Digestions of Sediments, Sludge, and Soils.
4500 (Cn) E	Standard Methods-Cyanide
4500 (H+)	Standard Methods-pH (Electrometric)

<u>Section 6 Figure1 – KEL Analytical Methods</u> <u>KEL Analytical Methods (continued)</u>

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 6 Analytical Methods

Effective Date 12/6/2022 Document Number: CLMN4423-0006 Rev.: 16

Method #	Method Description
6010 B	SW-846 – Metals by Inductively Coupled Plasma (ICP)
6020	SW-846 – Metals by Inductively Coupled Plasma Mass
	Spectroscopy (ICPMS)
7471 A	SW-846 – Mercury analysis in soils
9012 A	SW-846 Total and Amenable Cyanide
9040 B	SW-846 – pH meter
9045 C	SW-846 – pH in soils
9050 B	SW-846 – Conductivity
Modified NIOSH	Industrial Hygiene Respirable Silica
7500	
Modified NIOSH	Industrial Hygiene Respirable Metals
7300	

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

QUALITY CONTROL SYSTEMS

KEIHL employs several types of essential quality control procedures to achieve high-quality data. The quality control procedures are discussed in this section of the QAPP.

Industrial Hygiene methods certified under ISO17025 utilize different terminology and require different frequencies relative to quality control. For Industrial Hygiene methods, please refer to the following standard operating procedures for specific quality control requirements: CLSOP 4423-7009, CLSOP4423-7021, and CLSOP4423-7020).

Training

Training is essential for a Laboratory to produce quality data. KEIHL employs several techniques. When a new analyst is hired, the new analyst must first read the QAPP. This informs the new hire of the type of quality they are to produce and the code of ethics they are required to meet. When a new assignment is made to the analyst, the analyst must complete training from the section supervisor and a checklist must be completed.

- 1. Read and understand the OAPP.
- 2. Read and understand the methods and the SOP's.
- 3. Learn the software and the hardware of the system.
- 4. Perform an analytical run using a sample batch which includes a QC set with an original, duplicate, matrix spike, matrix spike duplicate, blank and a blank spike under the supervision of the section supervisor or QA Manager
- 5. Where possible, use a reference sample with the batch.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

This training checklist is documented and kept in the analyst training record. Only analysts who have completed training are authorized to independently operate and use equipment. Ongoing demonstrations of capability for each analyst are performed annually for NELAC (National Environmental Laboratory Accreditation and semi-annually for AIHA (American Certification) Industrial Association). Several types of studies may be used to demonstrate ongoing capability: 1) A quality control sample can be obtained from an outside source. (This may include a performance evaluation study or a reference sample). 2) The analyte may be diluted in clean matrix sufficient to prepare four aliquots at the concentration specified or to a concentration approximately 10 times the method stated, or laboratory calculated MDL. 3) At least four aliquots shall be prepared and analyzed according to the test method either concurrently or over a period of days. If the analyst chooses to perform number 2 or 3, the results of all the data are calculated for the mean recovery, and the standard deviation for the n-1 population. The information is then compared to the laboratory generated acceptance criteria for precision and accuracy. If the parameter meets the acceptance criteria, the analysis of actual samples may begin. If any one of the parameters does not meet the criteria, the performance is deemed unacceptable for that parameter. The analyst must then locate and correct the problem and repeat the test for the parameters that fail to meet the criteria.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

Performance Evaluation (PE) Testing

KEIHL participates in 9 different PE events annually. Depending on the PE study these tests may be annual, bi-annual, tri-annual, quarterly or six times annually. KEIHL follows the proficiency testing provider's instruction for preparing the proficiency-testing sample and analyzes the PE sample in the same manner as a client sample. KEIHL uses certified reference materials in conjunction with the PE studies to detect any flagrant deviations from the analytical run. KEIHL may use a different method for a given sample (if needed) to capture the higher concentration analytes so that they are within the instrument calibration range. KEIHL may retain these samples for one year and use them later for monitoring methods, training new employees, and for demonstration of capability studies. KEIHL directs the PE provider to send result of each PE study results to the State of Utah. KEIHL maintains a copy of all PE testing records. If the laboratory fails a proficiency-testing audit, they must initiate a corrective action plan.

Laboratory Operations: Quality Control

KEIHL follows the Quality Control requirements of the methods. If there are no Quality Control limits described in the method, the analyst must meet quality control requirements specific to accuracy, precision, interference, contamination, selectivity, and sensitivity.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

Chemical Testing

When performing chemical testing, KEIHL uses both negative and positive controls to obtain high-quality data.

All Blanks/Negative controls

Negative controls include the use of Method Blanks. These are performed at a frequency of one per preparation batch per matrix, usually 1 in 20 samples. The result of the Method Blank analysis is used to assess possible contamination of the batch. If contamination is found, then the source must be investigated and measures taken to correct, minimize, or eliminate the problem. There are two Method Blank criteria which trigger action: 1.) If the blank contamination exceeds the concentration of greater than 1/10 of the measured concentration of any sample in the associated sample batch. 2.) The blank contamination exceeds the concentration present in the samples and is greater than 1/10 the specified regulatory limit. Any sample associated with the contaminated blank shall be reprocessed for analysis.

Additional types of blank samples routinely analyzed by KEIHL include the following: field, equipment, trip, instrument, and method blanks. Field, equipment, and trip blanks are analyzed as part of the field QC program as set forth in the Groundwater Characterization Monitoring Program (GCMP) or other appropriate documents. Instrument blanks are included in calibration curves and are evaluated before beginning sample analysis.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

Accuracy and Precision/Positive controls

- 1.) Laboratory Control Samples (LCS) are prepared and analyzed at a frequency of one per preparation batch or 1/20 per matrix, unless the method specifies a more stringent frequency. (Analytes that are exempt from this requirement are total volatile solids, pH, color, odor, temperature, dissolved oxygen, and turbidity.) The LCS is used to determine the acceptance of the preparation batch. KEIHL's performance is charted on control charts.
- 2.) Matrix Spikes are analyzed at a frequency of one per preparation batch of 20 samples for each matrix type, unless the method specifies a more stringent frequency. (Except for analytes for which spiking solutions are not available, such as total volatile solids, pH, color, odor, temperature, dissolved oxygen, and turbidity.) Matrix spikes are selected at random. Poor performance in a matrix spike sample may indicate a problem with the sample composition and shall be reported to the client whose sample was used for the spike.
- 3.) Surrogates (Internal Standards) Surrogate compounds are added to all samples, standard, and blanks for all mass spectroscopy and certain ICP methods. Poor surrogate recovery may indicate a problem with the sample composition or instrument fluctuation. The samples are reanalyzed if the surrogate recovery drops more than 20 percent of the known value for possible problems with the instrument. If the recovery drops a second time, the poor recovery is reported to the client.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

4.) Interference is determined by evaluating a matrix spike sample. Matrix spike and matrix spike duplicate samples are labeled as Spike 1 and Spike 2. Matrix spikes are analyzed at a frequency of one matrix spike every 10 samples for water samples and one matrix spike every 20 samples for soils. A matrix spike sample set is created in the laboratory by collecting two aliquots from a homogenized sample. One aliquot is not spiked and the remaining aliquot is spiked with a known concentration of standard reference material. Both aliquots are then processed through the entire analytical system, including sample preparation. Matrix spike results are reported by computing the percent recovery. The percent recovery is computed by using Equation 1.

Equation 1 % Recovery = $\{(A - B)/C\} \times 100$

A = Spiked Sample Result

B = Sample Result

C = Spike Value

KEIHL's acceptable limits for matrix spike samples are \pm 25% for water, and \pm 35% for soils. These limits were agreed to by the Utah State Department of Environmental Quality under the Consent Agreement Kennecott Utah Copper has for the Ground Water Characterization Monitoring Plan (GCMP). References are available.

Analytical Variability/ Reproducibility

Unless the method requires a more stringent frequency, Matrix Spike

Duplicates and Laboratory Duplicates are analyzed at a minimum of 1 in 20

Plant: Environmental Laboratory

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

samples per matrix type, sample extraction or preparation method. Samples are selected at random. Poor performance in duplicates may indicate a problem with the sample composition and shall be reported to the client whose sample was used for the duplicate. The analytical results are reported by computing the Relative Percent Difference (RPD) using

Equation 2.

Equation % RPD =
$$\{(A - B)/[(A+B)/2]\} \times 100$$

A = Spiked Sample Result

B = Sample Result

The RPD's are evaluated and compared to method specific acceptance criteria for a given matrix. RPD results provide an estimation of the precision for a given sample matrix. The relative percent difference must fall within \pm 25% or the sample batch is reanalyzed. The results of these samples are captured in a webbased report and are reviewed monthly.

Method Evaluation

To ensure the accuracy of the reported result, the following procedures are in place:

- 1. Demonstration of Capability is performed initially and following significant change in instrument type, personnel, and sample matrix or test method.
- 2. Calibration protocols are specified in the calibration section of this QAPP.
- 3. Participation in performance evaluation to evaluate the ability to produce accurate data.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

Detection Limits

KEIHL performs MDL studies at least annually on all methods it performs by following the guidelines in 40 CFR, Part 140, and Appendix B. Refer to KEIHL SOP CLSOP4423-1013 for the process. An MDL study may be performed more frequently if significant changes occur, such as a change in location of the laboratory, a new technical employee, a new instrument, or a new technique.

Standard/Reagent and Reference Standard Preparation

A critical element of producing quality data is the purity, quality and traceability of the standard solutions and reagents used in the laboratory. To ensure the highest possible purity, all primary calibration standards, reference standards and standard solutions must be purchased from suppliers in conformance with ISO Guide 34 requirements. These types of standards are logged into the appropriate Standards and Reagent Log upon arrival at KEIHL. A logbook for this purpose is maintained in each lab section. The analyst preparing the standard gives the standard a unique identification number and documents the vendor, lot number, concentration, open/preparation date, preparer's initials, method of preparation, and expiration date. The standard's Certificate of Analysis is kept on file with the standard number, date received, and initials of the analyst. The Certificate of Analysis file is maintained by the analyst and/or the QA/QC Officer. These logbooks and Certificates of Analysis provide the traceability of the standards from the time the standard arrives at KEIHL to the time it is used for an analytical purpose. The standard log number is also recorded on the raw data for traceability.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022

Document Number: CLMN4423-0007

Rev.:14

A second source standard must be used at a minimum of every three months. However, most analysts analyze the second source after the daily calibration to verify the calibration curve. The second source standard is prepared at a different time and is obtained from a different source or different lot number. This verification is used to evaluate the calibration and the vendor's product. Stock standards and working standards are checked regularly for signs of deterioration, such as discoloration, formation of precipitates, or change in concentration. Care is exercised in the proper storage and handling of standard solutions. Standards are not stored with samples. Working standard reagent containers are clearly labeled with the following information: Standard number, description, preparation date, concentration, expiration date, preparer's initials, and special safety precautions or SDS (Safety Data Sheets) information.

The quality of the laboratory's reagent water source is continuously monitored through the analysis of blanks. The water must meet the method specified requirements.

Constant and Consistent Test Conditions

KEIHL maintains a temperature-controlled environment to assure that the test instruments consistently operate within the specification required for the application for which the instruments are used.

Glassware is cleaned to meet the sensitivity requirements of the test methods. All cleaning and storage procedures that are not specified by the test method are documented in the laboratory records and SOPs.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022 Document Number: CLMN4423-0007 Rev.:14

МОС	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/04
TS00085	Revision and Review for 2006	Melissa Olsen	08/03/06
	Review for 2008. No changes.	Melissa Olsen	10/07/08
	Review for 2009. No changes.	Melissa Olsen	01/21/09
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Updated section on Performance Evaluations. Updated the frequencies stated under the Accuracy and Precision section #4.	Melissa Olsen	08/29/2011
23199	Review for 2013. No changes.	Melissa Olsen	04/23/2013
25673	Under standard/reagent and reference standard preparation, added the requirement that all suppliers must conform to ISO Guide 34 requirements. Added statement regarding Industrial Hygiene methods and QC requirements.	Melissa Olsen	02/04/2013
26233	Expanded on statement regarding ongoing demonstration of capability to state the requirements of AIHA (2 DOC/year) and NELAC (annually). Updated branding.	Melissa Olsen	04/24/2014
30091	Changed frequency of analysis of laboratory reagent water from "daily" to "monitored through the analysis of blanks".	Melissa Olsen	04/20/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/08/2016
43586	Review for 2017. No changes.	Melissa Olsen	02/07/2017
53081	Review for 2018. No changes.	Melissa Olsen	06/19/2018
58723	Review for 2019. No changes.	Melissa Olsen	08/16/2019
60468	Review for 2020. No changes.	Melissa Olsen	01/03/2020
67192	Updated number of PT studies to 9.	Melissa Olsen	09/15/2020
79250	Added comment "Unless the method specifies a more stringent frequency" to Accuracy and Precision #1 LCS, #2 Matrix Spikes and under Analytical Variability and Reproducibility. Rev. 12 to 13.	Melissa Olsen	09/03/2021
94373	Review for 2022. Fixed minor grammatical errors. Rev. 13 to 14	Melissa Olsen	12/02/2022
102982	Review for 2023. No changes.	Melissa Olsen	11-03-2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 7 Quality Control Systems

Effective Date: 12/06/2022 Document Number: CLMN4423-0007 Rev.:14

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Effective Date: 9/8/2021 Document Number: CLMN4423-0008

Rev.: 11

CALIBRATION

Calibration requirements are divided into two parts: (1) requirements for analytical support equipment and (2) requirements for instrument calibration.

Support Equipment

These devices are not the actual test instruments but include auxiliary equipment necessary to support laboratory operations. This equipment requires calibration documentation indicating they were calibrated by an organization accredited under ISO/IEC 17025 and therefore, in conformance with the necessary requirements. These include, but are not limited to, the following: balances, ovens, refrigerators, incubators, thermometers, volumetric dispensing devices, such as Eppendorfs, or automatic diluters. KEIHL maintains records of repairs and maintenance activity. All raw data records are maintained to document equipment performance. Results of the calibrations must be within the specifications required for the application for which the equipment is used. Prior to use, balances, ovens, and refrigerators are checked for expected temperature range with NIST traceable references.

Mechanical volumetric dispensing devices are checked for accuracy quarterly.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Effective Date: 9/8/2021 Document Number: CLMN4423-0008

Rev.: 11

Weights and Balance Calibration

A contractor performs all necessary preventative maintenance and calibrates balances every six months and weights annually. The Class S weights are calibrated annually and checked against NIST traceable weights for accuracy. The contractor issues a certificate of calibration for both the weights and the balances that states the variability of the balances. Documented weight verification is performed each time the balance is used by the analyst. The analyst performs verification by placing one of the Class S weights on the balance and recording the result in the balance calibration book. The analyst should select a Class S weight in the weight range of the sample or reagent to be weighed.

Thermometer Calibration

Thermometer calibration is performed on all glass mercury thermometers annually. This is accomplished by using an NIST traceable thermometer. The NIST traceable thermometer is placed beside the glass mercury thermometer and allowed to equilibrate for one hour. The respective temperatures are recorded. If there are discrepancies between the NIST traceable thermometer and the glass mercury thermometer, it is noted on the label which is attached to the thermometer. Alternatively, thermometers can be sent out for calibration to an approved ISO17025 certified calibration service provider.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Effective Date: 9/8/2021 Document Number: CLMN4423-0008

Rev.: 11

Mechanical Pipette Calibration Verification

A calibration verification is performed on KEL's mechanical pipettes quarterly. The calibration verification is performed using "Pipette Tracker" software. Each pipette has a unique number. The unique number may be the pipette serial number or an assigned laboratory ID number. The unique number is engraved or labeled on the pipette. The non-adjustable pipettes are calibrated using a \pm 2% criteria for precision and accuracy. The calibration verification acceptance range uses a \pm 5% for precision and accuracy at the lowest adjustable reading and a \pm 2% for precision and accuracy for every actual volume a minimum of three concentrations are verified for calibration. When the calibration verification has been completed, a Certificate of Calibration is printed and kept in the Pipette Calibration Book in the QA/QC Manager's Office.

Instrument Calibration

Instrument calibrations are divided into two parts: Initial Calibration and Continuing Instrument Calibration Verification.

Initial Calibration

Instrument calibration procedures are intended to ensure that analytical systems are operating correctly and have adequate sensitivity and accuracy to meet method requirements. The details of the initial instrument calibration procedures are included or referenced in the SOP. The manufacturer specifies

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Effective Date: 9/8/2021 Document Number: CLMN4423-0008

Rev.: 11

general instrument calibration procedures. Method specific procedures are given in the appropriate analytical method. Instruments are calibrated daily and/or each time they are prepared to run samples. Each instrument is calibrated with standards appropriate to the designated function of the instrument, type of analysis, and the established operating range of the analytical methods. Calibration is always performed prior to analysis. Sample results must be calculated from the initial instrument calibration and may not be calculated from any continuing instrument calibration verification. The lowest calibration standard must be above the detection limit. Calibration standards must include concentrations at or below the regulatory limit or decision level, unless these concentrations are below the demonstrated detection limits determined by the laboratory. Sufficient raw data records must be retained to permit reconstruction of the initial instrument calibration, e.g., calibration date, test method, instrument, analysis date, each analyte name, initials of analyst or signature, concentration and response, calibration curve or response factor. The analyst analyzes a second source after the daily calibration to verify the calibration curve. The second source standard is prepared at a different time and obtained from a different source or different lot number. The second source verification is used to evaluate the calibration and the vendor's product.

The calibration standards must have a correlation coefficient (also referred to as r^2) of 0.995 or better and blanks must meet the method specific criteria for

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Effective Date: 9/8/2021 Document Number: CLMN4423-0008

Rev.: 11

acceptance, or the analysis is terminated, and all samples analyzed after the last acceptable calibration are reanalyzed. If the result of an analysis is higher than the highest point on the calibration, the sample is diluted until the result falls within the calibration range. If results are lower than the lowest point on the calibration, which goes through zero, the results are reported Below Reporting Limit (RL).

Continuing Instrument Calibration Verification

The details of the continuing instrument calibration procedure, calculations and associated statistics must be included or referenced in the SOP. A continuing instrument calibration verification must be repeated at the beginning, every ten samples and at the end of every analytical run. For the photometric determination of anions, the continuing instrument calibration standards are analyzed every 15 samples, including 9 daily samples and 6 quality control samples. The concentration of the calibration verification shall be varied within the established calibration range. Sufficient raw data records must be retained to permit reconstruction of the initial instrument calibration, e.g., calibration date, test method, instrument, analysis date, each analyte name, initials of analyst or signature, concentration and response, calibration curve or response factor. The criteria for acceptance of continuing instrument calibration verification is established as \pm 10% of the known concentration. If the continuing instrument calibration verification results obtained are outside the established acceptance criteria, corrective actions must be performed. If routine corrective action

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Effective Date: 9/8/2021 Document Number: CLMN4423-0008

Rev.: 11

procedures fail to produce second consecutive calibration verification within the acceptance criteria, then either the laboratory must demonstrate performance after corrective action with two consecutive successful calibration verifications or a new initial instrument calibration must be performed.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Effective Date: 9/8/2021 Document Number: CLMN4423-0008 Rev.: 11

MOC	Description of Change	Prepared By	Date
TS0020	Review for 2004	Janna Hardman	09/30/2004
TS00085	Review for 2006	Melissa Olsen	08/03/2006
TS00113	Added statement indicating the frequency of continuing calibration verification checks for the photometric determination of anions every 15 samples.	Melissa Olsen	04/13/2007
	Review for 2008. Minor grammatical changes made.	Melissa Olsen	10/07/2008
	Review for 2009. No changes.	Melissa Olsen	01/21/2009
11532	Revision and review for 2010. Removed water bath from support equipment.	Melissa Olsen	02/22/2010
17479	Added frequency of thermometer calibration.	Melissa Olsen	08/29/2011
23199	2013 review. No changes.	Melissa Olsen	04/24/2013
25673	Added statement to thermometer calibration regarding sending thermometers to an ISO17025 certified service provider. Added statement under support equipment regarding the requirement to meet ISO/IEC 17025 standards.	Melissa Olsen	12/17/2013 and 01/30/2014
26233	Updated branding.	Melissa Olsen	05/22/2014
30091	Review for 2015. No changes.	Melissa Olsen	04/20/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/08/2016
43586	Review for 2017. No changes.	Melissa Olsen	03/24/2017
53081	Review for 2018. No changes.	Melissa Olsen	06/19/2018
58723	Review for 2019. No changes.	Melissa Olsen	08/16/2019
60468	Review for 2020. No changes.	Melissa Olsen	01/03/2020
67192	Review for 2020. No changes.	Melissa Olsen	09/16/2020
79250	Review for 2021. No changes.	Melissa Olsen	09/03/2021
94373	Review for 2022. No changes.	Melissa Olsen	12/02/2022
102982	Review for 2023. No changes.	Melissa Olsen	11/02/2023 Environmental Laboratory

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 8 Calibration

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 9 Preventive Maintenance

Effective Date: 9/8/2021 **Document Number:** CLMN4423-0009

Rev.: 05

PREVENTIVE MAINTENANCE

Preventive maintenance of analytical instrumentation and other traditional equipment is routinely performed on an as needed or on a recommended basis and documented in the instrument maintenance logbooks. One important aspect of the instrument maintenance program is service contracts which cover most of the analytical instrumentation utilized at Kennecott Environmental and Industrial Preventive maintenance procedures specified by the Laboratory (KEIHL). instrument manufacturer or the QA program are included in the method/SOPs relating to the instrument. Instruments requiring service from an authorized service engineer are removed from service until the repair or maintenance is completed. Authorized maintenance personnel service other pieces of equipment such as the balances on a semi-annual basis. Service call maintenance is documented and service records are kept on file. Internal system audits monitor preventive maintenance. Annual systems audits are designed to address any longstanding or recurring problems with the instrumentation and engineering controls.

Records are maintained for each major piece of equipment and all reference materials significant to the test performed. The records shall include the following information:

1. The name of the item of equipment.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 9 Preventive Maintenance

Effective Date: 9/8/2021 **Document Number:** CLMN4423-0009

Rev.: 05

- 2. The manufacturer's name, type identification, and serial number or unique identifier.
- 3. Date received and date placed in service.
- 4. Current location when appropriate.
- 5. Condition received.
- 6. Copy of the manufacturer's instructions
- 7. Details of the maintenance carried out to date.
- 8. History of any damage, malfunction, modification or repair.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 9 Preventive Maintenance

Effective Date: 9/8/2021 **Document Number:** CLMN4423-0009 Rev.: 05

MOC#	Description of Change	Prepared By	Date
TS00020	Review for 2004	Janna Hardman	09/30/2004
TS00085	Review for 2006.	Melissa Olsen	08/03/2006
	Review for 2008. No changes made.	Melissa Olsen	10/07/2008
	Review for 2009. No changes made.	Melissa Olsen	01/21/2009
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes.	Melissa Olsen	08/30/2011
23199	Review for 2013. No changes.	Melissa Olsen	04/24/2013
26233	Updated branding.	Melissa Olsen	06/02/2014
30091	Review for 2015. No changes.	Melissa Olsen	04/20/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/08/2016
43586	Review for 2017. No changes.	Melissa Olsen	03/24/2017
53081	Review for 2018. No changes.	Melissa Olsen	06/19/2018
58723	Review for 2019. No changes.	Melissa Olsen	08/16/2019
60468	Review for 2020. No changes.	Melissa Olsen	01/03/2020
67192	Review for 2020. No changes.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes.	Melissa Olsen	09/03/2021
94373	Review for 2022. No changes.	Melissa Olsen	12/02/2022
102982	Review for 2023. No changes.	Melissa Olsen	11/02/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 10 Data Quality Assessment

Effective Date: 9/8/2021

Document Number: CLMN4423-0010

Rev 05

DATA QUALITY ASSESSMENT

The Data Quality Assessment section of the QAPP describes the techniques that are used to assess the precision, accuracy, completeness, and comparability of all data generated under the Quality Assurance Program.

Precision

Precision is defined as the measure of mutual agreement among individual measurements of the same property, usually under similarly prescribed conditions. Precision is best expressed in terms of relative percent difference. The Precision is determined by performing duplicate analyses of a certified reference material or laboratory control sample and graphing the data on a control chart to see if the sample concentrations fall within the statistical limits. Each analyst performs duplicate analysis of certified reference materials or performance evaluation samples for every QC set analyzed in the analytical process.

Accuracy

Accuracy is the degree of agreement of a measurement (or an average of measurements of the same property) with the accepted reference value or true value. It is a measure of the bias in a system and will be expressed as the percent recovery in a spiked sample. It can also be assessed using a certified reference

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 10 Data Quality Assessment

Effective Date: 9/8/2021 Document Number: CLMN4423-0010

Rev 05

material (CRM also called a Standard Reference Material (SRM)) with certified values. Accuracy is evaluated through the steps listed below.

- Calculating the average and the standard deviation for the QC check samples for each parameter and graphing the results on control charts to determine if the accuracy is within the statistical acceptance limits.
- Inspecting all blank analysis data for field or laboratory contamination problems.
- Calculating the percent recovery of laboratory fortified samples and laboratory fortified blanks to ascertain the accuracy of the system.

Proper evaluation of precision and accuracy will offer insight into instrument performance and general data quality.

Completeness

Completeness is defined as a measure of the amount of valid data obtained from a measurement system compared to the amount that is expected to be obtained under normal operating conditions. Completeness is evaluated in terms of the amount of valid data obtained compared to the amount that is needed to complete the QA goals. The amount of valid data generated in an analytical sequence can vary due to several causes: laboratory sample handling or preparation errors resulting in the loss or destruction of an analyte, instrumental errors resulting in data rejection, and insufficient QC data (e.g., lack of spike recovery data). If data acquisition targets are not met, the data may be

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 10 Data Quality Assessment

Effective Date: 9/8/2021 Document Number: CLMN4423-0010

Rev 05

determined to be incomplete by the analyst or QA manager and further analysis or repeated sampling may be required.

Comparability

Comparability is defined as the confidence with which one data set can be compared to another. Identifying pertinent data characteristics that may limit comparability to other sets assesses comparability. Comparability will be evaluated using the steps listed below.

- Assuring that measurements obtained during a predetermined time frame are statistically comparable using SOPs and standard analytical procedures.
- Internal performance audits may be initiated by the QA manager. One data set generated by one analyst or instrument can be compared to another.
- Comparison of current data with historical data from the same sampling site.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 10 Data Quality Assessment

Effective Date: 9/8/2021 Document Number: CLMN4423-0010 Rev 05

MOC#	Description of Change	Prepared By	Date
TS00020	Review for 2004	Janna Hardman	09/30/04
TS00085	Review for 2006	Melissa Olsen	08/03/06
	Review for 2008. No changes were made.	Melissa Olsen	10/07/08
	Review for 2009. No changes were made.	Melissa Olsen	01/23/09
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes were made.	Melissa Olsen	08/30/2011
23199	Review for 2013. No changes made.	Melissa Olsen	04/24/2013
26233	Under "Comparability", modified statement regarding internal performance audits. Updated branding.	Melissa Olsen	06/02/2014
30091	Review for 2015. No changes made.	Melissa Olsen	04/20/2015
31572	Review for 2016. No changes made.	Melissa Olsen	03/08/2016
43586	Review for 2017. No changes made.	Melissa Olsen	03/24/2017
	Review for 2018. No changes made.	Melissa Olsen	06/19/2018
58723	Review for 2019. No changes made.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes made.	Melissa Olsen	01/03/2020
67192	Review for 2020. No changes made.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes made.	Melissa Olsen	09/03/2021
94373	Review for 2022. No changes made.	Melissa Olsen	12/02/2022
102982	Review for 2023. No changes made.	Melissa Olsen	11/02/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011

Rev.: 11

DATA REDUCTION, VERIFICATION, AND REPORTING

All data are processed to ensure that the precision, accuracy, completeness, and comparability of the data are of known and documented quality. Data validation includes data reduction, verification, and reporting procedures completed independently by the analyst, QA/QC Officer and Laboratory Director.

Traceability of Measurement

Traceability is the ability to trace the history, application, or location of an entity by means of recorded identifications for a given sample or project. KEIHL's Quality Control Systems strives to provide a program to ensure that measurements made by the laboratory are traceable to national standards of measurement when possible. When traceability to national standards of measurement is not applicable, the laboratory provides satisfactory evidence or correlation of results by participation in inter-laboratory comparisons, proficiency testing or independent analysis.

Sample Traceability

The traceability begins with the sample numbers being assigned to the samples and then being recorded on the Chain of Custody. The preparation chemist then records the laboratory assigned sample number in the preparation logbook. After the samples have been prepared, the completed samples are placed

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011 Rev.: 11

in a sample type designated area. The Analyst then prepares an analytical run from the backlog and types the corresponding number into the analytical sample identification table. This then becomes part of the final record.

Standard, Reagent, and Reference Material Traceability

The KEIHL laboratory only purchases standards that are traceable to national standards. When the laboratory receives new standards, reagents or reference material, the Laboratory records the following information into a Standard/ Reagent Logbook: name of the standard, concentration, vendor, lot number, date of receipt, expiration date and the analyst's initials. The standard is then assigned a unique laboratory number. All standards are received with a Certificate of Analysis. The unique number is recorded on the Certificate of Analysis and the certificate is kept in the QA Manager's office. A sticker is placed on the standard with the information listed above. If a standard is diluted, or added to a working standard, the directions for this are also recorded in the Standard Logbook. The new working standard is given a unique number and labeled accordingly. The working standard number is recorded on each analytical run to provide traceability back to the standards used for the analytical run.

Analyst Data Reduction, Validation, and Reporting

The analyst has primary responsibility for generating data of acceptable,

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011 Rev.: 11

known, and documented quality. The analyst reduces instrumental output to concentration values and verifies that all QC results are acceptable by comparing analytical results to statistically generated control charts for accuracy and precision, method specific criteria, and historical control limits.

Peer Review

Peer review of sample data is completed after each analytical batch and is documented on the raw data. Typically, the Group Supervisor, or designee, reviews a minimum of 10% of the data generated by a Laboratory Group. The analyst documents corrective action at the bench level on the raw data or by using the Corrective Action Report Summary maintained by the QA officer.

The analyst inspects standard, blank, sample, duplicate, and matrix spike results during an analytical batch or run and compares results against known control limits and method QC requirements. Results found to be suspect and those that are outside acceptance limits are investigated. The analyst will troubleshoot the problem(s) and restart the batch, beginning with calibration, if necessary. A Supervisor or the QA/QC Officer will be notified if the problem(s) cannot be resolved at the analyst level. The QA/QC Officer will be notified to determine whether further corrective action is required and the analyst will document conclusions. The tools used to determine acceptable results may include control charts for QC and check standard results and historical data for sample results. After the analyst determines that data quality is acceptable and the other aspects related to the data quality are

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011 Rev.: 11

known and documented, the analyst will transfer the data into the LIMS (Laboratory Information Management System).

QA/QC Officer Data Reduction, Validation and Reporting

The QA/QC Officer is responsible for ensuring the precision, accuracy, completeness, and comparability of the data are of known and documentable quality. The QA/QC Officer reviews the data only after all requested analyses for a sample or sample set have been completed. The process followed by the QA/QC Officer includes a review of all stages of the sample from receipt and chain-of-custody to data reduction, verification, final reporting and the final archival processes. reduction is performed using the QA SQL interface program and the LIMS based Northwest Quality Analyst (NWQA). The QA/QC Officer reviews the data and determines whether corrective action is required. Verification includes an assessment of QC results, confirmation of cation/anion balances and total dissolved solids comparisons measurements for each water sample. The ionic balance check program compares the major cation to major anion results for each water sample along with the electrical conductivity and pH. These data reports are also reviewed using the professional judgment of the QA/QC Officer and corrective action is initiated as needed.

The QA/QC Officer transfers completed data sets to the QA database, reviews the data, and determines whether corrective action is required. If the data is unsatisfactory, the QA/QC Officer submits a rerun sheet to the laboratory group to

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011 Rev.: 11

reanalyze the rejected data sets. The QA/QC officer implements corrective actions as needed based on this additional review of the QA statistics and control chart data.

When the QA/QC Officer verifies that all required corrective actions have been implemented and documented, the data is of known and documentable quality. The QA/QC Officer then provides the Laboratory Director with the printouts of the cation anion balance and the final Certificate of Analysis report. The data is not reported to the Laboratory Director until the QA/QC Officer is satisfied that the data are acceptable.

Laboratory Director Data Reduction, Validation and Reporting

The Laboratory Director has the final responsibility to ensure that the precision, accuracy, completeness, and comparability of the data are known and documented. The Laboratory Director reviews all corrective actions taken. The Director reviews sample results that have ion balances that are not comparable. The Director then approves or rejects the data. Any additional corrective actions identified by the Laboratory Director are investigated, documented and reviewed before the Laboratory Director approves the final Certificate of Analysis report.

Electronic Signatures

The Laboratory Director uses an electronic signature for all Certificates of Analysis (COA) generated. This electronic signature is unique to the individual and is secured by a personal log-in identification username and password, which are periodically

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011 Rev.: 11

changed.

Certificate of Analysis

KEIHL produces a Certificate of Analysis (COA) for every sample analyzed at the laboratory. The KEIHL report has the following items listed on the report:

- 1. Report Title.
- 2. Name and address of the laboratory.
- 3. Total number of pages.
- 4. Name of the client (KEL is an in-house lab. Therefore, the address is the same.)
- 5. Identification of the sample
- 6. Date of sample Receipt, Collection date, and analysis date.
- 7. Identification of the test method
- 8. Any deviations pertaining to the sample.
- 9. Signature and title of the responsible persons.

KEIHL does not subcontract any samples. Therefore, KEIHL follows the guidance found in NELAC 5.13 b) 2) which states: "The laboratory provides information to another department within the organization for the preparation of regulatory reports". The facility management must ensure the appropriate report items are included in the report to the regulatory authority if such information is required.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011 Rev.: 11

Computers and Electronic Data Requirement

When computers and automated equipment are used for the capture, processing, manipulation, recording, reporting, storage, or retrieval of test data, KEIHL follows an SOP that covers the requirement found in NELAC Chapter 5.10.6 and Good Automated Laboratory Practice of the EPA Document 2185.

Customer Complaints

KEIHL has a Standard Operating Procedure for addressing and resolving customer complaints. Records of complaints and the subsequent actions are maintained in accordance with CLSOP4423-1021.

Record Documentation

All essential information associated with analysis including Chains of Custody, logbooks, laboratory sample ID codes, analysis type, manual calculations, raw instrument data, analysts initials or signatures, and electronic data are kept for a minimum of five years.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 11 Data Reduction, Verification and Reporting

Effective Date: 9/8/2021 Document Number: CLMN4423-0011 Rev.: 11

MOC#	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/04
TS00085	Review for 2006	Melissa Olsen	08/03/06
	Review for 2008. No changes were made.	Melissa Olsen	10/07/08
	Review for 2009. No changes were made.	Melissa Olsen	01/23/09
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes made.	Melissa Olsen	10/11/2011
23199	Review for 2013. Removed statements regarding the review of sample results against historical means and standard deviations. This work is performed by the Water Resources Group.	Melissa Olsen	04/24/2013
26233	Under Sample Traceability, removed "instrument chemist" and replaced with "analyst" Updated branding.	Melissa Olsen	06/02/2014
30091	Added section on the use of Electronic Signatures for Certificates of Analysis.	Melissa Olsen	04/09/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/08/2016
43586	Review for 2017. No changes.	Melissa Olsen	03/24/2017
	Review for 2018. No changes.	Melissa Olsen	06/19/2018
58723	Review for 2019. No changes.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes.	Melissa Olsen	01/03/2020
67192	Review for 2020. No changes.	Melissa Olsen	09/17/2020
79250	Under Certificate of Analysis, removed paragraph about report formats to DEQ. Rev. 9.3 to 10	Melissa Olsen	09/03/2021
94373	Review for 2022. No changes.	Melissa Olsen	12/02/2022
102982	Referenced CLSOP4423-1021 in Customer Complaints section. Rev 10 to 11	Melissa Olsen	

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna UT 84044

Quality Assurance Program Plan

Section 12 Corrective and Preventive Action

Effective Date: 9/8/2021

Document Number: CLMN4423-0012

Rev.: 16

Corrective and Preventive Action

The Laboratory Director and/or the Quality Manager are responsible for initiating, monitoring and recording non-conformances and corrective actions (Refer to SOP CLSOP4423-1004). Corrective Actions are recorded on the "Corrective Action" form, CLFRM4423-0001 (Appendix A), which can be found in the Bentley document control system.

Examples of **non-conformances** (random events) may include the following:

- Continuing calibration verification (CCV) results not within method-defined control limits
- Sample analyzed outside of maximum holding time limits
- Loss of sample (broken glassware, spill, etc.)
- Erroneous double spiking of sample with surrogate
- Outlier for Proficiency Testing round, Round Robin, or Demonstration of Capability

Examples of **corrective actions** (systematic events) may include the following:

- Internal Quality Audit findings
- External Assessment Deficiencies
- Non-conformances which become systematic events
- Becoming non-proficient with proficiency testing samples
- Customer feedback or complaints

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna UT 84044

Quality Assurance Program Plan

Section 12 Corrective and Preventive Action

Effective Date: 9/8/2021 Document Number: CLMN4423-0012

Rev.: 16

All Laboratory Employees and members of the QAQC group have the authority, as appropriate, to stop work on samples when any aspect of the process does not conform to laboratory requirements. The employee who stopped the work shall immediately notify laboratory management (Laboratory Director, QA Manager, or designee). Upon investigation of the issue, Laboratory Management will authorize the resumption of work.

The essential steps in the corrective action system are as follows:

- Assign responsibility for investigating the problem.
- Investigate and determine the root cause of the problem (5-Why's).
- Once the root cause has been determined, implement an appropriate corrective action to solve the problem.
- Verify that the corrective action has resolved the problem.
- Complete the documentation of the corrective action.

Additionally, as part of the Groundwater Characterization Monitoring Plan (GCMP), KEIHL reviews the data for ion balance. If any sample fails the criteria for this review, a request to verify the suspected analysis/analyses which is/are contributing to this failure is requested by the QA/QC manager. When these reruns result in changes to the original values, the analyst will enter a comment in the LIMS (Laboratory Information Management System). Likewise, if the sample is

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna UT 84044

Quality Assurance Program Plan

Section 12 Corrective and Preventive Action

rerun and the result does not change, a comment is entered indicating the sample was verified. These changes are also tracked through the audit trail in the LIMS.

Customer Complaints

KEIHL is a private technical support facility for Rio Tinto Kennecott.

Therefore, the customers receiving KEIHL services are the environmental and industrial hygiene personnel. The Laboratory Director or the QA/QC Manager receive any questions, concerns or issues pertaining to analytical data. Questions and concerns are resolved by following the procedure listed below:

- Review of Field Data Observation Sheets.
- Review of the Chain of Custody request and supplied field data.
- Review of raw analytical data.
- Review of the associated quality assurance data.
- If needed, re-analysis of samples if original sample is available.

Please refer to CLSOP4423-1021 Customer Services and Complaints.

PREVENTIVE ACTION

KEIHL determines action to eliminate the causes of potential nonconformities to prevent their occurrence. Preventive actions are appropriate to the effects of the potential problems and are recorded on a Preventive Action Report, CLFRM4423-0002 (Appendix B). For the procedure on Preventive Action, refer to SOP CLSOP4423-1023.

Rev.: 16

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna UT 84044

Quality Assurance Program Plan

Section 12 Corrective and Preventive Action

Effective Date: 9/8/2021 Document Number: CLMN4423-0012

Rev.: 16

MOC#	Description of Change	Prepared By	Date
TS00020	Review for 2004	Janna Hardman	09/30/04
TS00046	Review for 2005 Procedure change for follow up on the implementation of Corrective Action.	Janna Hardman	03/30/05
TS00085	Review for 2006	Melissa Olsen	08/04/06
9006	Review for 2008. Updated Appendix A corrective action form.	Melissa Olsen	10/10/08
	Review for 2009. No changes.	Melissa Olsen	01/26/09
11532	Revision and review for 2010. Added Preventive Action section to SOP as well as a document reference. Modified report in Appendix A (Non-Conformance and Corrective Action) and added Appendix B (Preventive Action Report). Updated laboratory address in header.	Melissa Olsen	12/17/2010
17479	Review for 2011. No changes made.	Melissa Olsen	10/11/2011
21418	Review for 2012. Inserted updated forms for Corrective and Preventive Actions.	Donna Smith	01/12/2012
	Review for 2013. Removed statements "and limit check programs", and "historical data check review" as these are not performed by the laboratory personnel. Historical data checks for specific locations are performed by the Water Resources Group.	Melissa Olsen	04/24/2013
26233	Updated branding.	Melissa Olsen	06/02/2014
30091	Updated Appendix A and B forms	Melissa Olsen	04/21/2015
31572	Review for 2016. Updated Appendix A with current revision of Corrective Action Report	Melissa Olsen	03/11/2016
43586	Review for 2017. Removed non-conformance from Appendix A header. Rev. 13 to 14.	Melissa Olsen	03/27/2017
53081	Aligned policy with procedure after procedure updates for corrective and preventive action. Rev. 14 to 15	Melissa Olsen	09/17/2018
58723	Review for 2019. No changes made.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes made.	Melissa Olsen	01/03/2020
67192	Added SOP reference for Customer Complaints CLSOP4423-1021.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes made.	Melissa Olsen	09/07/2021
94373	Review for 2022. No changes made.	Melissa Olsen	12/02/2022
102982 Page 4 of 6	Review for 2023. No changes made.	Melissa Olsen	11/02/2023 ant: Environmental Lab

oratory

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna UT 84044

Quality Assurance Program Plan

Section 12 Corrective and Preventive Action

Effective Date: 9/8/2021	Document Number: CLMN4423-0012	Rev.: 16

Appendix A Corrective Action Report

	Corrective Actio	
Effective Date: 11/17	/2017 Document Number:	CLFRM4423-0001 Rev: 3

Corrective Action Number:	
Name of Person Registering the Corrective Action:	Date:
Source: (internal audit, external audit, etc.)	
Details of the systematic non-conformance including sam it occurred:	ple details where appropriate, what actually happened and how
Root Cause Analysis (Five whys). List details of cause an	d contributing issues.
Corrective Action Taken	
Review of Corrective Action:	
Corrective action satisfactory?: YES NO QA/Technical Manager:	Date:
Additional Review Required? YES NO	

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna UT 84044

Quality Assurance Program Plan

Section 12 Corrective and Preventive Action

Effective Date: 9/8/2021	Document Number: CLMN4423-0012	Rev.: 16

Appendix B Preventive Action Report

Preventive Action Form			
tive Date: 11/15/2013	Document Number:	: CLFRM4423-0002	Rev: 0
Date:		Initiator:	
Preventive Action Report number:			-
Source (Circle One):			-
Service Request	Staff Observation	Internal/External Audit	
Customer Complaint	Control Chart	Management Review	
Customer Survey	Other		
Identification of Problem and Evid	ence of Occurence:		
Evaluation of Problem (Root Cause	en		
Action Plan:			
Follow-Up Have all changes been verified for o	completion? Yes	No	\dashv
If yes, please list the date this took	place:		
Steps taken to prevent future occur	Tence:		
Additional Comments:			
	Signature	Date	
Initiator:			
QA/Technical Manager:			

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 13 Performance and System Audits

Effective Date: 9/8/2021 Document Number: CLMN4423-0013

Rev.: 12

AUDITS AND SYSTEM REVIEWS

Internal System Audits and Managerial Review

The OA/OC Officer will conduct system audits annually. Audits are carried out by trained and qualified personnel who are independent of the activity to be audited. Personnel shall not audit their own activities except when it can be demonstrated that an effective audit will be carried out. Internal audits include a review of documentation, data record checks, logbook inspections, and laboratory inspections conducted by the QA/QC Officer, his or her designee, or external auditors. Internal audits are conducted to verify the staff has the equipment, facilities, engineering controls, and procedures necessary to generate data of acceptable, known, and documented quality. Any deficiencies identified in the audit are documented and addressed as part of the audit process. Corrective actions resulting from a system audit can include revising SOPs, reanalyzing affected samples, or repairing instrumentation. A well-administered system audit may isolate deficiencies regarding inadequate engineering controls within the laboratory, such as an inoperable fume hood. The Laboratory Director conducts independent reviews or audits as needed in response to problems identified through the QA program or performance audit samples (both internal and external). The Laboratory Director addresses safety and compliance problems. Analysts must

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 13 Performance and System Audits

Effective Date: 9/8/2021 Document Number: CLMN4423-0013

Rev.: 12

have appropriate controls in place to properly execute their job functions. The QA/QC Officer maintains the system audit schedule.

External System Audits

Auditors from federal, state, and county agencies conduct external system audits. External system audits are conducted as part of the accreditation, licensing, and certification programs identified above and as oversight by government agencies. The QA/QC Officer and Laboratory Director actively participate in the audit. KEIHL responds to all external system audits through corrective action deficiency reporting as required by the agency and by documenting and correcting problems identified during the audit.

Performance Audits

Performance audits are an important component of the QA program. KEIHL implements several types of checks to monitor the quality of analytical activity. A few of these are listed below:

- Internal quality control procedures using statistical techniques.
- Replicate testing using the same or different test methods.
- Use of certified reference materials or secondary reference materials.
- Re-testing of retained samples.
- Ion balance on the major components of water samples.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 13 Performance and System Audits

Rev.: 12

- Review the results for different, but related analysis of a sample.
 i.e. Total vs. Dissolved.
- Participate in proficiency testing or other interlaboratory comparisons.

Performance audits include the analysis of a standard QC set: original, duplicates, matrix spikes, matrix spike duplicates, blanks, and certified reference materials. The performance audits are designed to verify the ability to correctly identify and quantify sample concentrations in reference samples and blind QC samples.

Proficiency Test Studies

The Laboratory participates in several proficiency test studies listed below.

- Environmental Monitoring under SDWA (WS), twice a year and CWA (WP), twice a year, and RCRA (Soil Study) twice a year.
- Laboratory certification program administered by the State of Utah Department of Health, Bureau of Laboratory Services.
- The Proficiency of Analytical Testing (PAT) program jointly administered by AIHA and NIOSH, four times a year.

The information provided through participation in these programs is used to evaluate laboratory performance in each section and to assist the QA/QC Officer, Laboratory Director, and external audit teams in assessing analytical methods that require increased attention to correct any deficiencies. Sample information for external performance evaluation samples is recorded and tracked in the LIMS

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 13 Performance and System Audits

Effective Date: 9/8/2021 Document Number: CLMN4423-0013 Rev.: 12

database, including sample identity and reported results. All audit samples are processed through the laboratory in the same manner as routine samples, from sample receipt to final reporting. All results of performance evaluation tests are distributed to the Laboratory Director and/or Technical Services Manager.

MOC#	Description of Change	Prepared By	Date
TS00020	Review for 2004	Janna Hardman	09/30/04
TS00085	Review for 2006	Melissa Olsen	08/04/06
	Review for 2008. No changes were made.	Melissa Olsen	10/07/08
	Review for 2009. Updated the current analyses performed on Toxicology proficiency test studies.	Melissa Olsen	01/26/09
11532	Review for 2010. Removed ELPAT from proficiency testing studies and updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes.	Melissa Olsen	10/11/2011
23199	Review for 2013. Added RCRA Soil study PT tests and frequency under Proficiency Testing studies	Melissa Olsen	04/24/2013
26233	Updated branding.	Melissa Olsen	06/02/2014
30091	Review for 2015. No changes.	Melissa Olsen	04/24/2015
31572	Removed clinical proficiency testing studies.	Melissa Olsen	03/11/2016
43586	Removed USGS proficiency testing studies.	Melissa Olsen	03/27/2017
	Review for 2018. No changes made.	Melissa Olsen	09/04/2018
58723	Review for 2019. No changes made.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes made.	Melissa Olsen	01/03/2020
67192	Review for 2020. No changes made.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes made.	Melissa Olsen	09/07/2021
94373	Review for 2022. No changes made.	Melissa Olsen	12/02/2022
102982	Removed NPDES (DMRQA) from PT studies. Rev. 11 to 12	Melissa Olsen	11/02/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 14 Quality Assurance Report

Effective Date: 9/8/2021 Document Number: CLMN4423-0014

Rev.: 10

QUALITY ASSURANCE REPORT

A QA/QC activity report may be prepared periodically by the Laboratory Director and distributed to laboratory personnel. These reports may include the points listed below.

- QC Summary reports for the GCMP samples.
- All Performance Evaluation sample results for all accreditations.
- Correspondence for all Performance Evaluation samples.
- Results for the internal and external system audits.
- Corrective action reports.
- Documentation review.
- Control Charts

Kennecott Environmental and Industrial Hygiene Laboratory $2500~\mathrm{S.~9180~W.}$, Magna Ut. 84044

Quality Assurance Program Plan

Section 14 Quality Assurance Report

Effective Date: 9/8/2021 Document Number: CLMN4423-0014 Rev.: 10

MOC#	Description of Change	Prepared By	Date
TS00020	Revision and Review for 2004	Janna Hardman	09/30/04
TS00085	Review for 2006	Melissa Olsen	08/04/06
	Review for 2008. No changes were made.	Melissa Olsen	10/07/08
	Review for 2009. No changes were made.	Melissa Olsen	01/26/09
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes were made.	Melissa Olsen	10/11/2011
23199	Review for 2013. Removed statement indicating that the QAQC reports would be submitted to the Manager of Technical Services.	Melissa Olsen	04/24/2013
26233	Removed statement "The Laboratory Director and the Manager of Technical Services may judge the data quality in terms of precision, accuracy and completeness." Updated branding.	Melissa Olsen	06/02/2014
30091	Review for 2015. No changes.	Melissa Olsen	04/24/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/11/2016
43586	Removed statement regarding the generation of control charts for the purpose of generating control limits for the next quarter.	Melissa Olsen	03/27/2017
	Review for 2018. No changes made.	Melissa Olsen	09/04/2018
58723	Review for 2019. No changes made.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes made.	Melissa Olsen	01/13/2020
67192	Review for 2020. No changes made.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes made	Melissa Olsen	09/07/2021
94373	Review for 2021. No changes made.	Melissa Olsen	12/02/2022
102982	Revised language to say the report may be prepared, but not that it "is" prepared as this is not a requirement under ISO or NELAC guidelines. Rev. 9 to 10	Melissa Olsen	11/03/2023

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

GLOSSARY

Commonly used environmental terminology is defined in the Glossary.

Acceptable Criteria: specified limits placed on characteristics of an item, process, or service defined in requirement documents.

Accreditation: the process by which an agency or organization evaluates and recognizes a program of study or an institution as meeting certain predetermined qualifications or standards, thereby accrediting the laboratory.

Assessment: the evaluation process used to measure the performance or effectiveness of a system and its elements. As used here, assessment is an all-inclusive term used to denote any of the following: audits, performance evaluations, management reviews, peer reviews, inspections, and surveillance.

Accuracy: a data quality indicator. The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (precision) and systematic error (bias) components, which are due to sampling and analytical operations.

Analyte: means the substance or thing for which a sample is analyzed to determine its presence or quantity.

Analytical Reagent (AR) Grade: designation for the high purity of certain chemical reagents and solvents given the American Chemical Society.

Audit: A systematic evaluation to determine the conformance to quantitative specifications of some operational function or activity.

Batch: environmental samples, which are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same NELAC-defined matrix, meeting the above mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples, extracts, digestates or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various environmental matrices and can exceed 20 samples.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Bias: the systematic or persistent distortion of a measurement process that causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value).

Blank: a sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results.

Blind Sample: a subsample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. A blind sample is used to test the analyst's proficiency or the laboratory's proficiency in the execution of the measurement process.

Calibration: comparison of a measurement standard, instrument, or item with a standard or instrument of higher accuracy to detect and quantify inaccuracies and to report or eliminate those inaccuracies by adjustments.

Calibration Curve: the graphical relationship between the known values, such as concentrations, of a series of calibration standards and their instrument response.

Calibration Method: a defined technical procedure for performing a calibration.

Calibration Standard: a solution prepared from the primary dilution standard solution or stock standard solutions. The Calibration solutions are used to calibrate the instrument response with respect to analyte concentration.

Certified Reference Material (CRM): a reference material one or more of whose property values are certified by a technically valid procedure, accompanied by or traceable to a certificate or other documentation which is issued by a certifying body.

Chain of Custody: an unbroken trail of accountability that ensures the physical security of samples, data and records.

Characteristic: any property or attribute of a data, item, process, or service that is distinct, describable, and/or measurable.

Clean Air Act: the enabling legislation in 42 U.S.C. 7401 et seq., Public Law 91-604, 84 Stat. 1676 Pub. L. 95-95, 91 Stat., 685 and Pub. L. 95-190, 91 Stat., 1399, as

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

amended, empowering EPA to promulgate air quality standards, monitor and to enforce them.

Client: any individual or organization for which items or services are furnished or work performed in response to defined requirements and expectations. See also Participant and User.

Comparability: a measure of the confidence with which one data set can be compared to another.

Completeness: a measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct, normal conditions.

Compromised Samples: those samples which are improperly sampled, insufficiently documented (chain of custody and other sample records and/or labels), improperly preserved, collected in improper containers, or exceeding holding times when delivered to a laboratory. Under normal conditions compromised samples are not analyzed. If emergency situations require analysis, the results must be appropriately qualified.

Computer program: a sequence of instructions suitable for processing by a computer. Processing may include the use of an assembler, a compiler, an interpreter, or a translator to prepare the program for execution. A computer program may be stored on magnetic media, and be referred to as software, or may be stored permanently on computer chips, and be referred to as firm: Draft Final October 1997 EPA QA/R: 5 B: 2ware. Computer programs covered by this Standard are those used for design analysis, data acquisition, data reduction, data storage (data bases), operation or control, and data base or document control registers when used as the controlled source of quality information.

Confirmation: verification of the presence of a component through the use of an analytical technique based on a different scientific principle from the original method. These may include second column confirmation, alternate wavelength derivatization, mass spectral interpretation, alternative detectors, or additional cleanup procedures.

Conformance: an affirmative indication or judgement that a product or service has met the requirements of the relevant specifications, contract, or regulation; also the state of meeting the requirements.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Consensus standard: a standard established by a group representing a cross section of a particular industry or trade, or a part thereof.

Contractor: any organization or individual that contracts to furnish services or items or perform work.

Corrective Action: action taken to eliminate the causes of an existing nonconformity, defect or other undesirable situation in order to prevent recurrence.

Data Audit: a qualitative and quantitative evaluation of the documentation and procedures associated with environmental measurements to verify that the resulting data are of acceptable quality.

Data of known quality: data that have the qualitative and quantitative components associated with their derivation documented appropriately for their intended use, and when such documentation is verifiable and defensible.

Data quality assessment (DQA): a statistical and scientific evaluation of the data set to determine the validity and performance of the data collection design and statistical test, and to determine the adequacy of the data set for its intended use.

Data quality objectives (DQOs): Qualitative and quantitative statements derived from the DQO process that clarify study, technical, and quality objectives, define the appropriate type of data, and specify tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions.

Data usability: the process of ensuring or determining whether the quality of the data produced meets the intended use of the data.

Data Reduction: the process of transforming raw data by arithmetic or statistical calculations, standard curves, concentration factors, etc., and collation into a more useful form.

Deficiency: an unauthorized deviation from acceptable procedures or practices, or a defect in an item.

Demonstration of capability: a procedure to establish the ability of the analyst to generate acceptable accuracy.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Digestion: To decompose by heat, moisture or chemicals. 2 To extract a soluble ingredient by warming with a liquid.

Director (however named): the individual designated as being responsible for the overall operation, all personnel, and the physical plant of the environmental laboratory. A supervisor may report to the manager. In some cases, the supervisor and the manager may be the same individual. (NELAC)

Document: any written or pictorial information describing, defining, specifying, reporting, or certifying activities, requirements, procedures, or results.

Document Control: the act of ensuring that documents (and revisions thereto) are proposed, reviewed for accuracy, approved for release by authorized personnel, distributed properly and controlled to ensure use of the correct version at the location where the prescribed activity is performed.

Double Blind Sample: a sample submitted to evaluate performance with concentration and identity unknown to the analyst.

Duplicate Analyses: the analyses or measurements of the variable of interest performed identically on two subsamples of the same sample. The results from duplicate analyses are used to evaluate analytical or measurement precision but not the precision of sampling, preservation or storage internal to the laboratory.

Electronic Signature: symbols or other data in digital form attached to an electronically transmitted document as verification of the sender's intent to sign the document.

Entity: that which can be individually described and considered, such as a process, product, item, organization, or combination thereof.

Environmental conditions: the description of a physical medium (e.g., air, water, soil, sediment) or biological system expressed in terms of its physical, chemical, radiological, or biological characteristics.

Environmental data: any measurements or information that describe environmental processes, location, or conditions; ecological or health effects and consequences; or the performance of environmental technology. For EPA, environmental data include information collected directly from measurements, produced from models, and compiled from other sources such as databases or the literature.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Environmental data operations: work performed to obtain, use, or report information pertaining to environmental processes and conditions.

Environmental monitoring: the process of measuring or collecting environmental data.

Environmental processes: manufactured or natural processes that produce discharges to or that impact the ambient environment.

Environmental programs: activities involving the environment, including but not limited to: characterization of environmental processes and conditions; environmental monitoring; environmental research and development; laboratory operations on environmental samples; and the design, construction, and operation of environmental technologies.

Environmental technology: an all: inclusive term used to describe pollution control devices and systems, waste treatment processes and storage facilities, and site remediation technologies and their components that may be utilized to remove pollutants or contaminants from or prevent them from entering the environment. Examples include wet scrubbers (air), soil washing (soil), granulated activated carbon unit (water), and filtration (air, water). Usually, this term will apply to hardware: based systems; however, it will also apply to methods or techniques used for pollution prevention, pollutant reduction, or containment of contamination to prevent further movement of the contaminants, such as capping, solidification or vitrification, and biological treatment.

Evidentiary records: records identified as part of litigation and subject to restricted access, custody, use, and disposal.

Equipment blank: a sample that is known not to contain the target analyte and that is used to check the: cleanliness of sampling devices, collected in a sample container from a clean sample-collection device and returned to the laboratory as a sample.

Extramural agreement: a legal agreement between EPA and an organization outside EPA for items or services to be provided. Such agreements include contracts, work assignments, delivery orders, cooperative agreements, research grants, state and local grants, and EPA: funded Interagency agreements.

Federal Water Pollution Control Act (Clean Water Act, CWA): the enabling legislation under 33 U.S.C. 1251 et seq., Public Law 92-50086 Stat. 816, that

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

empowers EPA to set discharge limitations, write discharge permits, monitor, and bring enforcement action for non-compliance.

Field blank: a sample that is known not to contain the target analyte and that is used to check for analytical artifacts or contamination introduced by sampling and analytical procedures, carried to the sampling site, exposed to sampling conditions and returned to the laboratory and treated as an environmental sample.

Finding: an assessment conclusion that identifies a condition having a significant effect on an item or activity. An assessment finding may be positive or negative, and is normally accompanied by specific examples of the observed condition.

Good Laboratory Practices (GLP): either general guidelines or formal regulations for performing basic laboratory operations or activities that are known or believed to influence the quality and integrity of the results.

Guideline: a suggested practice that is not mandatory in programs intended to comply with a standard.

Hazardous waste: any waste material that satisfies the definition of hazardous waste as given in 40 CFR Part 261, Identification and Listing of Hazardous Waste.

Holding Times (Maximum Allowable Holding Times): the maximum times that samples may be held prior to analysis and still be considered valid.

Independent assessment: an assessment performed by a qualified individual, group, or organization that is not a part of the organization directly performing and accountable for the work being assessed.

Initial demonstration of analytical capability: the procedure described in the method 40 CFR Part 136, Appendix A, used to determine a laboratory's accuracy and precision in applying an analytical method.

Inspection: an activity such as measuring, examining, testing, or gauging one or more characteristics of an entity and comparing the results with specified requirements in order to establish whether conformance is achieved for each characteristic.

Instrument Blank: a clean sample (e.g., distilled water) processed through the instrumental steps of the measurement process; used to determine instrument contamination.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Interference: means the effect on the final result caused by the sample matrix.

Internal Standard: a known amount of standard added to a test portion of a sample and carried through the entire measurement process as a reference for evaluating and controlling the precision and bias of the applied analytical method.

Laboratory: a body that calibrates and/or tests. NOTES:

- 1. In cases where a laboratory forms part of an organization that carries out other activities besides calibration and testing, the term "laboratory" refers only to those parts of that organization that are involved in the calibration and testing process.
- 2. As used herein, the term "laboratory" refers to a body that carries out calibration or testing at or from a permanent location, at or from a temporary facility, or in or from a mobile facility.

Laboratory Control Sample (quality control sample): an uncontaminated sample matrix spiked with known amounts of analytes from a source independent of the calibration standards. It is generally used to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.

Laboratory Duplicate: Aliquots of a sample taken from the same container under laboratory conditions and processed and analyzed independently.

Management: those individuals directly responsible and accountable for planning, implementing, and assessing work.

Management system: a structured non-technical system describing the policies, objectives, principles, organizational authority, responsibilities, accountability, and implementation plan of an organization for conducting work and producing items and services.

Management Systems Review (MSR): the qualitative assessment of a data collection operation and/or organization(s) to establish whether the prevailing quality management structure, policies, practices, and procedures are adequate for ensuring that the type and quality of data needed are obtained.

Matrix: The component or substrate that contains the analyte of interest. For purposes of batch and QC requirements determination, the following matrix distinctions shall be used: Aqueous: Any aqueous sample excluded from the definition

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

of Drinking Water matrix or Saline/Estuarine source. Includes surface water, groundwater and effluents.

Drinking Water: Any aqueous sample that has been designated a potable or potential potable water source.

Saline/Estuarine: Any aqueous sample from an ocean or estuary, or other salt-water source such as the Great Salt Lake.

Non-aqueous liquid: Any organic liquid with <15% settable solids.

Biological Tissue: Any sample of a biological origin such as fish tissue, shellfish, or plant material. Such samples shall be grouped according to origin.

Solids: Includes soils, sediments, sludges and other matrices with >15% settable solids.

Chemical Waste: A product or by-product of an industrial process that results in a matrix not previously defined.

Air Samples: Media used to retain the analyte of interest from an air sample such as sorbent tubes or summa canisters. Each medium shall be considered as a distinct matrix.

Matrix Spike (spiked sample, fortified sample): prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. Matrix spikes are used, for example, to determine the effect of the matrix on a method's recovery efficiency.

Matrix Spike Duplicate (spiked sample/fortified sample duplicate): a second replicate matrix spike is prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte.

May: denotes permitted action, but not required.

Measurement and testing equipment (M&TE): tools, gauges, instruments, sampling devices or systems used to calibrate, measure, test, or inspect in order to control or acquire data to verify conformance to specified requirements.

Method: a body of procedures and techniques for performing an activity (e.g., sampling, chemical analysis, quantification) systematically presented in the order in which they are to be executed.

Method Blank: a clean sample processed simultaneously with and under the same conditions as samples containing an analyte of interest through all steps of the analytical procedures.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Method Detection Limit (Analytical Detection Limit): the minimum concentration of a substance (an analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte.

Mixed waste: hazardous waste material as defined by 40 CFR 261 (RCRA) and mixed with radioactive waste subject to the requirements of the Atomic Energy Act.

Must: denotes a requirement that must be met.

Negative Control: measures taken to ensure that a test, its components, or the environment do not cause undesired effects, or produce incorrect test results.

Non-conformance: a deficiency in characteristic, documentation, or procedure that renders the quality of an item or activity unacceptable or indeterminate, non-fulfillment of a specified requirement.

Observation: an assessment conclusion that identifies a condition (either positive or negative) that does not represent a significant impact on an item or activity. An observation may identify a condition that does not yet cause a degradation of quality.

Organization: a company, corporation, firm, enterprise, or institution, or part thereof, whether incorporated or not, public or private, that has its own functions and administration.

Organization structure: the responsibilities, authorities, and relationships, arranged in a pattern, through which an organization performs its functions.

Participant: when used in the context of environmental programs, an organization, group, or individual that takes part in the planning and design process and provides special knowledge or skills to enable the planning and design process to meet its objective.

Peer review: a documented critical review of work generally beyond the state of the art or characterized by the existence of potential uncertainty. The peer review is conducted by qualified individuals (or organization) that are independent of those who performed the work, but are collectively equivalent in technical expertise (i.e., peers) to those who performed the original work. The peer review is conducted to ensure that activities are technically adequate, competently performed, properly documented, and satisfy established technical and quality requirements. The peer review is an in depth assessment of the assumptions, calculations, extrapolations,

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

alternate interpretations, methodology, acceptance criteria, and conclusions pertaining to specific work and of the documentation that supports them. Peer reviews provide an evaluation of a subject where quantitative methods of analysis or measures of success are unavailable or undefined, such as in research and development.

Performance Audit: the routine comparison of independently obtained quantitative measurement system data with routinely obtained data in order to evaluate the proficiency of an analyst or laboratory.

Performance Based Measurement System (PBMS): a set of processes wherein the data quality needs, mandates or limitations of a program or project are specified and serve as criteria for selecting appropriate methods to meet those needs in a cost-effective manner.

Pollution prevention (P2): an organized, comprehensive effort to systematically reduce or eliminate pollutants or contaminants prior to their generation or there release or discharge to the environment.

Positive Control: measures taken to ensure that a test and/or its components are working properly and producing correct or expected results from positive test subjects.

Precision: a measure of mutual agreement among individual measurements of the same property, usually under prescribed similar conditions, expressed generally in terms of the standard deviation.

Preservation: means the temperature control or the addition of a substance to maintain the chemical or biological integrity of the target analyte.

Procedure: a specified way to perform an activity.

Process: a set of interrelated resources and activities that transforms inputs into outputs. Examples of processes include analysis, design, data collection, operation, fabrication, and calculation.

Proficiency Testing or Evaluation: determination of the laboratory calibration or testing performance by means of interlaboratory comparisons.

Proficiency Testing Program: the aggregate of providing rigorously controlled and standardized environmental samples to a laboratory for analysis, reporting of results,

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

statistical evaluation of the results in comparison to peer laboratories and the collective demographics and results summary of all participating laboratories.

Proficiency Test Sample (PT): a sample, the composition of which is unknown to the analyst and is provided to test whether the analyst/laboratory can produce analytical results within specified performance limits.

Project: an organized set of activities within a program.

Proprietary: belonging to a private person or company.

Protocol: a detailed written procedure for field and/or laboratory operation (e.g., sampling, analysis, etc.) which must be strictly followed.

Provisionally approved: a determination by the department that a certified laboratory does not follow the accepted method or has not passed the appropriate proficiency testing audit for the most recent audit for an analyte or interdependent analyte group, but the certified laboratory is still capable of producing valid data.

Provisionally certified a determination by the department that a certified laboratory has deficiencies, but the certified laboratory is still capable of producing valid data.

Pure Reagent Water: shall be ASTM Type I or Type II water in which no target analytes or interferences are detected as required by the analytical method.

Qualified data: any data that have been modified or adjusted as part of statistical or mathematical evaluation, data validation, or data verification operations.

Qualified services: an indication that suppliers providing services have been evaluated and determined to meet the technical and quality requirements of the client as provided by approved procurement documents and demonstrated by the supplier to the client's satisfaction.

Quality: the totality of features and characteristics of a product or service that bear on its ability to meet the stated or implied needs and expectations of the user.

Quality assurance officer: the individual designated as the principal manager within the organization having management oversight and responsibilities for planning, coordinating, and assessing the effectiveness of the quality system for the organization.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Quality Assurance: an integrated system of activities involving planning, quality control, quality assessment, reporting and quality improvement to ensure that a product or service meets defined standards of quality with a stated level of confidence.

Quality Assurance (Project) Plan (QAPP): a formal document describing the detailed quality control procedures by which the quality requirements defined for the data and decisions pertaining to a specific project are to be achieved.

Quality control (QC): the overall system of technical activities that measures the attributes and performance of a process, item, or service against defined standards to verify that they meet the stated requirements established by the customer; operational techniques and activities that are used to fulfill requirements for quality.

Quality Control Sample: an uncontaminated sample matrix spiked with known amounts of analytes from a source independent from the calibration standards. It is generally used to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.

Quality improvement: a management program for improving the quality of operations. Such management programs generally entail a formal mechanism for encouraging worker recommendations with timely management evaluation and feedback or implementation.

Quality indicators: measurable attributes of the attainment of the necessary quality for a particular environmental decision. Indicators of quality include precision, bias, completeness, representativeness, reproducibility, comparability, and statistical confidence.

Quality Manual: A document stating the quality policy, quality system and quality practices of an organization. This may be also called a Quality Assurance Plan or a Quality Plan. NOTE - The quality manual may include by reference other documentation relating to the laboratory's quality arrangements.

Quality management: that aspect of the overall management system of the organization that determines and implements the quality policy. Quality management includes strategic planning, allocation of resources, and other systematic activities (e.g., planning, implementation, and assessment) pertaining to the quality system.

Quality System: a structured and documented management system describing the policies, objectives, principles, organizational authority, responsibilities,

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

accountability, and implementation plan of an organization for ensuring quality in its work processes, products (items), and services. The quality system provides the framework for planning, implementing, and assessing work performed by the organization and for carrying out required QA and QC.

Range: the difference between the minimum and the maximum of a set of values.

Raw Data: any original information from a measurement activity or study recorded in a laboratory notebook, worksheets, records, memoranda, notes, or exact copies thereof and that are necessary for the reconstruction and evaluation of the report of the activity or study. Raw data may include photography, microfilm or microfiche copies, computer printouts, magnetic media, including dictated observations, and recorded data from automated instruments. If exact copies of raw data have been prepared (e.g., tapes which have been transcribed verbatim, data and verified accurate by signature), the exact copy or exact transcript may be submitted.

Reagent Blank (method reagent blank): a sample consisting of reagent(s), without the target analyte or sample matrix, introduced into the analytical procedure at the appropriate point and carried through all subsequent steps to determine the contribution of the reagents and of the involved analytical steps.

Record (quality): a document that furnishes objective evidence of the quality of items or activities and that has been verified and authenticated as technically complete and correct. Records may include photographs, drawings, magnetic tape, and other data recording media.

Record Retention: The systematic collection, indexing and storing of documented information under secure conditions.

Reference Material: a material or substance one or more properties of which are sufficiently well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials.

Remediation: the process of reducing the concentration of a contaminant (or contaminants) in air, waters, or soil media to a level that poses an acceptable risk to human health. Representativeness: a measure of the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Replicate Analyses: the measurements of the variable of interest performed identically on two or more subsamples of the same sample within a short time interval.

Reproducibility: the precision, usually expressed as variance that measures the variability among the results of measurements of the same sample at different laboratories.

Resource Conservation and Recovery Act (RCRA): the enabling legislation under 42 USC 321 et seq. (1976), that gives EPA the authority to control hazardous waste from the "cradle-to-grave," including its generation, transportation, treatment, storage, and disposal.

Safe Drinking Water Act (SDWA): the enabling legislation, 42 USC 300f et seq. (1974), (Public Law 93-523), that requires the EPA to protect the quality of drinking water in the U.S. by setting maximum allowable contaminant levels, monitor, and enforce violations.

Scientific method: the principles and processes regarded as necessary for scientific investigation, including rules for concept or hypothesis formulation, conduct of experiments, and validation of hypotheses by analysis of observations.

Sample Duplicate: two samples taken from and representative of the same population and carried through all steps of the sampling and analytical procedures in an identical manner. Duplicate samples are used to assess variance of the total method including sampling and analysis.

Selectivity: means the capability of a method or instrument to respond to the target analyte in the presence of other substances or things.

Self-assessment: assessments of work conducted by individuals, groups, or organizations directly responsible for overseeing and/or performing the work.

Service: the result generated by activities at the interface between the supplier and the customer, and by supplier internal activities to meet customer needs. Such activities in environmental programs include design, inspection, laboratory and /or field analysis, repair, and installation.

Shall: denotes a requirement that is mandatory whenever the criterion for conformance with the specification requires that there is no deviation. This does not

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

prohibit the use of alternative approaches or methods for implementing the specification so long as the requirement is fulfilled.

Should: denotes a guideline or recommendation whenever noncompliance with the specification is permissible.

Significant condition: any state, status, incident, or situation of an environmental process or condition, or environmental technology in which the work being performed will be adversely affected sufficiently to require corrective action to satisfy quality objectives or specifications and safety requirements.

Specification: a document stating requirements, and which refers to or includes drawings or other relevant documents. Specifications should indicate the means and the criteria for determining conformance.

Spike: a known mass of target analyte added to a blank sample or subsample; used to determine recovery efficiency or for other quality control purposes.

Standard: a protocol established by a recognized authority (such as the American society for Testing Materials, the American National Standards Institute, or the Institute of Electrical and Electronic Engineers).

Standard Operating Procedures (SOPs): a written document which details the method of an operation, analysis or action whose techniques and procedures are thoroughly prescribed, and which is accepted as the method for performing certain routine or repetitive tasks.

Standard Reference Material (SRM): a certified reference material produced by the U.S. National Institute of Standards and Technology and characterized for absolute content, independent of analytical method.

Surrogate: a substance with properties that mimic the analyte of interest. It is unlikely to be found in environment samples and is added to them for quality control purposes.

Supplier: any individual or organization furnishing items or services or performing work according to a procurement document or financial assistance agreement. This is an all-inclusive term used in place of any of the following: vendor, seller, contractor, subcontractor, fabricator, or consultant.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Surveillance (quality): continual or frequent monitoring and verification of the status of an entity and the analysis of records to ensure that specified requirements are being fulfilled.

Systems Audit (also Technical Systems Audit): a thorough, systematic on-site, qualitative review of the facilities, equipment, personnel, training, procedures, record keeping, data validation, data management, and reporting aspects of a total measurement system.

Target analyte: means the analyte that a test is designed to detect or quantify.

Technical Director: the individual(s) responsible for managing the technical aspects of an organization, and ultimately accountable for the quality of the organization's product(s).

Technical Analyst: the designated individual who performs the "hands-on" analytical methods and associated techniques and who is the one responsible for applying required laboratory practices and other pertinent Quality Controls to meet the required level of quality.

Technical review: a documented critical review of work that has been performed within the state of the art. The review is accomplished by one or more qualified reviewers who are independent of those who performed the work but are collectively equivalent in technical expertise to those who performed the original work. The review is an in-depth analysis and evaluation of documents, activities, material, data, or items that require technical verification or validation for applicability, correctness, adequacy, completeness, and assurance that established requirements are satisfied.

Technical systems audit (TSA): a thorough, systematic, onsite, qualitative audit of facilities, equipment, personnel, training, procedures, record keeping, data validation, data management, and reporting aspects of a system.

Test: a technical operation that consists of the determination of one or more characteristics or performance of a given product, material, equipment, organism, physical phenomenon, process or service according to a specified procedure. NOTE - The result of a test is normally recorded in a document sometimes called a test report or a test certificate.

Test Method: defined technical procedure for performing a test.

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

Traceability: the ability to trace the history, application, or location of an entity by means of recorded identifications. In a calibration sense, traceability relates measuring equipment to national or international standards, primary standards, basic physical constants or properties, or reference materials. In a data collection sense, it relates calculations and data generated throughout the project back to the requirements for quality for the project.

Trip blank: means a sample known not to contain the target analyte that is carried to the sampling site and transported to the laboratory for analysis without having been exposed to sampling procedures.

United States Environmental Protection Agency (EPA): the federal governmental agency with responsibility for protecting public health and safeguarding and improving the natural environment (I.e., the air, water, and land) upon which human life depends.

User: when used in the context of environmental programs, an organization, group, or individual that utilizes the results or products from environmental programs. A user may also be the client for whom the results or products were collected or created.

Validation: confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled. In design and development, validation concerns the process of examining a product or result to determine conformance to user needs.

Verification: confirmation by examination and provision of objective evidence that specified requirements have been fulfilled. In design and development, validation concerns the process of examining a result of a given activity to determine conformance to the stated requirements for that activity.

Work: the process of performing a defined task or activity (e.g., research and development, field sampling, analytical operations, equipment fabrication).

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 15 Glossary

Effective Date: 9/8/2021 Document Number: CLMN4423-0015 Rev.: 11

MOC#	Description of Change	Prepared By	Date
TS00020	Review for 2004	Janna Hardman	09/30/2004
TS00085	Review for 2006	Melissa Olsen	08/04/2006
	Review for 2008. No changes made.	Melissa Olsen	10/07/2008
	Review for 2009. No changes made.	Melissa Olsen	01/26/2009
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes made.	Melissa Olsen	10/11/2011
23199	2013 Review. No changes.	Melissa Olsen	04/24/2013
26233	Updated branding.	Melissa Olsen	06/02/2014
30091	Review for 2015. Added definition for electronic signature. Rev. 7 to 8	Melissa Olsen	04/09/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/11/2016
43586	Review for 2017. No changes.	Melissa Olsen	03/27/2017
	Review for 2018. No changes made.	Melissa Olsen	09/04/2018
58723	Review for 2019. No changes made.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes made.	Melissa Olsen	01/13/2020
67192	Review for 2020. No changes made.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes.	Melissa Olsen	09/07/2021
94373	Review for 2022. No changes.	Melissa Olsen	12/02/2022

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan Section 16 References Effective Date: 9/8/2021 Document Number: CLMN4423-0016 Rev.: 10

REFERENCES

- 1. U.S. Environmental Protection Agency, 1983, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans: QAMS-005/80, February.
- 2. NELAC Quality Systems Chapter 5, 2016
- 3. NELAC TNI Standard, 2016
- 4. R444-14 Rule for the Certification of Environmental Laboratories, by the State of Utah Bureau of Laboratory Improvement.
- 5. American Industrial Hygiene Association, Laboratory Quality Assurance Program April 2002.
- 6. Kennecott Utah Copper Chemical and Hygiene Plan
- 7. Kennecott Safety Policies (most current is in Bentley, a commercial document control system).
- 8. Kennecott Utah Copper Environmental Laboratory SOP's and manuals, most current revision in Bentley

Kennecott Environmental and Industrial Hygiene Laboratory $2500~\mathrm{S.}~9180~\mathrm{W.}, \mathrm{Magna}~\mathrm{Ut.}~84044$

Quality Assurance Program Plan

Section 16 References

Effective Date: 9/8/2021 Document Number: CLMN4423-0016 Rev.: 10

MOC#	Description of Change	Prepared By	Date
TS00020	Review for 2004	Janna Hardman	09/30/2004
TS00085	Review for 2006	Melissa Olsen	08/04/2006
	Review for 2008. Updated NELAC revision number and date.	Melissa Olsen	10/07/2008
	Review for 2009. No changes made.	Melissa Olsen	01/26/2009
	Review for 2010. Updated laboratory address in header.	Melissa Olsen	02/22/2010
17479	Review for 2011. Added reference #3-NELAC TNI Standard, Volume 1-2009	Melissa Olsen	10/11/2011
23199	Review for 2013. No changes.	Melissa Olsen	04/24/2013
26233	Updated branding.	Melissa Olsen	06/02/2014
	Review for 2015. No changes.	Melissa Olsen	04/24/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/11/2016
43586	Review for 2017. No changes.	Melissa Olsen	03/27/2017
	Review for 2018. No changes.	Melissa Olsen	09/04/2018
58723	Review for 2019. Updated #9 to Bentley.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes.	Melissa Olsen	01/13/2020
67192	Review for 2020. No changes.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes.	Melissa Olsen	09/07/2021
94373	Review for 2022. No changes.	Melissa Olsen	12/02/2022
102982	Updated NELAC references. Removed reference to Kennecott Waste manual. This manual is in the Central Lab Manuals which are in Bentley, a commercial document control system. Rev. 9 to 10	Melissa Olsen	11/03/2023

RIO TINTO KENNECOTT Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 17-Control of Documents and Records

Effective Date: 9/8/2021 Document Number: CLMN4423-0017 Rev.: 03

Control of Documents

All documents relating to the Quality Management System (QMS) at Kennecott Environmental Laboratory (KEL) are controlled according to the following document control procedures:

- CLSOP4423-1010 -Preparation of Standard Operating Procedures
- CLSOP4423-1015 -Quality Assurance Manual Maintenance and Updates

Control of Records

Quality records are maintained to provide evidence of conformity to requirements and for the effective operation of the QMS. The records are maintained according to the following procedures:

- CLSOP4423-1027 Onsite Storage and Control of Records
- CLSOP4423-1029 Offsite Contracted Data Storage (Iron Mountain)

MOC#	Description of Change	Prepared By	Date
	Initial Release	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes.	Melissa Olsen	10/11/2011
23199	Review for 2013. No changes.	Melissa Olsen	04/24/2013
26233	Updated branding.	Melissa Olsen	06/02/2014
30091	Review for 2015. No changes.	Melissa Olsen	04/2015
31572	Review for 2016. No changes.	Melissa Olsen	04/11/2016
43586	Review for 2017. No changes.	Melissa Olsen	03/27/2017
	Review for 2018. No changes.	Melissa Olsen	09/04/2018
58723	Review for 2019. No changes.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes.	Melissa Olsen	01/13/2020
67192	Review for 2020. No changes.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes.	Melissa Olsen	09/07/2021
94373	Review for 2022. No changes.	Melissa Olsen	12/02/2022
102982	Review for 2023. No changes.	Melissa Olsen	11/03/2023

Page 1 of 1 Plant: Environmental Laboratory

PRINTED COPIES ARE UNCONTROLLED

Kennecott Environmental and Industrial Hygiene Laboratory 2500 S. 9180 W., Magna Ut. 84044

Quality Assurance Program Plan

Section 18-Procurement of Laboratory Supplies and Services

Effective Date: 9/8/2021 Document Number: CLMN4423-0018 Rev.: 03

Procurement of Laboratory Supplies and Services

A documented procedure, CLSOP4423-7013 Procurement of Laboratory Supplies and Services, is followed to ensure purchased products and services conform to specified purchase requirements. The procedure outlines the extent of control and the criteria for the selection and evaluation of the suppliers.

MOC#	Description of Change	Prepared By	Date
	Initial Release	Melissa Olsen	02/22/2010
17479	Review for 2011. No changes.	Melissa Olsen	10/11/2011
23199	Review for 2013. No changes.	Melissa Olsen	04/24/2013
26233	Updated branding.	Melissa Olsen	06/02/2014
30091	Review for 2015. No changes.	Melissa Olsen	04/24/2015
31572	Review for 2016. No changes.	Melissa Olsen	03/11/2016
43586	Review for 2017. No changes.	Melissa Olsen	03/27/2017
	Review for 2018. No changes.	Melissa Olsen	09/04/2018
58723	Review for 2019. No changes.	Melissa Olsen	08/19/2019
60468	Review for 2020. No changes.	Melissa Olsen	01/13/2020
67192	Review for 2020. No changes.	Melissa Olsen	09/17/2020
79250	Review for 2021. No changes.	Melissa Olsen	09/08/2021
94373	Review for 2022. No changes.	Melissa Olsen	12/02/2022
102982	Review for 2022. No changes.	Melissa Olsen	11/03/2023

GROUND WATER CHARACTERIZATION AND MONITORING PLAN RIO TINTO KENNECOTT SOUTH JORDAN, UTAH

Revision 12 - December 2023

Approved By: Cassady Kristensen Senior Environmental BP – Rio Tinto Kennecott
Approved By: Date: 01/11/2024 Erka Naran Principal Advisor, Water Quality – Project Manager
Approved By: Melissa Olsen Superintendent, Environmental Laboratory Quality Assurance Manager
Approved By: Trevor Paulson Advisor Water Quality – Supervisor Sampling

SUMMARY

Ground water conditions are monitored to evaluate ground water quality and the potential impacts on ground water beneath and near Rio Tinto Kennecott (RTK) facilities. Specific objectives of the ground water monitoring conducted by RTK are to: 1) establish baseline ground water quality and hydrogeologic conditions; 2) identify areas where operations may have impacted ground water conditions; 3) monitor ground water quality in areas impacted by operations; 4) monitor progress of ground water cleanup efforts, 5) provide continued monitoring in the vicinity of current operations to detect ground water quality impacts should they occur; 6) collect data for use in the classification of ground water; and, 7) comply with permit requirements.

The purpose of this Ground Water Characterization and Monitoring Plan is to set forth a project plan which utilizes standardized procedures and methods for the collection and review of ground water monitoring data. The following documents are incorporated within this Plan: 1) Health and Safety Plan; 2) Quality Assurance Project Plan; and 3) Standard Operating Procedures for Ground Water Sampling. The Health and Safety Plan addresses health and safety requirements for the conduct of the field work. The Quality Assurance Project Plan presents: 1) project organization and responsibilities; 2) quality assurance objectives for the collection of data in terms of precision, accuracy, representativeness, comparability, and completeness; 3) analytical procedures; and 4) guidelines for data verification and reporting, internal quality control checks, performance and systems audits, and corrective actions. The Standard Operating Procedures include all field activities associated with ground water sampling. Together these documents provide a systematic approach to be used in the collection of ground water monitoring data and the evaluation of regional baseline conditions when needed. The guidance and standard operating procedures will help to ensure a technically sound and defensible ground water characterization and monitoring program.

SUMMARY	2
SECTION 1 OVERVIEW	4
1.1 Objectives	
SECTION 2 SITE SETTING AND BACKGROUND	5
SECTION 3 INITIAL EVALUATION	5
3.1 GROUND WATER	5
SECTION 4 RATIONALE	6
4.1 OBJECTIVES AND APPROACH 4.2 MONITORING WELL SELECTION. 4.2.1 Great Salt Lake Area. 4.2.2 Southwest Jordan Valley Area. 4.2.3 Regulatory Monitoring Requirements 4.3 SELECTION OF ANALYTICAL PARAMETERS. 4.4 DATA QUALITY OBJECTIVES	6
SECTION 5 TASKS	
5.1 TASK 1 - PROJECT PLANNING AND QUALITY ASSURANCE 5.2 TASK 2 - SAMPLE POINT SELECTION 5.2.1 Addition of New Monitoring Points 5.3 TASK 3 - SAMPLING 5.4 TASK 4 - SITE-WIDE WATER LEVEL MEASUREMENTS 5.5 TASK 5 - VERIFICATION OF RESULTS AND DATA EVALUATION 5.6 TASK 6 - WELL ABANDONMENT 5.7 TASK 7 - NEW WELL CONSTRUCTION 5.8 TASK 8 - GROUND WATER CHARACTERIZATION AND MONITORING REPORTS 5.9 TASK 9 - UPDATE OF GROUND WATER CHARACTERIZATIONAND MONITORING PLAN	131414141515
SECTION 6 SCHEDULE	16
SECTION 7 PROJECT MANAGEMENT	16
7.1 PROJECT ORGANIZATION	16
SECTION 8 REFERENCES	8

ATTACHMENTS
Attachment 1. Health and Safety Plan
Attachment 2. Quality Assurance Project Plan
Attachment 3. Standard Operation Procedures for Ground Water Sampling

SECTION 1 OVERVIEW

1.1 Objectives

RTK currently utilizes an extensive ground water monitoring system to monitor the ground water levels and water quality in the vicinity of its facilities.

Specific objectives of the ground water monitoring program conducted by RTK have been to:

- Establish baseline ground water quality and hydrogeologic conditions.
- Identify areas where operations may have impacted ground water quality.
- Monitor ground water quality in areas impacted by operations.
- Monitor progress of ground water cleanup efforts.
- Provide continued monitoring in the vicinity of current operations to detect ground water quality changes should they occur.
- Assess adequacy of source control measures.
- Support the determination of ground water classifications; and
- Comply with permit monitoring requirements.

1.2 Purpose of Plan

The purpose of this Ground Water Characterization and Monitoring Plan (GCMP) is to establish a project plan which standardizes procedures and methods for the collection, analysis and reporting of ground water monitoring data. Therefore, a systematic approach will be used in the collection of monitoring data and the evaluation of ground water quality.

This document identifies the goals and objectives of the program and identifies project tasks. Requirements for data reporting and review, as well as periodic review of this Plan are included, along with the following documents:

- Health and Safety Plan (HSP).
- Quality Assurance Project Plan (QAPP).
- Standard Operating Procedures for Water Sampling (SOP).

The HSP addresses health and safety requirements for conducting fieldwork. The QAPP presents: 1) project organization and responsibilities; 2) quality assurance objectives for the collection of data in terms of precision, accuracy, representativeness, comparability, and completeness; 3) analytical parameters; and 4) guidelines for data verification and reporting, internal quality control checks, performance and systems audits, and corrective actions. The SOP presents standard operating procedures for field activities, including ground water sample collection and field measurements.

Site-specific project plans to evaluate contaminant sources, plume migration, and any need for remedial actions will be developed as necessary, independent of this

GCMP. However, the procedures presented here will be used to collect the necessary data for such evaluations. As the need for additional field procedures and data evaluation techniques becomes evident during the planning and implementation of such projects, this GCMP will be amended to include those items. Monitoring locations, analytical parameters, and frequency of sampling will also be reviewed and updated regularly (unless specified in permits) as directed in this GCMP. Updates will be based on an analysis of results for each sampling point and the data needs for specific facility areas.

SECTION 2 SITE SETTING AND BACKGROUND

This section provides the site setting as well as background information on operations and monitoring conducted on RTK property. For discussion purposes, the property is subdivided into two areas, the Great Salt Lake Area (GSL) and the Southwest Jordan Valley Area (SWJV). The SWJV area includes all areas associated with the Bingham Mine and the Copperton Concentrator. Features include the Mine, the leach water collection system, the leach and storm water reservoirs and the historic evaporation ponds. The locations of ground water monitoring points for the SWJV Area are shown in Plate 2. The GSL area includes the general area of the Utah Copper facilities associated with the concentrating, tailings disposal, smelting, and refining of metals. The locations of established ground water monitoring points are shown in Plate 1.

RTK has conducted two Remedial Investigation and Feasibility Studies (RI/FS) of mining- related contamination in groundwater. The first RI/FS is the area east of the mine dumps in the southwestern Jordan Valley. The second RI/FS consists of the areas beneath and down-gradient of the Smelter and Refinery.

In addition, other extensive ground water studies completed in these areas have resulted in the acquisition of baseline ground water data. The hydrogeologic setting and current ground water conditions beneath RTK property are described in the "Hydrogeologic Report for the Great Salt Lake Area" (KUC, 1992a) and in "Ground Water Assessment Report the Southwestern Jordan Valley Area" (KUC, 1992b). Ground water impacts may result from natural leaching of mineralized outcroppings, commercial leaching processes, ground water pumping, storage of water in surface water impoundments, seepage from irrigation and water supply canals, and the infiltration of precipitation. In order for RTK to evaluate the potential past and present impacts on ground water beneath and near its facilities, RTK has established a ground water monitoring network to monitor and evaluate ground water conditions. Wells utilized in the ground water monitoring network include RTK monitoring wells, State, City, and County monitoring wells, RTK production wells, and public and residential supply wells.

SECTION 3 INITIAL EVALUATION

3.1 Ground Water

Ground water samples have previously been collected from many of the monitoring wells included in this monitoring program. Samples were predominately collected by

the RTK Sampling Crews and analyzed by the RTK Environmental Laboratory. The analytical results for samples collected and analyzed by RTK and sample performed by others are contained in the RTK Environmental Laboratory Information Management System (LIMS) and are summarized in Attachments to the Ground Water Characterization and Monitoring Plan issued in April of 1992. Data collected are presented in the Quarterly Ground Water Characterization and Monitoring Reports and Quarterly Quality Assurance Reports.

SECTION 4 RATIONALE

4.1 Objectives and Approach

The general objective of this monitoring program is to better define and document current ground water quality conditions near RTK's operations. Annual data reviews and evaluations will determine the number and frequency of sampling points monitored to achieve the objectives. This document identifies the procedures to be used to evaluate and modify the number of points sampled and the sampling frequency.

4.2 Monitoring Well Selection

Monitoring well selection is grouped into three categories: 1) Objectives of ground water monitoring in the Great Salt Lake area, 2) Objectives of ground water monitoring in the southwestern Jordan Valley, and 3) Regulatory required sampling in both of these areas.

Detailed information used to define the objectives of the monitoring programs in the GSL area and the SWJV is compiled in two remedial investigations and feasibility studies (RI/FS) of mining-related contamination in groundwater. Both are conducted by RTK.

The following sections identify the sampling points included in this GCMP and the general rationale for their inclusion. Sample point locations are shown on Plates 1 and 2. Ground water monitoring well construction details in Attachment 1. The hydrogeologic conditions and types of operations vary depending on site location and facility use. Therefore, the monitoring programs in each location have different objectives and approaches. Table 1 is an example of a monitoring schedule included in the Annual Report, which summarizes the rationale for the wells, current monitoring frequencies, and monitoring parameters proposed for the current monitoring program. The rationale for selection of the monitoring points is summarized in the following sections.

4.2.1 Great Salt Lake Area

The general objective of the monitoring program for the Great Salt Lake Area is to establish and document current local ground water and surface water conditions and trends and to collect the data required to meet existing, as well as anticipated future, regulatory requirements. A summary of ground water conditions in this area is provided in the "Hydrogeologic Report for the Great Salt Lake Area" (RTK, 1992a.)

There exists an extensive network of shallow and deep ground water monitoring wells and piezometers in the GSL area. The monitoring wells included in this GCMP were installed near facilities at the north end of RTK property to monitor potential effects resulting from the Tailings Impoundment, Refinery, Smelter, as well as potential effects from other facilities.

These wells were used to establish the areal and vertical distribution of aquifers and aquitards, the direction and velocity of ground water flow in and between each aquifer, and the chemical composition of the water in each aquifer.

State, County, and City monitoring wells were used to investigate ground water conditions near the Tailings Impoundment and in the vicinity of the City and County landfills up-gradient of the Tailings Impoundment (Slam 1989a, 1989b). These wells were included in the monitoring program in 1991 in order to further document the ground water conditions but will no longer be sampled.

4.2.1.1 Baseline Program

In order to accomplish the monitoring objectives identified for the GSL area, a program of baseline monitoring was established. The basis of this program was to collect four quarterly rounds of ground water samples for a comprehensive suite of analytes from each well. After collection of the baseline data, these monitoring data were reviewed to evaluate the need for continued monitoring, the need for expansion of the monitoring system, and the types of analyses required.

4.2.1.2 North Zone Groundwater

The general objective of the monitoring program in the North Zone Groundwater Operation, Maintenance, and Replacement Plan (OM&R Plan) (in preparation) is to track the nature and extent of ground water contamination from the smelter and refinery. Specifically, the program:

- 1. monitors the natural attenuation of the selenium plume from the refinery.
- 2. monitors the natural attenuation of the selenium and arsenic plumes at the smelter.
- 3. monitors the effectiveness of source control actions taken at the smelter and refinery and
- 4. provides baseline data concerning background water quality.

Oversight for the OM&R Plan is provided by Environmental Protection Agency Region VIII (EPA), Utah Department of Environmental Quality (UDEQ), and a Technical Review Committee (TRC) of various interested parties. The OM&R Plan interfaces with the GCMP in two significant areas. First, all of the data generated and used in the OM&R Plan is collected from monitoring wells that are part of the GCMP.

The second important relationship between the OM&R Plan and the GCMP is that all of the water data collected required for the OM&R Plan is subjected to the quality assurance/quality control (QA/QC) standards established in the GCMP.

4.2.2.3 Continued Monitoring Program

All baseline data have been reviewed to evaluate additional monitoring requirements. Evaluation of these requirements were based on the following:

- Aberrant data Graphs of analytical parameters as a function of time were constructed to identify data that appear to be erroneous or deviate significantly from established data trends. If these aberrant data appeared to significantly affect the interpretation of the data for the well, additional frequent monitoring was recommended. This consideration was generally limited to the analytical constituents TDS, As, Se, Cu and Cd.
- Identification of significant temporal data trends Evaluation of the existing data indicates many current temporal changes in the data. These changes imply that ground water conditions are changing in response to some stimulus. In many cases, these changes appear to be in response to seasonal fluctuation or other observable factors effecting ground water conditions. Where these trends are unusual, unexplained, and or appear to be significant to the understanding of ground water conditions, the wells displaying these changes were selected for additional monitoring at a frequency that would further document the presence or absence of the trend.
- Establishment of a longer or more detailed sampling history Review of the
 data showed many wells in which the variation of critical analytes was
 greater or less than expected and additional analyses are required to
 identify the nature and extent of the variation. Long-term monitoring of
 potentially affected wells In a number of cases, particularly in the vicinity of
 the Refinery, wells were identified that may have been affected by RTK
 operations.

Current Wells and sampling frequencies for project plans are based on one or more of the factors identified above and are identified and submitted in the Annual Report Table 1.

4.2.2 Southwest Jordan Valley Area

The general objective of the monitoring program in the Southwest Jordan Valley Area is to monitor groundwater plume containment and cleanup in order to meet RTK monitoring obligations under the South Facilities Groundwater Operations, Maintenance, and Replacement Plan (RTK, 2009). Specifically, the program:

- 1. monitors the containment and cleanup of the low pH and elevated metals plume.
- 2. monitors the containment and cleanup of the plume containing elevated sulfate/TDS concentrations.
- 3. monitors the effectiveness of the leach collection system at the toe of the waste rock dumps.
- 4. monitors the water quality in the areas near 11800 South Street where municipal, domestic and irrigation water supply wells are located near or down gradient of the elevated sulfate/TDS plume.

- 5. meets existing, as well as, anticipated future monitoring requirements; and
- 6. provides baseline data concerning background water quality. The program will also monitor the effectiveness of source-control actions at the Bingham Reservoir and the Eastside Collection System.

Areas affected by RTK and pre-RTK operations have been defined using the existing database. A summary of the ground water and surface water results provided to date are given in "Ground Water Assessment Report of the Southwestern Jordan Valley Utah" (KUC, 1992b, RIFS KUC 1998, and RD/RA KUC 2002).

The 1998 SWJV RI report documents the field investigations conducted by RTK, presents the site characteristics, assesses the nature and extent of mining-related contamination, provides human health and ecological risk assessments, and offers conclusions regarding the risk to human health and the environment posed by mining related contamination. The study area covered by the RI extends from the RTK waste rock disposal areas on the eastern edge of the Oquirrh Mountains to the Jordan River. It is bounded on the north at approximately 7800 South Street and on the south by the foothills of the Traverse Mountains.

RTK funded and conducted the work for the RI/FS with oversight by the U.S. Environmental Protection Agency (EPA) Region VIII, the State of Utah Department of Environmental Quality (UDEQ) and a Technical Review Committee (TRC). The activities conducted by RTK were consistent with applicable guidance under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA also known as Superfund), and with requirements of the National Contingency Plan (NCP).

In addition to the RI report, a well inventory of the SWJV was conducted to determine the existence and use of all wells in the southwest part of the valley. This information has been used to review current GCMP sampling locations and identify changes to be made in future GCMP schedules.

4.2.2.1 Continued Monitoring Program

Sampling of a select group of wells associated with the Bingham Creek Reservoir low-pH, elevated-metals plume will generally occur biannually in order to monitor chemistry changes associated with extraction of the plume. On the leading (eastern) edge of the low-pH plume, monitoring of select wells will occur on a semiannual basis to track advancement of the plume. All samples from these wells will be analyzed for Basic and Major analytical suites plus dissolved iron, aluminum, manganese, and acidity.

Selected wells completed in portions of the aquifer that contain elevated sulfate but not low-pH will be monitored for Basic and Major group analytes. These wells are mostly completed in the halo of elevated sulfate surrounding the Bingham Creek Reservoir low-pH plume.

Key wells located in the areas between and around the B2G1193–BFG1200 and West Jordan City well fields will be sampled on a quarterly, semiannual or annual

basis to monitor movement of the elevated-sulfate plume. All samples from these wells will be analyzed for Basic group analytes and some for Major group analytes as well. The higher monitoring frequency of these wells over those previously listed is warranted by concerns of potential effects on third party interests. Other wells that are sampled because of third party concerns include privately or municipally owned wells and RTK wells completed near areas where third parties are using water, such as irrigation wells near the elevated-sulfate plume east of the Former RTK Evaporation Ponds.

Many monitoring wells located immediately down-gradient of the leach collection system are included in regulatory monitoring and are listed in the following section. A few wells located in this area but not included in any permit required monitoring program will be sampled annually for Basic and Major analytical suites.

Several wells will be monitored for changes in Basic and Major group analytes as part of approved Drinking Water Source Protection plans, and several production wells will be sampled quarterly or annually to monitor water quality used at various RTK facilities.

4.2.3 Regulatory Monitoring Requirements

RTK has six groundwater discharge permits issued by the State of Utah which require groundwater monitoring for compliance with the permits. Portions of both the SWJV and GSL are under one or more of the following permits:

- Large and Small Bingham Reservoirs UGW350006
- Smelter UGW350008
- Bingham Canyon Mine and Water Collection System UGW350010
- Tailings Impoundment UGW350011
- Magna Process Water Reservoir Facility UGW350015
- Copperton Concentrator UGW350017
- Barneys Canyon UGW350001

4.3 Selection of Analytical Parameters

Based on the review of the existing data and regulatory (potential as well as existing) requirements, different groups of analytical parameters have been identified as listed below:

- Basic
- Major lons
- Minor lons
- Trace Metals 1, Trace Metals 2, Trace Metals 3
- Mercury
- Radionuclides
- Other.

Basic

The basic group of analyses is comprised of the analytes that are sensitive to changes in ground water quality that could result from RTK's operations. The analytes included in the basic group are listed in Table 2 and include conductivity, pH, TDS, TSS, sulfate, chloride. Arsenic, selenium, copper, lead, zinc, and cadmium are analyzed for dissolved concentrations only unless totals are requested. Significant changes in ground water conditions potentially caused by RTK's operations can be detected early through monitoring of only these analytes.

Major Ions

The Major Ions group, when combined with the Basic Parameter group provides sufficient analyses to allow for the calculation of ionic and mass balances. This list of constituents is required for all wells monitored to satisfy monitoring requirements to meet the conditions of Ground Water Discharge Permits. The analyses included in Major Ion group are listed in Table 2 and include: alkalinity, calcium, potassium, magnesium, and sodium.

Minor Ions

The Minor Ion group adds some minor ions and indicator parameters that provide additional insight into the nature of the water sampled. The primary use of these constituents is for the initial characterization of water chemistry. This group is commonly monitored where the water is believed to be at a reducing potential. The analyses included in the Minor Ion group are listed in Table 2 and include: fluoride, nitrate, nitrite, phosphorus, dissolved oxygen, Eh, ferrous iron, and sulfide.

Trace Metals

The trace metals have been divided into three groups as follows:

Trace Metals 1 This group includes the trace metals barium, chromium, and

silver. These metals are the most commonly requested trace metals. These trace metals have MCL's under the Safe Drinking Water Act (SDWA) and with the basic group from

above contain the eight RCRA metals.

Trace Metals 2 This group includes the metals iron, manganese,

molybdenum, and nickel. These metals are added to include the common trace metals that have only secondary standards

under the SDWA.

Trace Metals 3 This group includes the trace metals aluminum,

antimony, beryllium, boron, thallium, and titanium, which

are rarely requested.

Radionuclides The radionuclide group includes the analytes: radium 226,

radium 228, total uranium, gross alpha and gross beta. This list of constituents is required for wells monitored to satisfy the conditions of the Ground Water Discharge Permit for the Tailings Impoundment in the area near the former Gypsum

Tailings Impoundment.

Mercury Mercury analysis is done on total metals only. The analysis is

to satisfy the requirements of the ground water discharge permits as well as some of the drinking water requirements.

Other This is used to request additional analytes such as Cyanide

(CN), Nitrates, Total Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethyl Benzene, Xylene, and Naphthalene (BTEX-N) et al. In addition, a new category listed in this group as "Balance" will include the trace metals aluminum, iron, manganese, and also acidity. This category when requested on low pH water samples will provide a more complete geochemical analysis to obtain and calculate a

charge balance.

4.4 Data Quality Objectives

Data Review

The results of all sampling will be reviewed by the Project Manager (Principal Advisor Water Quality) or his designee upon receipt of analytical results from the laboratory. If based on a timely review of analytical data, any significant questions are raised regarding the quality or representativeness of the results, the well will be re-sampled.

Objectives

The data quality objectives of this Plan are discussed in detail in the Quality Assurance Project Plan (QAPP) and summarized below:

- The precision objectives for analytical and field methods are: 1) within 25% of the relative percent difference or + (4) times the MDL (per 40 CFR Part 136, Ap. B Rev 1.1, July 1, 1992) whichever is greater, for duplicate samples; and 2) 75% to 125% recovery for matrix spike duplicates (70% to 130% for organic compounds). It is recognized that these objectives may not be appropriate for certain parameters and for high TDS water; particularly containing high levels of chloride and sulfate.
- The accuracy objectives for analytical and field methods are: 1) less than
 the method quantitation limit for blank; and 2) 75% to 125% recovery for
 spikes if the concentration is 10 times or greater than the MDL, (70% to
 130% for organic compounds). These objectives have been identified for
 relatively low TDS water and will vary with TDS.
- All sample collection and measurements will be performed in accordance with protocols and procedures documented in the QAPP and SOP to assure sample representativeness. All RTK Environmental and Industrial Hygiene Laboratory Procedures are available on the RTK Intranet. These documents are controlled through the Documentum Program.

- Every effort will be made to achieve data collection completeness.
- Comparability of data will be accomplished through the use of standard operating procedures.

SECTION 5 TASKS

The following tasks have been identified for the Ground Water Characterization and Monitoring Plan:

TASK 1	Project Planning and Quality Assurance
TASK 2	Sample Point Selection
TASK 3	Sampling
TASK 4	Site-wide Water-level Measurements
TASK 5	Verification of Results and Data Evaluation
TASK 6	Well Abandonment
TASK 7	New Well Construction
TASK 8	Annual Ground Water Characterization and Monitoring Reports
TASK 9	Periodic Update of Ground Water Characterization and Monitoring Plan

5.1 TASK 1 - PROJECT PLANNING AND QUALITY ASSURANCE

This task consists of the planning, preparation, quality assurance planning, and coordination required maintaining and fully implementing this Plan. Project planning will continue throughout the project to ensure the achievement of project objectives. The process for reviewing and updating the Ground Water Characterization and Monitoring Plan is discussed in Task 9.

Quality assurance planning is documented in the QAPP. The QAPP lists the quality control samples to be collected in conjunction with routine monitoring in order to measure the precision, accuracy, representativeness, and comparability of field and laboratory techniques. Guidelines for data verification and reduction, internal quality control checks, performance and systems audits, and corrective actions are also presented in the QAPP.

5.2 TASK 2 - SAMPLE POINT SELECTION

Wells considered for sampling were selected from the following groups of wells:

- RTK monitoring wells and piezometer
- RTK production wells
- State, county, and city monitoring wells
- Public and residential wells
- Municipal wells.

The selected wells and sampling frequency for these wells are listed in the current Annual Report in Table 1. The general objectives and rationale for the selection of these wells are discussed in section 4.

5.2.1 Addition of New Monitoring Points

Additional sampling points may be added to the monitoring program at a future date, provided that the rationale for the addition of a sampling site is documented by submitting a Well Approval Form to the Project Manager for approval prior to inclusion to the network. Potential rationale for expanding the monitoring program includes the identification of sampling points located in critical areas, replacement of existing sampling points which must be abandoned, and the identification of problem areas. Such documentation (to be filed in the Water Quality Data Filing System) will include monitoring parameters, monitoring frequency, and previously collected monitoring data.

5.3 TASK 3 - SAMPLING

Water sampling activities will be conducted in accordance with the Standard Operating Procedures (SOP). Procedures to be used in the collection of water samples include:

DC-01 through DC-07	Sample Documentation and Sample Handling
MD-01 through MD-03	Equipment Maintenance and Decontamination
QC-01 through QC-05	Quality Control Sampling
GF-01 through GF-16	Measurement of Field Parameters
GW-01 through GW-14	Collection of Ground Water Samples
PW-01 through PW-15	Collection of Process Water Samples
DW-01 through DW-09	Collection of Drinking Water Samples
SW-01 through SW-11	Collection of Surface Water Samples
SS-01 through SS-05	Collection of Sediment Samples.

5.4 TASK 4 - SITE-WIDE WATER LEVEL MEASUREMENTS

In addition to the water level or hydraulic head measurements taken prior to each sampling event, annual water level measurements, in select, monitoring wells will be made. These water levels will be completed as required by permit conditions and/or the needs of special projects. The measurements will be taken during the shortest elapsed time period that is feasible.

Site-wide water-level measurements will allow an evaluation of the relationships between surface water and the ground water potentiometric surface. Such determinations are not possible using measurements taken at the time of sampling over several weeks or months.

Potentiometric information is required in order to evaluate the ground water regime with respect to flow velocity and direction. Details of the methods and procedures used to conduct these measurements are provided in the SOP.

5.5 TASK 5 - VERIFICATION OF RESULTS AND DATA EVALUATION

Verification of analytical results will include ion balances (when complete analyses are conducted for major cations and anions), statistical checks against previous results, and spot checks of data transfer. Data management

is described in Section 5 of the QAPP.

5.6 TASK 6 - WELL ABANDONMENT

A monitoring well must be properly abandoned (i.e., filled or plugged with an "impermeable" material) if it will no longer be used due to the availability of nearby wells, access problems, susceptibility to flooding, lack of water in well, well construction problems, or impending destruction due to construction activities on RTK property. A well must also be abandoned if the integrity of the annulus seal is in question. Lack of proper abandonment may result in a pathway for surface spills or cross-contamination between aquifers of different depth and quality. All monitoring well abandonments will be done in compliance with State of Utah Administrative Rules for Water Well Drillers. Procedures for monitoring well abandonment are provided in the SOP.

5.7 TASK 7 - NEW WELL CONSTRUCTION

The Project Manager assigned to a well installation project will select the appropriate drilling method based on expected subsurface conditions. The auger or vibratory sonic methods are appropriate for wells in lake bottom sediments (unconsolidated materials) to depths of about 100 feet. Vibratory sonic and mud or air rotary and cable tool are appropriate for unconsolidated and consolidated formations of greater depths. The water or mud used with rotary or cable tool methods must be free of contaminants and of a known composition. Procedures for new well construction are provided in the SOP.

5.8 TASK 8 - GROUND WATER CHARACTERIZATION AND MONITORING REPORTS

Brief reports will be written within 90 days after the end of each quarter for internal use to summarize results for the previous three months. An Annual Ground Water Characterization and Monitoring Report will present the results of the previous year's monitoring and the proposed monitoring plan for the current year. This report will be prepared by March 31 for each monitoring year (e.g., January 1 through December 31) to allow a three-month turnaround time for laboratory analyses and report preparation. The report outline will generally adhere to the following:

1.0 Summary 2.0 Introduction 3.0 **Quality Assurance Summary** Summary of Water Quality Analyses 4.0 5.0 **Ground Water Characterization** 6.0 Well Abandonment 7.0 **New Well Construction** 8.0 Program Changes 9.0 Recommendations for Program Changes

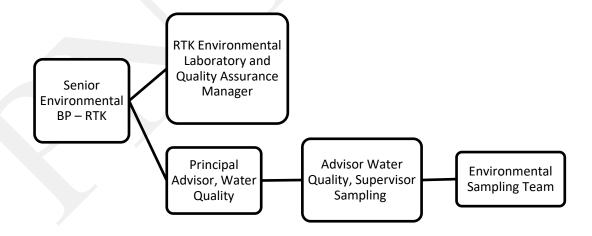
5.9 TASK 9 - UPDATE OF GROUND WATER CHARACTERIZATION AND MONITORING PLAN

The Ground Water Characterization and Monitoring Plan is a working document. Updates may be made by documenting the change to the file and reporting the change in the quarterly and annual monitoring reports. The Supervisor Sampling will review this Plan in September of each year. After completion of this review, the manager will determine whether or not a formal revision is needed.

The Utah State Division of Water Quality will be notified prior to implementing any changes to this document that will significantly affect the collection and analysis of regulatory required samples.

SECTION 6 SCHEDULE

A comprehensive sampling and monitoring schedule of sampling at each point will be included in the Annual Reports Table 1. Water levels are to be measured as required by the sampling schedule in the Table 1.


Annual measurements will be done in the summer or late fall.

SECTION 7 PROJECT MANAGEMENT

7.1 PROJECT ORGANIZATION

The organizational structure for implementing the ground water sampling efforts is shown in Figure 1. Responsibilities of each of the positions are described in Section 2 of the Quality Assurance Project Plan.

FIGURE-GCMP 1. Project Organization Chart for the Ground Water Characterization and Monitoring Program

SECTION 8 REFERENCES

Bio/West. 1993, Fisheries Technical Report for the Great Salt Lake Area of Operations, Volume I

Chatwin, Terrance, Jerry Eggleston, and Leroy R. Taylor. April 1981. Well Construction Final Preliminary Report, Geotechnical Engineering Study of the Tailings Pond Area. April 1981. CH2M Hill. Salt Lake City, Utah.

Chen Northern. 1991. North Oquirrh Complex Monitoring Well Installation and Aquifer Testing, Salt Lake City, Utah.

Dames and Moore. 1988. Milestone Report I, Data Base Synthesis: Mathematical Model of Ground Water Conditions, Southwestern Salt Lake County. Utah Contractor Report to Kennecott Utah Copper, May 1988. Salt Lake City, Utah. 64 pages.

Kennecott. June 1984a. Preliminary Geologic, Ground and Surface Water Data Background and Progress Report of Kennecott's Utah Copper Division (UCD) Mine Hydro geologic Study, Report 1 for the Utah Ground Water Technical and Advisory Member Review.

Kennecott. June 1984b. Report I, Geologic, Ground and Surface Water Data Background and Progress Report of Kennecott's Utah Copper Division (UCD) Mine Hydro geologic Study. Reviewed by the Technical and Advisory Group Members.

Kennecott. June 1985. Report II, Annual Progress Report II for 1984-1985 Joint Kennecott Utah Copper Division (UCD) Mine Hydro geologic Study, Reviewed by the Technical and Advisory Group Members.

Kennecott. June 1986. Report III, Annual Progress Report III for 1985-1986 Joint Kennecott (UCD) Mine Hydro geologic Study, Reviewed by the Technical and Advisory Group Members.

Kennecott. June 1987. Report IV, Annual Progress Report IV for 1986-1987 Joint Kennecott (UCD Mine Hydro geologic Study, Reviewed by the Technical and Advisory Group Members.

Kennecott. June 1988. Report V, Annual Progress Report V for 1987-1988 Joint Kennecott (UCD Mine Hydro geologic Study, Reviewed by the Technical and Advisory Group Members.

Kennecott. December 1992a. Hydro geologic Report for the Great Salt Lake Areas.

Kennecott. July 15, 1992b. Ground Water Assessment Report of the Southwestern Jordan Valley Area.

Slam, Mohammed A. January 20, 1989a. Report of Analytical Results, Salt Lake City/County Landfill Parcels 3,4. Utah State Department of Health, Bureau of Solid and Hazardous Waste. Salt Lake City, Utah.

Slam, Mohammed A. January 20, 1989b. Report of Analytical Results, Salt Lake City/County

Landfill Parcels 1,2. Utah State Department of Health, Bureau of Solid and Hazardous Waste. Salt Lake City, Utah.

Engineering Technology Associates, Inc. (ETA). 1992. Ground Water Assessment Report of the Great Salt Lake Area.

Salt Lake County Division of Water Quality and Water Pollution Control. April 1981. Kersey Creek Assessment Phase One; Data Report.

CH2M Hill. May 1981. Geotechnical Engineering Study of the Tailing Pond Area. Kennecott.

1995a. 1995 Ground Water Characterization and Monitoring Plan.

Kennecott. 1996a. 1996 Ground Water Characterization and Monitoring Plan.

Kennecott. 1997a. 1997 Ground Water Characterization and Monitoring Plan.

Kennecott. 1998a. 1997 Ground Water Characterization and Monitoring Plan.

Kennecott. 1999a. Draft North End Groundwater Remedial Investigation Report.

Kennecott. 1998a. Final Draft Remedial Investigation Report for KUC South End Facilities Groundwater Plume, Southwestern Jordan Valley, Utah.

Kennecott. 2002. Final Design for Remedial Action at South Facilities Groundwater Report

Kennecott. 2209. South Facilities Groundwater Operations, Maintenance, and Replacement Plan. Version 2. April 2009.

TABLE-GCMP 1. RTK GROUND WATER MONITORING PROGRAM

LEGEND

M Monthly

Q Quarterly sampling

A Annual sampling

S Semi-Annual sampling

E Every other year

F Sampled every five years

NS Not Sampled

NOTE:

- Table lists sample frequency as of 2023. Changes in well status is maintained in a RTK Monitoring Well database which is reviewed and updated as needed.
- Trace metals will be run only for dissolved constituents unless otherwise noted.
- Location coordinates are based on RTK mine coordinates.
- List includes only RTK monitoring wells, State, County, and others are not listed.

Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
ADS2560	S				Yes				Yes						
ADS2561	S				Yes				Yes						
31G1120A	Α	Υ			Yes			Yes				Yes			Yes
31G1120B	A	Y	1		Yes			Yes				Yes			
1G951	E	Y			Yes			Yes	Yes			Yes			
2G1157A	S	Ÿ	<u> </u>		Yes			Yes	. 55			Yes			
2G1157B	S	Y	t -		Yes			Yes				Yes			
2G1157C	E	Y	t -		Yes			Yes				Yes			
2G1137C	E	Y	 	<u> </u>	Yes			Yes				Yes			
32G1176B	E	Y			Yes			Yes				Yes			
32G1170B	Q	Y		Y	Yes	Yes		Yes				Yes			
32G1193 32G1194A	E	<u>Y</u>		T	Yes	169		Yes				Yes			
32G1194B	E	Y	1	1	Yes			Yes				Yes		1	
3G1197A	E				Yes			Yes				Yes			
3G1197B	E	Y	L	1	Yes			Yes	\ . ·			Yes		1	
CG2788A	F	Y	Y		Yes			Yes	Yes						
CG2788C	F	Y	Y	ļ	Yes			Yes	Yes						
3CG281	S	Y	Υ		Yes			Yes	Yes						
3CG282	S	Υ	Υ		Yes			Yes	Yes						
CG283	S	Υ	Υ		Yes			Yes	Yes						
CG284	S	Υ	Υ		Yes			Yes	Yes						
3CG2846	S	Υ	Υ		Yes			Yes	Yes						
CG285	S	Υ	Υ		Yes			Yes	Yes						
CG2860A	M	Υ	Υ	Υ	Yes	Yes		Yes	Yes						
CG2860B	М	Υ	Υ	Υ	Yes	Yes		Yes	Yes						
CG496	Q	Y	Y		Yes			Yes	Yes						
CG848	Q	Y	Y		Yes			Yes	Yes						
CG849	S	Y	Y		Yes			Yes	Yes						
CG850	S	Ÿ	Y		Yes			Yes	Yes						
CG851A	Q	Ÿ	Ý		Yes			Yes	Yes					t	
CG851B	Q	Y	Ϋ́	<u> </u>	Yes			Yes	Yes					<u> </u>	
CG851B	S	Y	Y		Yes			Yes	Yes					 	
CP1483	M	<u>т</u> Ү	- '-	 	Yes	Yes		Yes	169					 	Yes
		ī	 		168	168		168						 	168
CP1483A CP2738	M V		 		YES			YES						 	
			 									-	-	 	
CP2739	M		1		YES			YES						1	
CP2741	M				YES			YES							
CP2743	M				YES			YES						ļ	
CP2750	M				YES			YES						1	
CS2730	Α	Y	Y		Yes			Yes							
CS2731	Α	Υ	Υ		Yes			Yes							
CS2732	Α	Υ	Υ		Yes			Yes	Yes						
CS2733	Α	Υ	Υ		Yes			Yes							
CS2734	A	Υ	Υ		Yes			Yes							
CS2834	S	Υ	Υ		Yes			Yes	Yes						
CS2835	S	Υ	Υ		Yes			Yes	Yes						
CS2836	S	Υ	Υ		Yes			Yes	Yes						
CS2837	S	Υ	Υ		Yes			Yes	Yes						
CS2838	S	Y	Y		Yes			Yes	Yes						
CS2845A	S	Y	Y		Yes			Yes	Yes						
CS2845C	S	Y	Ϋ́	1	Yes			Yes	Yes					1	
CS2845D	S	· ·	.	1	Yes			Yes	Yes					1	
FG1136B	E	Υ	 	1	Yes			103	103					 	
FG1156B	E	Y			Yes			Yes				Yes	 	 	
FG1156C	E	Y			Yes			Yes				Yes		1	
FG1156D	E	Y	 	 	Yes			Yes	-			Yes		 	
			 	1		-							-	 	
FG1168B	E	Y	1	1	Yes			Yes				Yes	1	1	
G1195A	E	Y	<u> </u>		Yes			Yes				Yes			
G1195B	E	Y			Yes			Yes				Yes		1	
G1198B	Α	Υ		ļ	Yes			Yes				Yes			
FG1200	Q	Y	<u> </u>	Υ	Yes	Yes		Yes				Yes			
KG1474B	F	Υ			Yes			Yes	Yes	Yes					
MG2571	Q	Υ			Yes			Yes	Yes	Yes	Yes				
MP2712	S				Yes			Yes	Yes						
MP2869	М		1	Υ	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	
MS2864	Q	Υ			Yes	Yes		Yes		<u> </u>	Yes	Yes			
RG287	S	•	t	1	Yes			Yes	Yes			. 55		1	
RG921	S	Υ	 	<u> </u>	Yes			Yes	Yes					<u> </u>	
RG999	S	- '	 		Yes			Yes	Yes					 	
			1	1	168	l .	l	162	168	ļ			l	1	

Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
BRP1476	S				Yes			Yes	Yes						
BRP292	S	Υ			Yes			Yes	Yes						
BSG1119B	S	Υ			Yes			Yes				Yes			
BSG1125B BSG1125C	A E				Yes Yes			Yes Yes					Yes Yes		_
BSG1130A	E	Υ			Yes			Yes				Yes	165		
BSG1130B	A	Y			Yes			Yes				Yes			
BSG1132A	A	Y			Yes			Yes				Yes			
BSG1132B	Α	Υ			Yes			Yes				Yes			
BSG1133B	Α	Υ			Yes			Yes				Yes			
BSG1135B	Α	Υ			Yes			Yes				Yes			
BSG1137A	Α	Y			Yes			Yes				Yes			
BSG1137B	A	Y			Yes			Yes				Yes			
BSG1148A BSG1148B	A	Y			Yes Yes			Yes Yes				Yes Yes			
BSG1153B	A E	Y			Yes			Yes				res			Yes
BSG1177A	A	Y			Yes			Yes				Yes			168
BSG1177B	A	Y			Yes			Yes				Yes		1	<u> </u>
BSG1177C	A	Y			Yes			Yes				Yes			†
BSG1179B	A	Y		İ	Yes			Yes				Yes			
BSG1179C	Α	Υ			Yes			Yes				Yes			
BSG1180A	E	Υ			Yes			Yes				Yes			
BSG1180B	E	Υ			Yes			Yes				Yes			
BSG1180C	E	Y			Yes			Yes				Yes			<u> </u>
BSG1196B	E	Y			Yes			Yes				Yes			
BSG1196C	E	Y			Yes			Yes				Yes			
BSG1201 BSG2777A	Q S	Y			Yes Yes			Yes Yes	Yes Yes			Yes Yes			
BSG2777B	E	Y			Yes			Yes	res			Yes			
BSG2778A	A	Y			Yes			Yes				Yes			
BSG2778B	E	Y			Yes			Yes				Yes			
BSG2779A	S	Y			Yes			Yes				Yes			
BSG2779B	S	Υ			Yes			Yes				Yes			
BSG2779C	Α	Υ			Yes			Yes				Yes			
BSG2782A	Α	Υ			Yes			Yes				Yes			
BSG2782B	Α	Y			Yes			Yes				Yes			
BSG2782C	A	Y			Yes			Yes				Yes			
BSG2783A	E A	Y	-		Yes Yes			Yes Yes				Yes Yes			
BSG2783B BSG2783C	E	Y			Yes			Yes				Yes			
BSG2784	Q	Y			Yes			Yes				Yes			
BSG2828	Q	Y			Yes			Yes	Yes	Yes		100			
BYD1090	M			Υ										Yes	
BYP2538	M				YES			YES							
CLC452	Q				Yes			Yes	Yes						
COG1112A	E				Yes			Yes							
COG1112B	F				Yes			Yes				ļ	ļ		
COG1149A	Q		Y		Yes			Yes	Yes			1	-		├──
COG1149B COG1152A	Q E	Υ	Y		Yes Yes			Yes Yes	Yes			Yes		1	
COG1152A COG1172	A	ī			Yes			Yes	Yes			168		1	
COG1172	E	Υ			Yes			Yes	103			Yes			<u> </u>
COG1178B	A	Y		1	Yes			Yes				Yes			
COG2701	S				Yes			Yes	Yes						
COG2806A	S				Yes			Yes	Yes						Yes
COG2806B	S				Yes			Yes	Yes						Yes
COG2867A	Q		Y		Yes			Yes	Yes						<u> </u>
COG2867B	Q		Υ	ļ	Yes			Yes	Yes						
COG995A	S			1	Yes			Yes	Yes						
COG995B ECG1100A	S			1	Yes			Yes	Yes		1				
ECG1100A ECG1100B	Q Q				yes yes	1		yes yes	yes yes			1			
ECG1100B	S			1	Yes			Yes	Yes						
ECG1106B	S				Yes			Yes	Yes						
ECG1113A	S				Yes			Yes	. 55				Yes		<u> </u>
ECG1114A	E	Υ			Yes			Yes					1 2		
ECG1114B	Е	Υ		<u></u>	Yes			Yes							
ECG1115A	Е	Υ			Yes			Yes				Yes			
ECG1115B	Е	Υ		1	Yes			Yes				Yes			

Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
ECG1115C	E	Υ			Yes			Yes				Yes			
ECG1115D	F	Υ			Yes			Yes				Yes			
ECG1116B	E	Υ			Yes			Yes				Yes			
ECG1117A	E	Y			Yes			Yes				Yes			
ECG1117B	E	Υ			Yes			Yes				Yes			
ECG1118A	Α	Υ			Yes			Yes				Yes			
ECG1118B	A	Y			Yes			Yes				Yes			
ECG1121A	E	Y			Yes			Yes				Yes			
ECG1121B	F E	Y			Yes Yes			Yes Yes				Yes Yes			
ECG1124B ECG1124C	E	Y			Yes			Yes				Yes			
ECG1128A	E	Y			Yes			Yes				Yes			
ECG1128B	E	Y			Yes			Yes				Yes			
ECG1131A	E	Y			103			103				103			
ECG1131B	E	Y			Yes			Yes							Yes
ECG1131C	E	Y			Yes			Yes							Yes
ECG1144B	E	Y			Yes			Yes				Yes			100
ECG1145B	E	Y			Yes			Yes				Yes			
ECG1145C	E	Y			Yes			Yes				Yes			
ECG1146	Q	Y			Yes			Yes				Yes		_	
ECG1182A	Ē	Y			Yes			Yes	1						
ECG1182B	E	Υ			Yes			Yes							
ECG1183A	E				Yes			Yes					Yes		
ECG1183B	E				Yes			Yes							
ECG1184	Α				Yes			Yes	Yes				Yes		
ECG1185	S				Yes			Yes	Yes				Yes		
ECG1186	Q				Yes			Yes	Yes				Yes		
ECG1187	Q				Yes			Yes	Yes				Yes		
ECG1188	Q				Yes			Yes	Yes				Yes		
ECG1189	Q				Yes			Yes	Yes				Yes		
ECG1190	Q				Yes			Yes	Yes				Yes		
ECG2787	Q	Υ			Yes			Yes	Yes						
ECG2833A	A				Yes			Yes							
ECG2833B	A				Yes Yes			Yes Yes							-
ECG2833C ECG2833D	A A				Yes			Yes							
ECG2853A	S				Yes			Yes							
ECG2853B	S				Yes			Yes							
ECG2859	S				Yes			Yes	Yes						
ECG2866A	Q				Yes			Yes	Yes						
ECG2866B	Q				Yes			Yes	Yes						
ECG299	S				Yes			Yes	Yes						
ECG901	S				Yes			Yes	Yes						
ECG902	S				Yes			Yes	Yes						
ECG905	S				Yes			Yes	Yes						
ECG906	S				Yes			Yes	Yes						
ECG907	Q				Yes			Yes	Yes						
ECG916	S				Yes			Yes	Yes						
ECG917	Q				Yes			Yes	Yes						
ECG922	A				Yes			Yes	Yes	ļ		ļ			
ECG924	Q				Yes			Yes	Yes				 		
ECG925	Q			1	Yes			Yes	Yes				1	1	
ECG928	S			1	Yes			Yes	Yes				1	1	
ECG931 ECG932	S				Yes Yes			Yes Yes	Yes Yes						
ECG932 ECG933	A			1	Yes			Yes	Yes	1			 	1	
ECG934	S				Yes			Yes	Yes						
ECG935	S			-	Yes			Yes	Yes				 	-	
ECG936	S				Yes			Yes	Yes				 		
ECG937	S				Yes			Yes	Yes				<u> </u>		
ECG938	S				Yes			Yes	Yes						
ECP2562	S	Υ			Yes			Yes	Yes						
ECP2599	S	Y			Yes			Yes	Yes	Yes	Yes		1		
ECP2601	S				Yes			Yes	Yes				1		
ECP2603A	S				Yes			Yes	Yes						
ECP2603B	S				Yes			Yes							
ECP2605A	S				Yes			Yes	Yes						
ECP2605B	S														
ECP2606	S				Yes			Yes	Yes						

Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
ECP2612	S				Yes			Yes	Yes						
ECP2614	S				Yes			Yes	Yes						
ECP2616A	S														
ECP2616B	S				Yes			Yes	Yes						
ECP2618A	S				Yes			Yes							
ECP2618B	S				Yes			Yes							
ECP2624A	S				Yes			Yes							
ECP2624B	S				Yes			Yes							
ECP2627A	S				Yes			Yes							
ECP2627B	S				Yes			Yes							
ECP2629A	S				Yes			Yes							
ECP2629B	S				Yes			Yes							
ECP2631	S				Yes			Yes	Yes						
ECP2648A	S				Yes			Yes							
ECP2648B	S				Yes			Yes							
ECP2651A	S				Yes			Yes							
ECP2651B	S				Yes			Yes							
ECP2654A	S			1	Yes			Yes							
ECP2654B	S			1	Yes			Yes							
ECP2662A	S				Yes			Yes	-						
ECP2662B	S			1	Yes			Yes	1/1						
ECP2664	S				Yes			Yes	Yes						
ECP2668	S				Yes			Yes							
ECP2670	S				Yes			Yes	Yes						
ECP2674	S				Yes			Yes	Yes						
ECP2682	S				Yes			Yes	Yes						
ECP2709	S				Yes			Yes	Yes						
ECP2710	S				Yes			Yes	Yes						
ECP2719	S			Y	Yes	Yes		Yes	Yes						
ECP2740	Q				Yes			Yes				Yes			
ECP2745	S			Y	Yes	Yes		Yes	Yes						
ECP2771	S			Υ	Yes	Yes		Yes	Yes						
ECP2772	S			Y	Yes	Yes		Yes	Yes						
ECP2796	M			Y											
ECP2856A	S				Yes			Yes							
ECP2856B	S				Yes			Yes							
ECP2857A	S				Yes	· ·		Yes							
ECP2857B	S				Yes			Yes							
ECP2858A	S				Yes			Yes							
ECP2858B	S				Yes			Yes							
ECS2715	S				Yes			Yes	Yes						
EPG1165A	Α				Yes			Yes					Yes		
EPG2780B	F	Υ			Yes			Yes				Yes			
EPG2781A	A	Υ			Yes			Yes				Yes			
EPG2781B	A	Υ			Yes			Yes	.,			Yes			
EPG2785A	A				Yes			Yes	Yes						
EPG2785B	A				Yes			Yes	Yes						
EPS2820	A				Yes			Yes	Yes						
EPS2821	A				Yes			Yes	Yes						
EPS2822	A				Yes			Yes	Yes						
EPS2823	A				Yes			Yes	Yes						
EPS2824	A				Yes			Yes	Yes						
EPS2825	A			1	Yes			Yes	Yes						
EPS2826	A				Yes			Yes	Yes						
EPS2827	A		,,,	— ,,	Yes			Yes	Yes						
HCG2861A	Q	Y	Y	Y	Yes	Yes		Yes	Yes						
HCG2861B	Q	Y	Y	Y	Yes	Yes		Yes	Yes						
HCG2868	Q	Υ	Υ	Y	Yes	Yes		Yes	Yes						
HMG1122A	E				Yes			Yes					1		
HMG1123B	A				Yes			Yes					Yes		
HMG1126B	A				Yes			Yes					Yes		
HMG1163A	F				Yes			Yes					ļ.,.		
HMG1856	E			ļ	Yes			Yes					Yes		
LCS469	Q	Y			Yes			Yes	<u> </u>			<u> </u>			ļ
LRG910	S	Υ			Yes			Yes	Yes			Yes			
LRG911	S	Υ			Yes			Yes	Yes			Yes			
LRG912	A	Υ			Yes			Yes	Yes			Yes			
LRP1319	Q	Υ			Yes			Yes	Yes						
LRP896	Q	Υ			Yes			Yes	Yes]			

Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
LSD1078	Q	Υ		Υ	Yes	Yes		Yes	Yes	Yes				Yes	
LTG1139	Q	Υ		Υ	Yes	Yes		Yes	Yes	Yes	Yes			Yes	
LTG1140B	Α				Yes			Yes					Yes		
LTG1147	Q	Υ		Y	Yes	Yes		Yes				Yes			_
LTG1167B	E				Yes			Yes	.,				Yes		
LTG1191	Q	Υ			Yes			Yes	Yes	.,			Yes		
LWP2632	Q	Y			Yes			Yes	Yes	Yes	Yes				
LWP2714	V	Υ			Yes			Yes	Yes	Yes					
LWS2717	S				Yes			Yes	Yes						
MCP1416 MCP2533	M	Y		Y	Yes	Yes		Yes	Yes						
MCP2534	Q Q	Y		Y	Yes Yes	Yes Yes		Yes Yes	Yes Yes						
MCP2534	M	ı		ı	Yes	165		Yes	Yes						
MCP2536A	M				168			165	168						
MDP2679	S				Yes			Yes	Yes						
NEA634A	S				Yes			Yes	165						4
NED602A	A				Yes			Yes	Yes						
NED602B	A				Yes			Yes	Yes						-
NED604A	S				Yes			Yes	Yes	<u> </u>					
NED604B	S				Yes			Yes	Yes						
NEG484	Q				Yes			Yes	103						
NEL1312	Q			Υ	Yes	Yes		Yes							
NEL1313	Q			Y	Yes	Yes		Yes							
NEL1382A	S			<u> </u>	Yes			Yes	Yes						
NEL1382B	S				Yes			Yes	Yes						
NEL1382C	Q				Yes			Yes	Yes						
NEL2831	Q	Υ		Y	Yes	Yes		Yes	100					Yes	
NEL2870A	Q	·			Yes			Yes	Yes						
NEL2870B	Q				Yes			Yes	Yes						
NEL2870C	Q				Yes			Yes	Yes						
NEL448	Q			Υ	Yes	Yes		Yes							
NEL532A	S				Yes			Yes	Yes						
NEL532B	Q				Yes			Yes	Yes						
NEL536A	A				Yes			Yes	Yes						
NEL536B	Α				Yes			Yes	Yes						
NEL536C	F				Yes			Yes	Yes						
NEM1387	S				Yes			Yes	Yes						
NEM478	Q				Yes			Yes							
NEM637A	S				Yes			Yes							
NEM650A	S		Υ		Yes			Yes	Yes						
NEM651A	S		Υ		Yes			Yes	Yes						
NEM652A	S		Υ		Yes			Yes	Yes						
NEM653A	S				Yes			Yes	Yes						
NEM897	S		Υ		Yes			Yes	Yes						
NEM898	S		Υ		Yes			Yes	Yes						
NEM899	S				Yes			Yes	Yes						
NEP2847	V														
NEP2848	V													<u> </u>	<u> </u>
NEP2849	V					ļ		ļ	ļ			ļ			<u> </u>
NEP2850	V														<u> </u>
NEP2851	Weekly							ļ.,		ļ					<u> </u>
NER2545A	A			1	Yes			Yes						-	<u> </u>
NER2545B	A			1	Yes			Yes		<u> </u>				1	
NER2546A	Q			1	Yes			Yes		<u> </u>				1	
NER2546B	Q				Yes			Yes		-					
NER2546C	Q	~			Yes			Yes							
NER2547	A				Yes			Yes							
NER2548	A			1	Yes			Yes		1				1	
NER2549A	A				Yes			Yes		 					
NER2549B	A				Yes			Yes Yes		 					
NER2554A	A				Yes					 					
NER2554B	A				Yes Yes			Yes Yes		 					
NER2808 NER2811A	A				Yes			Yes		 					
	S S	-			Yes			Yes		-					
NER2811B NER2812A	A A	-			Yes			Yes		 					
NER2812A NER2812B	A				Yes			Yes		 					
	S				Yes			Yes		-					\vdash
NER2813A															

Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
NER2813C	S				Yes			Yes							
NER2816A	V				Yes			Yes							
NER2816C	Α				Yes			Yes							
NER606A	A				Yes			Yes							
NER606B	A				Yes			Yes							
NER607A	A				Yes			Yes							
NER607B NER608A	A				Yes			Yes							
NER608B	A				Yes Yes			Yes Yes							
NER609A	A A				Yes			Yes							
NER609B	A				Yes			Yes							
NER610A	A				Yes			Yes							
NER610B	A				Yes			Yes							
NER631A	A				Yes			Yes							
NER631B	A				Yes			Yes							
NER632A	A				Yes			Yes							
NER632B	Α				Yes			Yes							
NER633A	A				Yes			Yes							
NER633B	A				Yes			Yes							
NER655A	Α				Yes			Yes							
NER708	Q				Yes			Yes							
NER709	Α				Yes			Yes							
NER710A	S				Yes			Yes							
NER710B	S				Yes			Yes							
NER711	Α				Yes			Yes							
NER723	Α				Yes			Yes							
NER724	Α				Yes			Yes							
NES1363	S				Yes			Yes	Yes						
NES1364	Q				Yes			Yes	Yes						
NES1365	Q				Yes			Yes	Yes						
NES1366	Q				Yes			Yes	Yes						
NES1376	Q				Yes			Yes	Yes	Yes					
NES1472A	Α				Yes			Yes							
NES2556	S				Yes			Yes	Yes						
NES2574	S				Yes			Yes	Yes						
NES2589	S				Yes			Yes	Yes						
NES2590	S				Yes	· ·		Yes	Yes						
NES2763	A				Yes			Yes	Yes						
NES2764	A				Yes			Yes	Yes						<u> </u>
NES2765	A				Yes			Yes	Yes						<u> </u>
NES2766	A				Yes			Yes	Yes						<u> </u>
NES2767	A				Yes			Yes	Yes						<u> </u>
NES2768	A				Yes	Vice		Yes	Yes						
NES2790	NS			Y	Yes	Yes		Yes				Yes			<u> </u>
NES2791 NES2792	NS NS				Yes Yes	Yes		Yes Yes				Yes Yes			
NES2792 NES2793A	NS	Y		Y	Yes	Yes		Yes				Yes			
NES2793A NES2793B	S	ı		<u> </u>	Yes			Yes				Yes			\vdash
NES2793C	NS				Yes			Yes				Yes			
NES2793C	S	Y		Y	Yes	Yes		Yes	Yes	Yes		163		Yes	Yes
NES2795	NS	Y		Y	Yes	Yes		Yes	103	Yes				103	103
NES2797A	S			<u> </u>	Yes	103		Yes	Yes	103					
NES2797B	S				Yes			Yes	Yes						
NES2797C	S				Yes			Yes	Yes						
NES2797D	S				Yes			Yes	Yes						
NES2797E	A			1	Yes			Yes	Yes				1		
NES2798A	S			1	Yes			Yes	Yes						
NES2798B	S				Yes			Yes	Yes						
NES2798C	S				Yes			Yes	Yes						
NES2798Z	S				Yes			Yes	Yes						
NES2799A	S				Yes			Yes	Yes						
NES2799B	S				Yes			Yes	Yes						
NES2800A	Q				Yes			Yes	Yes						
NES2800B	S				Yes			Yes	Yes						
NES2801	S				Yes			Yes	Yes						
NES2802	S				Yes			Yes	Yes						
NES2803A	S				Yes			Yes	Yes						
NES2803B	S				Yes			Yes	Yes						
NES2804A	Q				Yes			Yes	Yes				I		1

NES2804B NES2804C NES2805 NES2852 NES567 NES568 NES620B NES621A NES621B NES622A NES622B NES622A NES623A NES623B NES623A NES656A NES672 NES675 NES691 NES693 NES694A	S S S S S S S S S S S S S S S S S S S			Yes		Yes	Yes Yes Yes Yes Yes					
NES2805 NES2852 NES567 NES568 NES620B NES621A NES621B NES622A NES622B NES623A NES623A NES623B NES656A NES672 NES675 NES671 NES691 NES693	S Q Q Q S S S S S S S S S S S S S S S S			Yes		Yes Yes Yes Yes Yes Yes Yes	Yes Yes					
NES2852 NES567 NES568 NES620B NES621A NES621B NES622A NES622B NES623A NES623A NES623B NES656A NES672 NES675 NES671 NES691	Q Q Q S S S S S S S Q Q Q			Yes		Yes Yes Yes Yes Yes Yes	Yes					
NES567 NES568 NES620B NES621A NES621B NES622A NES622B NES623A NES623B NES656A NES672 NES675 NES691 NES693	Q Q S S S S S S S S Q Q Q			Yes		Yes Yes Yes Yes						
NES568 NES620B NES621A NES621B NES622A NES622B NES623A NES623B NES656A NES672 NES675 NES691 NES693	Q S S S S S S S Q Q Q			Yes Yes Yes Yes Yes Yes Yes Yes Yes		Yes Yes Yes	Yes					
NES620B NES621A NES621B NES622A NES622B NES623A NES623B NES656A NES672 NES675 NES691 NES693	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Yes Yes Yes Yes Yes Yes Yes		Yes Yes	Yes					
NES621A NES621B NES622A NES622B NES623A NES623B NES656A NES672 NES675 NES691 NES693	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Yes Yes Yes Yes		Yes	Yes					
NES621B NES622A NES622B NES623A NES623B NES656A NES672 NES675 NES691 NES693	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Yes Yes Yes Yes			•					
NES622A NES622B NES623A NES623B NES656A NES672 NES675 NES691 NES693	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Yes Yes Yes			Yes					
NES622B NES623A NES623B NES656A NES672 NES675 NES691 NES693	\$ \$ \$ F Q Q Q Q \$ \$			Yes Yes		Yes	Yes					
NES623A NES623B NES656A NES672 NES675 NES691 NES693	S S F Q Q Q S S			Yes		Yes	Yes					
NES623B NES656A NES672 NES675 NES691 NES693	S F Q Q Q S S					Yes	Yes Yes					
NES656A NES672 NES675 NES691 NES693	F Q Q Q S S			165		Yes Yes	Yes					
NES672 NES675 NES691 NES693	Q Q Q S S			Yes		Yes	165					
NES675 NES691 NES693	Q Q S S			Yes		Yes						
NES691 NES693	Q S S			Yes		Yes						-
NES693	S S			Yes		Yes						
	S	l	-	Yes		Yes						
				Yes		Yes						
NES694B				Yes		Yes	_					
NES696	S			Yes		Yes	1					
NES697A	S			Yes		Yes						
NES697B	S			Yes		Yes						
NES698A	S			Yes		Yes						
NES698B	S			Yes		Yes						
NES700	Q			Yes		Yes						
NES701	S			Yes		Yes	Yes					
NES702	S			Yes		Yes	Yes					
NES703	S			Yes		Yes						
NES705A	S			Yes		Yes						
NES705B	S			Yes		Yes						
NES715A	S			Yes		Yes	Yes					
NES715B	S			Yes		Yes	Yes					
NES716	F			Yes		Yes						
NES718	S			Yes		Yes						
NES725	S			Yes		Yes	Yes					
NES726A	S			Yes		Yes	7					
NES726B	S			Yes		Yes						
NES728	Q			Yes		Yes	Yes	Yes				
NES729	S			Yes		Yes	Yes					
NET1380A	S			Yes		Yes	Yes					
NET1380B	Α			Yes		Yes	Yes					
NET1381A	S			Yes		Yes	Yes					
NET1381B	S			Yes		Yes	Yes					
NET1383A	S			Yes		Yes	Yes					
NET1383B	S			Yes		Yes	Yes					
NET1384A	S			Yes		Yes	Yes					
NET1384B	S			Yes		Yes	Yes					
NET1385A	S			Yes		Yes	Yes			ļ	ļ	
NET1385B	S			Yes		Yes	Yes					
NET1386A	A			Yes		Yes	Yes					
NET1386B	Q		1	Yes		Yes	Yes					
NET1393A	S		1	Yes		 Yes	Yes					
NET1393B	S		1	Yes		 Yes	Yes					
NET1490	S			Yes		Yes	Yes					<u> </u>
NET1491	S	~		Yes		Yes	Yes					
NET1492	S			Yes		Yes	Yes	Var				
NET2596	S		1	Yes		Yes	Yes	Yes				
NET646A	Q			Yes		Yes	Yes					
NET646B	S			Yes		Yes	Yes					
NEW1495A	A			Yes	1	Yes						-
NEW1495B	A			Yes Yes		Yes						
NEW1495C	A					Yes						
NEW1496A	A			Yes		Yes						
NEW1496B	A			Yes		Yes						
NEW1496C NEW2569A	A		-	Yes Yes		Yes Yes	Yes					
NEW2569A NEW2569B	A A	-		Yes		Yes	Yes					
NEW2569B NEW2569C	A		-	Yes		Yes	Yes					

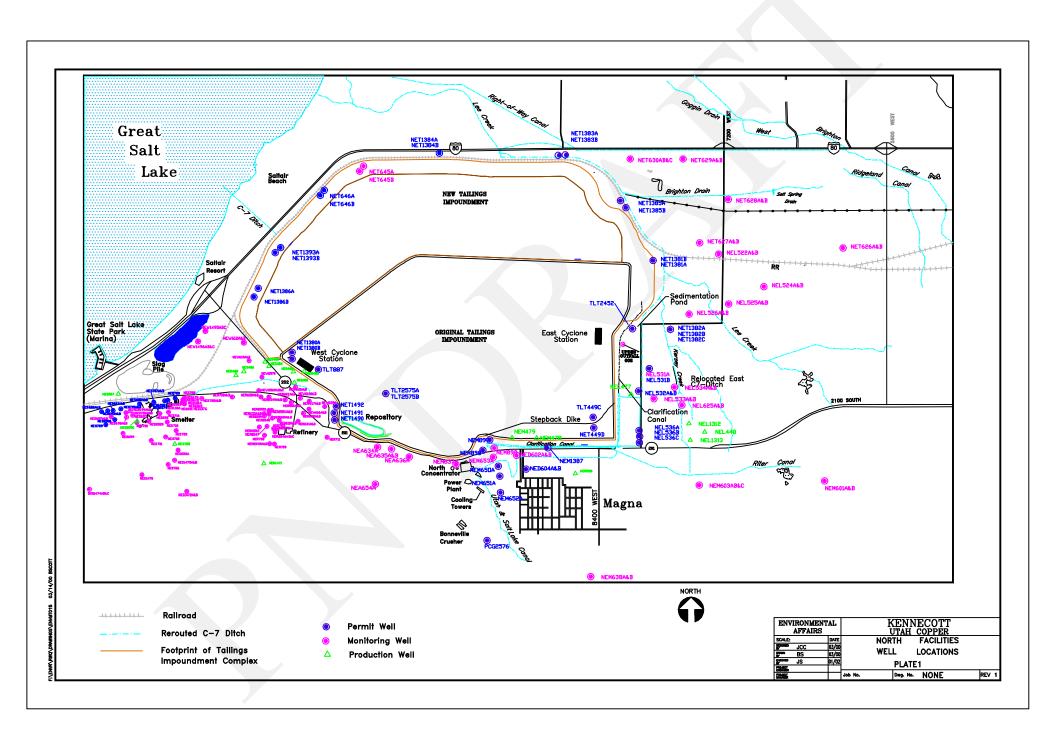
Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
NEW2570	Α				Yes			Yes	Yes	Yes	Yes				
NEW2807A	Α				Yes			Yes							
NEW2807B	A				Yes			Yes					<u> </u>		
NEW2807C	S				Yes			Yes						<u> </u>	
NEW2807D	S				Yes		-	Yes					_		
NEW2807E NEW2807F	S				Yes Yes			Yes		-					
NEW2807F	A				Yes			Yes Yes							
NEW2809A	A A				Yes			Yes							
NEW2809B	A				Yes			Yes							
NEW2809C	A				Yes	 		Yes	 	 	 				
NEW2809D	S				Yes			Yes						1	
NEW2809E	S				Yes			Yes						+	
NEW2810A	Α				Yes			Yes							
NEW2810B	Α				Yes			Yes							
NEW2810C	Α				Yes			Yes							
NEW2810D	Α				Yes			Yes							
NEW2810E	Α				Yes			Yes							
NEW2810F	Α				Yes			Yes							
NEW2810G	Α				Yes			Yes							
NEW2810H	A				Yes	<u> </u>	<u> </u>	Yes			<u> </u>	<u> </u>			
NEW2814A	S				Yes			Yes						1	
NEW2814B	S				Yes			Yes							
NEW2814C	A				Yes			Yes						<u> </u>	
NEW2815A	A				Yes		-	Yes					1	 	
NEW2815B NEW2815C	A				Yes Yes			Yes Yes						 	ļ
NEW2815D	A				Yes			Yes	-		_		_	+	
NEW2815E	A A				Yes			Yes	 				1	 	
NEW2815E	A				Yes			Yes							
NEW612A	A				Yes			Yes				 		+	
NEW612B	A				Yes			Yes						1	
NEW613A	S				Yes			Yes							
NEW613B	S				Yes			Yes							
NEW614A	Α				Yes			Yes							
NEW614B	Α				Yes			Yes							
NEW615A	Α				Yes			Yes							
NEW615B	Α				Yes			Yes							
NEW616A	Α				Yes			Yes							
NEW616B	Α				Yes			Yes	Yes						
NEW617A	Α				Yes			Yes					ļ	<u> </u>	
NEW617B	A				Yes			Yes							
NEW639A	Q	Υ	Y		Yes		-	Yes	V	V			_	 	
PCG2576 RTC450	S V	Y	Y	Y	Yes Yes	Voc		Yes Yes	Yes Yes	Yes Yes				 	ļ
SLS2769	A			Y	Yes	Yes		Yes	Yes	res			-	 	
SLS2709	A				Yes			Yes	Yes	\vdash	 		1	 	
SMP2842	Q				Yes	 		Yes	169		+	 	-	 	
SRG946	A	Υ			Yes			Yes				Yes		1	
SRP850	S	Y			Yes			Yes	Yes			1.55		1	
TLP1436	Q	-			Yes			Yes	Yes		†	†		1	
TLP1469	Q	Υ			Yes			Yes	Yes						
TLP1485A	Q														
TLP1486A	Q														
TLP1487A	Q														
TLP1488A	Q						<u> </u>	<u> </u>				<u></u>	<u> </u>	<u> </u>	
TLP2593A	Q				L		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
TLS1426	S			1	Yes			Yes	Yes	<u> </u>	<u> </u>	Ь——		<u> </u>	igsquare
TLT2452	S			-	Yes		<u> </u>	Yes	Yes		<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
TLT2575A	DRY			ļ	Yes	<u> </u>	 	Yes	Yes	<u> </u>	 	 	 	 	
TLT2575B	S			1	Yes		1	Yes	Yes	 	 	├──	1	 	\vdash
TLT887 UPD004	S Q	Υ		Y	Yes Yes	Yes	 	Yes Yes	Yes	Vaa	Yes	├──	1	Yes	
UPD004 UPD009	S	Y		Y	Yes	Yes	-	Yes	 	Yes Yes	Yes	₩	 	Yes	
UPD009 UPD010	Q	Y		Y	Yes	Yes		Yes	Yes	162	162	\vdash	-	Yes	Yes
UPD010	Q	Y		Y	Yes	Yes		Yes	Yes		 	 		162	162
USC472	V	1		Y	Yes	Yes		Yes	Yes	Yes		<u> </u>	 	1	
VWK120	F				Yes			Yes	Yes						

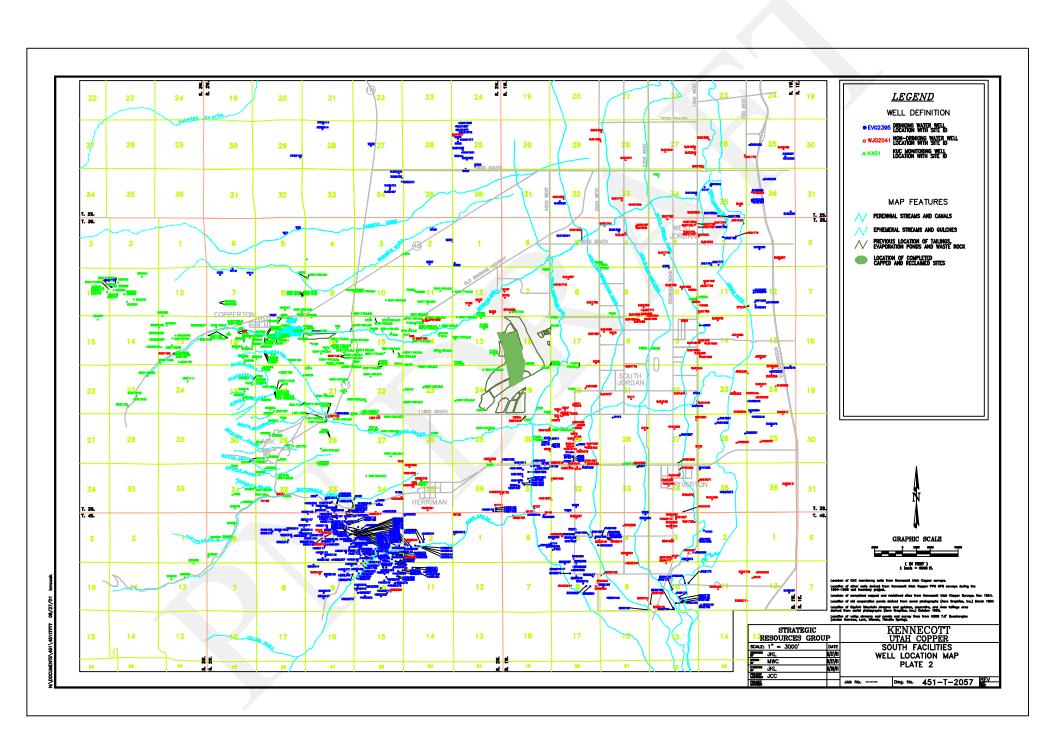
Site ID	Current Sample Frequency	Hg	CN	Total Metals	Basic	Basic Total Metals	Minor	Major	Trace 1	Trace 2	Trace 3	RA-1	RA-2	Trace 1 - Total Metals	Trace 4
VWK414	Q	Υ		Υ	Yes	Yes		Yes	Yes	Yes					
VWK421	Q	Υ		Υ	Yes	Yes		Yes	Yes	Yes					
VWK83	NS	Υ			Yes			Yes				Yes			
VWK84	F				Yes			Yes	Yes			Yes			
VWK93	S	Υ			Yes			Yes							
VWP190B	E	Υ			Yes			Yes				Yes			
VWP192B	Α	Υ			Yes			Yes				Yes			
VWP193B	F	Υ			Yes			Yes				Yes			
VWP194A	E	.,			Yes			Yes				.,			
VWP194B	A	Y			Yes			Yes				Yes			
VWP197B VWP209B	E	Y			Yes			Yes				Yes			
VWP209B VWP220	E	Y			Yes Yes			Yes Yes	Yes			Yes			
VWP220 VWP225	S S				Yes				Yes						
VWP225 VWP228	Q				Yes			Yes Yes	Yes						
VWP226 VWP241B	E	Υ			Yes			Yes	165			Yes			-
VWP241B	A	Y			Yes			Yes				Yes		-	
VWP241C	E	Y			Yes			Yes				Yes		-	
VWP244B	Q	•			Yes			Yes	Yes			103		†	
VWP244C	S				Yes			Yes	Yes					_	
VWP248A	Q	Υ			Yes			Yes	Yes			Yes			
VWP248B	S	Y			Yes			Yes	Yes			Yes			
VWP248C	S	Y			Yes			Yes	Yes			Yes			
VWP251	F	-			Yes			Yes							
VWP252A	F				Yes			Yes							
VWP252B	F				Yes			Yes							
VWP252C	F				Yes			Yes							
VWP253A	F				Yes			Yes							
VWP255A	F				Yes			Yes							
VWP257	F				Yes			Yes							
VWP258A	F				Yes			Yes							
VWP259	F				Yes			Yes							
VWP263	E				Yes			Yes							
VWP264	F	Υ			Yes			Yes				Yes			
VWP267B	E				Yes			Yes							
VWP272	Α				Yes			Yes	Yes						
VWS236	S	Υ		Υ	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	
VWS314	V			Y	Yes	Yes		Yes	Yes	Yes					
VWS35	V			Υ	Yes	Yes		Yes	Yes	Yes		.,			
VWW189	A	Υ			Yes			Yes				Yes	.,		
VWW22	A Q	V .		Y	Yes	Yes		Yes	Voo				Yes		
VWW31 VWW325	E E	Υ	Υ	Υ	Yes	Yes		Yes	Yes						
VWW325 VWW363	A	Υ			Yes Yes			Yes Yes				Yes		-	
VWW383	A	Y			Yes			Yes			1	Yes		 	
VWW41A	A	1			Yes			Yes				163			
VWW420	A	Υ			Yes			Yes				Yes		<u> </u>	
WJG1154A	A	Y			Yes			Yes				Yes		<u> </u>	
WJG1154B	Q	Y			Yes			Yes				Yes		†	
WJG1154C	A	Y			Yes			Yes				Yes			
WJG1171A	A	Y			Yes			Yes				Yes			
WJG1171B	E				Yes			Yes						1	
WJG2819A	Α	Υ			Yes			Yes				Yes			
WJG2819B	Α	Υ			Yes			Yes				Yes			
WJG2819C	Α	Υ			Yes			Yes				Yes			
WJG2862A	Q	Υ	Υ	Υ	Yes	Yes		Yes	Yes						
WJG2862B	Q	Υ	Υ	Υ	Yes	Yes		Yes	Yes						
WJG2863	Α				Yes			Yes				Yes			
WTS2552	Q				Yes			Yes							
WTS2577	Q			Υ	Yes	Yes		Yes							
WTS2578	Q	Υ		Υ	Yes	Yes		Yes				Yes			
WTS2580	Q				Yes			Yes							
WTS2592	Q				Yes			Yes						<u> </u>	

TABLE-GCMP 2. DEFINITION OF ANALYTE GROUPS

		,			ANALYTE GROUP	S	1	,	
	BASIC	MAJOR ION	MINOR ION	TRACE** METALS ONE	TRACE** METALS TWO	TRACE** METALS THREE	MERCURY (Hg) *	RADIONUCLID	OTHE
					FIELD				
PH	Х								
Temperature									
Conductance	Х								
Dissolved Oxygen			Х						
Eh			Х						
Alkalinity		Х							
Carbonate									Х
Bi-Carbonate									Х
Ferrous Iron			Х						
Sulfide			X						
				INORGANIC I	NDICATOR PARAI	METERS			
TDS	Х								
TSS	Х			M	AJOR ANIONS				
Chloride (CI)	х			IVI	AJOR ANIONS				
Fluoride (F)			х						
	V		^			>			
Sulfate (SO4=)	Х		· ·						
Nitrate (NO ₃ -N)			X						
Nitrite (NO ₂ -N)			X						
Total Phosphorus			х	MA	AJOR CATIONS				
Calcium (Ca)		х							
Magnesium (Mg)		X							
Potassium (K)		X		*					
Sodium (Na)		X							
Oddiuili (Na)		Λ		* *T	RACE METALS		I .	<u> </u>	
Aluminum (AI)						Х			
Antimony (Sb)						Х			
Arsenic (As)	х								
Barium (Ba)				Х					
Beryllium (Be)						Х			

TABLE-GCMP 2. DEFINITION OF ANALYTE GROUPS


				A	NALYTE GROUP	'S			
	BASIC	MAJOR ION	MINOR ION	TRACE** METALS ONE	TRACE** METALS TWO	TRACE** METALS THREE	MERCURY (Hg) *	RADIONUCLID	OTHE
Boron (B)						х			
Cadmium (Cd)	Х								
Chromium (Cr)				Х					
Copper (Cu)	х								
Iron (Fe)					Х				
Lead (Pb)	х								
Manganese (Mn)					Х				-
*Mercury (Hg)							×		
Molybdenum (Mo)					Х				
Nickel (Ni)					X				
Selenium (Se)	х								
Silver (Ag)	^			X					
Thallium (TI)				^		x			
Titanium (Ti)									
						X			
Zinc (Zn)	Х				RADIONUCLIDES				
Radium 226								х	
Radium 228								X	
Total Uranium								X	
Gross Alpha								X	
Gross Beta		·			ORGANICS			Х	
Benzene									Х
Toluene									Х
Ethylene									Х
Naphthalene									Х
Total Petroleum Hydrocarbon									Х
Balance									Х


TABLE-GCMP 3. GROUND WATER CHARACTERIZATION AND MONITORING PLAN SCHEDULE

Personnel	Plan Review	Audit Field and Data Management Activities	Issue Revised Plan	Issue Quarterly Reports	Annual Reports	Annual Report Review
Senior						
Environmental BP –						
RTK	X					X
Principal Advisor,						
Water Quality	X					X
Advisor Water		Periodic unannounced audits of field sampling. Audit report submitted to Project				
Quality, Supervisor	September	Manager within 30	December 31		March 31	
Sampling	each year	days of audit	each year	Within 90 days	each year	X
Environmental Laboratory, Quality Assurance Manager	X					×

PLATES

Attachment 1. Health and Safety Plan

All RTK employees will adhere to the following documents:

RTK's Safety and Facilities Standards Manual and the Safety and Health Policy stated therein; and,

RTK's Environmental Response Health and Safety Plan

The sampling crew will attend site-specific training annually or as required at each plant. In general, crewmembers will wear all required PPE and abide to all safety rules and regulations at each plant Existing site information indicates that heavy metals in the soil are not present at hazardous levels that could pose a significant risk to sampling crew while conducting sampling. Historical ground water and surface water monitoring data do not warrant health concerns related to skin exposure or vapor inhalation. Therefore, no special procedures or protective equipment is required during sampling.

Well abandonment and installation activities pose a potentially higher health and safety risk to on-site personnel. Therefore, site-specific health and safety plans will be developed for each project.

Attachment 2. Quality Assurance Project Plan

Standard Operating Procedures for Groundwater Sampling

Rio Tinto Kennecott South Jordan, Utah

Rev: 10

Rev Date: December 2023

Version Control

Issue	Revision No.	Date Issued	Page No.	Description	Reviewed By
09	09	October 2023	All	Initial conversion	Arcadis
10	10	December 2023	All	Updated formatting and content	Arcadis

APPROVAL SIGNATURES

Approved by:	Cassady Kristensen Senior Environmental BP - RTK	Click or tap to enter a date. ////2024 Date
Approved by:	Erka Naran Principal Advisor, Water Quality	Click or tap to enter a date. Ol/11/2024 Date
Approved by:	Mélissa Olsen Superintendent, Environmental Laboratory Quality Assurance Manager	Click or tap to enter far page 8/24 Date
Approved by:	Tille	Click or hap to
	Trevor Paulson	Date

Advisor Water Quality - Supervisor Sampling

Contents

Α	PPRO\	/AL SIGNATURES	3
С	ONTEN	итѕ	4
1	INT	RODUCTION	8
2	GR	OUNDWATER SAMPLING	
	2.1	FIELD LOGBOOK	11
	2.2	SAMPLE IDENTIFICATION	13
	2.3	PROCEDURE DC-03: SAMPLE CONTAINER PRESERVATION	17
	2.4	PROCEDURE DC-04: SAMPLE LABELLING	18
	2.5	PROCEDURE DC-05: SAMPLE CUSTODY	19
	2.6	PROCEDURE DC-06: SAMPLE PRESERVATION AND PACKAGING	20
	2.7	PROCEDURE DC-07: ELECTRONIC FIELD DATA COLLECTION SYSTEM	
3	EQI	JIPMENT MAINTENANCE AND DECONTAMINATION	24
	3.1	PROCEDURE MD-01: EQUIPMENT MAINTENANCE	25
	3.2	PROCEDURE MD-02: EQUIPMENT DECONTAMINATION	26
	3.3	PROCEDURE MD-03: MAINTENANCE AND CALIBRATION OF WATER LEVEL METERS	28
4	QU	ALITY CONTROL SAMPLING	29
	4.1	PROCEDURES QC-01: BLIND DUPLICATES	30
	4.2	PROCEDURE QC-02: EXTERNAL LABORATORY DUPLICATES	31
	4.3	PROCEDURE QC-03: MATRIX SPIKE SAMPLES	32
	4.4	PROCEDURE QC-04: TRIP BLANKS	33
	4.5	PROCEDURE QC-05: EQUIPMENT RINSEATE BLANKS	34
5	GEI	NERAL FIELD MEASUREMENTS	35
	5.1	PROCEDURE GF-01: EQUIPMENT CALIBRATION	36
	5.1.	CALIBRATION OF A PH METER:	36
	5.1.2	CALIBRATION OF TEMPERATURE-COMPENSATING SPECIFIC CONDUCTIVITY METER	36
	5.1.3 COM	CALIBRATION OF SPECIFIC CONDUCTIVITY METER (WITHOUT TEMPERATURE	37
	5.1.4	CALIBRATION OF DISSOLVED OXYGEN METER	38
	5.1.	TURBIDITY METER CALIBRATION	39
	5.2	PROCEDURE GF-02: PH MEASUREMENT	40
	5.3	PROCEDURE GF-03: EH MEASUREMENT	41

	5.4	PROCEDURE GF-04: SPECIFIC CONDUCTANCE MEASUREMENT	42
	5.5	PROCEDURE GF-05: MEASUREMENT OF CARBONATE AND BICARBONATE	43
	5.6	PROCEDURE GF-06: DISSOLVED OXYGEN MEASUREMENT	45
	5.7	PROCEDURE GF-07: FERROUS IRON MEASUREMENT	46
	5.8	PROCEDURE GF-08: SULFIDE MEASUREMENT	47
	5.9	PROCEDURE GF-09: TURBIDITY MEASUREMENT	48
	5.10	PROCEDURE GF-10: MEASUREMENT OF LIGHT NON-AQUEOUS PHASE LIQUID (LNAPL)	49
	5.11	PROCEDURE GF-11: MEASUREMENT OF DEPTH TO WATER AND DEPTH TO BOTTOM	50
	5.12	PROCEDURE GF-12: MEASUREMENT OF HHYDRAULIC HEAD USING IN-SITU TRANSDUCER.	52
	5.13	PROCEDURE GF-13: MEASUREMENT OF HYDRAULIC HEAD IN FLOWING WELLS	54
	5.14	PROCEDURE GF-14: REQUESTING NEW SAMPLE LOCATION NUMBER	55
	5.15	PROCEDURE GF-15: TEMPERATURE MEASUREMENTS	56
	5.16	PROCEDURE GF-16: PURGE AND RINSEATE WATER HANDLING	57
ŝ	GRO	DUNDWATER	58
	6.1	PROCEDURE GW-01: PIEZOMETER AND WELL IDENTIFICATION	59
	6.2	PROCEDURE GW-02: WELL INSPECTION	
	6.3	PROCEDURE GW-03: WELL EVACUATION	63
	6.4	PROCEDURE GW-04: FIELD MEASUREMENTS	66
	6.5	PROCEDURE GW-05: GROUNDWATER QUALITY FIELD DATA SHEETS	67
	6.6	PROCEDURE GW-06: BAILING	69
	6.7	PROCEDURE GW-07: HYDRASLEEVE SAMPLING	70
	6.8	PROCEDURE GW-08: SAMPLE COLLECTION – GENERAL IONS AND METALS	72
	6.9	PROCEDURE GW-09: SAMPLE COLLECTION – ORGANIC COMPOUNDS	74
	6.10	PROCEDURE GW-10: SITE-WIDE WATER-LEVEL MEASUREMENTS	75
	6.11	PROCEDURE GW-11: NEW MONITORING WELL CONSTRUCTION	76
	6.12	PROCEDURE GW-12: WELL ABANDONMENT	85
	6.13	PROCEDURE GW-13: WELL DEVELOPMENT	87
	6.14	PROCEDURE GW-14: SAMPLE COLLECTION - RADIONUCLIDES	88
	6.15	PROCEDURE GW-15: SAMPLE COLLECTION - LYSIMETER	89
7	PRO	OCESS WATER SAMPLING	92
	7.1	PROCEDURE PW-01: SAMPLE POINT IDENTIFICATION	93
	7.2	PROCEDURE PW-02: SITE INSPECTION	94

	7.3	PROCEDURE PW-03: FIELD MEASUREMENTS	95
	7.4	PROCEDURE PW-04: FIELD DATA SHEETS	96
	7.5 SUMP	PROCEDURE PW-05: SAMPLE COLLECTION - SMALL RESERVOIR AND LEAK DETECTION S	97
	7.6 AND Z	PROCEDURE PW-06: SAMPLE COLLECTION - LARGE RESERVOIR (DESILTING BASIN, ZONE ONE 2 RESERVOIR AND LEAK DETECTION SUMPS)	
	7.7	PROCEDURE PW-07: SAMPLE COLLECTION - SMELTER INTERIM PROCESS WATER POND.	101
	7.8	PROCEDURE PW-08: SAMPLE COLLECTION -BLUEWATER REPOSITORY SUMP	102
	7.9	PROCEDURE PW-09: SAMPLE COLLECTION - UPDES (GENERAL)	103
	7.10	PROCEDURE PW-10: SAMPLE COLLECTION - UPDES (ORGANIC)	104
	7.11	PROCEDURE PW-11: SAMPLE COLLECTION – BARGE	
	7.12	PROCEDURE PW-12: SAMPLE COLLECTION - TAILINGS POND RETURN	106
	7.13	PROCEDURE PW-13: SAMPLE COLLECTION - TAILINGS POND SEEPS	107
	7.14	PROCEDURE PW-14: SAMPLE COLLECTION - TAILINGS POND DRAINS	108
	7.15	PROCEDURE PW-15: SAMPLE COLLECTION - SMELTER PROCESS WATER SUMPS	
8	DRI	NKING WATER SAMPLING	110
	8.1	PROCEDURE DW-01: SAMPLE POINT IDENTIFICATION AND LOCATION	111
	8.2	PROCEDURE DW-02: SITE INSPECTION	114
	8.3	PROCEDURE DW-03: FIELD MEASUREMENTS	115
	8.4	PROCEDURE DW-04: FIELD DATA SHEETS	116
	8.5	PROCEDURE DW-05: SAMPLE COLLECTION - DRINKING WATER	117
	8.6	PROCEDURE DW-06: SAMPLE COLLECTION - DRINKING WATER	118
	8.7 DRAW	PROCEDURE DW-07: SAMPLE COLLECTION - DRINKING WATER LEAD AND COPPER FIRST	
	8.8	PROCEDURE DW-08: SAMPLE COLLECTION - COLIFORM BACTERIA	120
	8.8.1	I INTRODUCTION	120
	8.8.2	PROJECT RESPONSIBILITIES	120
	8.8.3	WATER QUALITY SAMPLING LOCATIONS	120
	8.8.4	WATER QUALITY SAMPLING PROCEDURES	120
	8.9	PROCEDURE DW-09: SAMPLE COLLECTION - ORGANICS (VOC)	121
	8.10	PROCEDURE SW-01: SAMPLE POINT IDENTIFICATION	122
	8.11	PROCEDURE SW-02: SAMPLE POINT DESCRIPTION	123
	8.12	PROCEDURE SW-03: GENERAL PROTOCOL	124

	8.13	PROCEDURE SW-04: FLOW MEASUREMENT	125
	8.14	PROCEDURE SW-05: SURFACE WATER QUALITY FIELD DATA SHEET	129
	8.15	PROCEDURE SW-06: SAMPLE COLLECTION - STANDING WATER	130
	8.16	PROCEDURE SW-07: SAMPLE COLLECTION - SPRINGS	131
	8.17	PROCEDURE SW-08: SAMPLE COLLECTION - RUN-OFF	132
	8.18	PROCEDURE SW-09: SAMPLE COLLECTION - FLOWING WATER	134
9	SE	DIMENT SAMPLING	136
	9.1	PROCEDURE SS-01: SAMPLE POINT IDENTIFICATION	137
	9.2	PROCEDURE SS-02: SAMPLE POINT DESCRIPTION	138
	9.3	PROCEDURE SS -03: FIELD EQUIPMENT AND GENERAL PROTOCOL	139
	9.4	PROCEDURE SS-04: SEDIMENT SAMPLE FIELD DATA SHEET	140
	9.5	PROCEDURE SS-05: SAMPLE COLLECTION – GENERAL IONS AND METALS	142
1(RFF	FERENCES	144

Attachments

TABLES

DC-1 LIST OF APPROVED SAMPLE LOCATIONS

DC-2 EXAMPLE OF ANALYTICAL REQUEST SHEET

DC-3 SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES

FIGURES

FIGURE GW-1. EXAMPLE WELL INSPECTION REPORT

FIGURE GW-03. REQUEST FOR MONITOR WELL CONSTRUCTION

FIGURE GW-4. EXAMPLE BOREHOLE LOG

FIGURE GW-7: EXAMPLE LYSIMETER RECORD KEEPING FIELD FORM

FIGURE PW-1. UPDES FIELD LOG SHEET

FIGURE DW-1. DRINKING WATER FIELD DATA SHEET

FIGURE DW-2. EXAMPLE UTAH STATE FORM FOR BACTERIOLOGICAL EXAMINATION

FIGURE SW-2. EXAMPLE SURFACE WATER QUALITY FIELD DATA SHEET

PLATES

PLATE 1. NORTH FACILITIES WELL LOCATIONS

PLATE 2. SOUTH FACILITIES WELL LOCATIONS

1 INTRODUCTION

This set of Standard Operating Procedures contains the protocols to be used for Rio Tinto Kennecott (RTK) sampling of groundwater, process water, surface water, and bottom sediments of surface water bodies.

These procedures will be used to collect data for site investigations and other projects requiring information about water quality. The scope of field activities covered by these procedures include documentation; equipment maintenance, decontamination, and calibration; field measurements; sample container preparation; quality control samples; sample collection; and surveying of sample locations.

Sampling locations will be included in the appropriate Project Work Plan or other document directing the sampling program. The following information, as appropriate, will be specified in such a Plan for each known or planned water sample location:

- Actual or estimated survey location (coordinates in feet, Kennecott Mine Datum) or distance from a landmark for each sample point.
- Actual or estimated elevation of the ground surface above mean sea level (feet).
- Sampling method and measurement requirements.
- Sample identification codes to be used.
- Sampling frequency or schedule.
- Special documentation requirements.
- Requirements for surveying; and,
- Analytical parameters.

2 GROUNDWATER SAMPLING

The following sections describe the process and documentation required for collecting groundwater samples at RTK.

SOP – Groundwater Sampling

Rev: 10 | Rev Date: December 2023

2.1 PROCEDURE DC-01 FIELD LOGBOOK

Record appropriate information in a Field Logbook to reconstruct events associated with sampling. Field Logbook entries will be made in indelible ink. Prepare and use Field Logbooks as follows:

- 1. Obtain a bound book. Consecutively number the pages if they are not already numbered. Store books in Project Files when not in use.
- 2. Assign a document control number to each book, for example: GCMP-FN-RGM-01, where "GCMP" is an example of a project identification acronym or number, "FN" indicates Field Notebook, "RGM" is an example of owner identification (initials), and "01" is a sequence number for the Book.
- 3. Enter the following information on the cover of each book:
 - Name of person or organization to whom the Book is assigned.
 - Book
 - Obtain a bound book.
 - Enter the following information on the cover of each book:
 - Name of person or organization to whom the Book is assigned.
 - Book number (sequence number).
 - Site name and number/acronym.
 - Start date.
 - End date.
- 4. At each sample site, start a new page with the following information:
 - Date and time started.
 - Sample location identification number.
 - Full name of person recording data.
 - Other personnel on site.
 - Sample location identification number (at top of page).
 - Full name of person recording data (at bottom of page).
 - Weather (temperature, wind speed/direction, precipitation).
 - Sample identification numbers which correspond to any samples collected.
 - Sample identification numbers used for duplicates.
 - Equipment maintenance conducted.
 - Equipment problems and how they were corrected.
 - Additional observations about the sampling event or conditions that may affect sample integrity.
 - Identify source and location for any photographs taken.
 - number (sequence number).
 - Site name and number/acronym.

- Start date.
- End date.

2.2 PROCEDURE DC-02 SAMPLE IDENTIFICATION

A sample coding system will be used to identify each sample collected. This coding system will ensure unique sample identification and provide a tracking record to allow retrieval of information about a particular sample.

All samples will be identified by a sample identification number utilizing a maximum of eight characters. Within this sample identification number is a unique number identifying the site. Alphabetic characters are used to denote general location and sample depth.

For existing sites, the sample identification number will be designated as identified in Table DC-1. Because of past changes in the well identification coding system, the characters preceding the site number may have varied in the past. All future references to the sampling site should be as identified in Table DC-1.

New sampling locations will be designated as discussed below:

Sample Designation for New Sites:

The sample identification number will consist of the following components for the eight-letter identification code:

Area Sample Location Depth Designation Type

Please refer to Attachments - Table DC-1 below for a list of approved sample locations.

The components of the sample identification number are a two-letter area identification acronym followed by a single letter identifying the medium sampled, followed by a unique four-digit sampling location identification number and a single letter code identifying the depth of sample collection. All sample identification numbers are unique and must be approved by the Sampling Supervisor. The procedures for obtaining a new well identification number are provided in Procedure GF-14.

All samples collected will be identified using this eight-character sample identification number. A specific sample collected at a location will be identified as unique by the date on which the sample was collected. The date will be identified using the following six-digit number:

Month Day Year

The following sections describe each portion of the sampling point identification number.

Area Designation Acronym

The area designation acronym consists of a two-letter code which identifies a specific area of RTK. Approved area designation codes are identified in Table DC-2.

The locations designated by these codes are shown on Plates 1 through 3. Other letters may be used, with the approval of the Sampling Supervisor, if they are consistent with earlier location names and will create less confusion.

Acronyms and the area represented by the acronym are provided below:

Note: Area locations are shown on Plates 1, 2, and 3

Acronym	Area Represented by Acronym
AN	Anaconda Tailings
AR	Arthur
B1	Bingham Creek Channel - Upper Reach
B2	Bingham Creek Channel - Upper Middle Reach
B3	Bingham Creek Channel - Lower Middle Reach
B4	Bingham Creek Channel - Lower Reach
BC	Barney's Canyon
BD	Bluffdale City
BE	Box Elder
BF	North of Bingham Creek Channel (Bingham Flats)
BM	Bingham Mine
BN	Bonneville
BR	Bluewater Repository
BS	South of Bingham Creek Channel
BW	Butterfield Waste Rock
CF	Carr Fork
CH	Chevron Chemical
CO	Copperton
CP	East of Small Reservoir C-5 - C7 (Cemetery Pond)

Acronym	Area Represented by Acronym
DV	Davis County
EC	Eastside Collection System
EP	Evaporation Ponds
EV	East Valley - East of Jordan River
GS	Great Salt Lake
HC	Harkers Canyon - West of Hwy 111
HM	Herriman
JR	Jordan River
KC	Kersey Creek
KN	Kearns
KS	Kessler Creek
LC	Lee Creek
LR	Large Reservoir
LS	Landfills
LT	Lark Tailings
LW	Lark Waste Rock
MC	Magna Concentrator
MG	Magna
MD	Mine Dump
MO	Morton Salt
NO	North of I-80
OQ	Oquirrh Mountains
PC	Bonneville Power Plant
RC	Ridgeland Canal
RF	Refinery
RV	Riverton
RT	Ritter Canal
SJ	South Jordan
SL	Slag
SM	Smelter
SO	South Oquirrh Mountains
SR	Small Reservoir
TL	Tailings
TR	Traverse Range
WJ	West Jordan City
WT	Waste Water Treatment Plant
WV	West Valley

Sample Type

The sample type is a single letter code which identifies the medium sampled. Approved type codes are:

- B Samples Collected of Boring
- D Drinking Water
- P Process Water
- S Surface water
- **Z** Piezometers
- G Groundwater

Sample Definition

- B Sample Collected of Boring = water collected from an uncased boring not water from a well
- D Drinking Water = water collected on RTK property that is currently used for drinking water
- G Ground Water = water pulled from a well-constructed of natural materials
- P Process Water = water used in RTK's operations
- S Surface Water = water contained on the surface to include runoff, natural creeks, and streams,
- Z Piezometers = pressure sensing device used only for measurement of water levels

Other letters may be used, with the approval of the Sampling Supervisor, if they are consistent with earlier location names.

Location

The four-digit location number is unique throughout all RTK monitoring areas and identifies a specific sampling location. This number must be obtained from the Sampling Supervisor.

Depth Code

The single letter depth code identifies the relative depth from which the sample was collected. Shallowest samples are assigned an "A" designation with subsequent letters representing greater depths. Field notes must correlate sampling depth with sampling depth code.

Additional Information

Additional information regarding site identification specific to the media being sampled is provided in procedures GW-01, PW-01, SW-01, and DW-01.

2.3 PROCEDURE DC-03: SAMPLE CONTAINER PRESERVATION

- 1. Prepare sample containers prior to the sampling event. Use new, laboratory-cleaned sample containers. The containers should be rinsed three times with de-ionized water. Label the containers as directed by Procedure DC-04.
- 2. Use the proper containers and preservatives for each analytical parameter as specified in Table DC-1
- 3. Prepare containers for required QC samples.

2.4 PROCEDURE DC-04: SAMPLE LABELLING

Labeling may be done directly on the sample containers with indelible ink or using a stick-on label. Stick-on labels will be waterproof and written on using only indelible ink. An example label is shown in Figure DC-1. Regardless of the method of labeling used, record the following information on the sample container prior to sampling:

- Sample ID #: Identification number for the water sampling location (usually acronym plus sequence number); and,
- Analysis.

Record the following information on the container at the time of sampling:

- Date and Time of Sampling; and,
- Sampler (Signature of person filling container).

KENNECOTT UTAH COPPER Environmental Laboratory		
Sample I.D. #	Preservative:	
Control #		
Analysis:	Date:	
	Time:	
Comments:	Sampler:	

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

2.5 PROCEDURE DC-05: SAMPLE CUSTODY

The Analytical Request Sheet will serve to document the analytical request and Sample Chain of Custody documentation. Data for this form (Figure DC-02) will be entered into field laptops by the sampler at the time of sample collection as follows:

Sheet Request No.: Reserved for laboratory use.

Sample Submitted by: The name of person requesting the sample.

Report Results to: The name of person receiving results.

Lab I.D. #: Laboratory I.D # to be entered by laboratory personnel.

Sample ID #: Sample Identification Number.

Date, Time: Date and time sampling sheet is completed.

Analyses Requested: The analyses to be performed for the sample - The standard suite of analyses to

be performed on each sample is coded into the laboratory's computer system. If this standard suite of analyses is to be run, the analyses will be specified by writing GCMP in the analyses requested column of the form. If other analyses

are requested, they must be explicitly specified.

Sample Preservation: Samples will be preserved as detailed in Procedure DC-06. The presence of ice

in the cooler when shipping will also be noted on the Analytical Request Form.

Surrendered by: The signature of person delivering the sample or the person who has prepared

the sample for to the Laboratory.

Received by: The signature of the laboratory staff member receiving the samples.

Comments/Special

Instructions: Additional comments or instructions.

After collection, the sample will be stored in a secure manner and packed in ice until delivered to the laboratory cooler.

Laboratory personnel will note any damaged sample containers or discrepancies between the sample label and information on the form. The presence (or absence) of ice in the cooler will be documented on the Analytical Request Form. The manager of KEL will contact the Field Team Leader or the Supervisor of Environmental Sampling to resolve any problems.

Please refer to Attachments - An example of the analytical request sheet is presented in Figure DC-2, below:

2.6 PROCEDURE DC-06: SAMPLE PRESERVATION AND PACKAGING

Table DC-3 contains the required sample containers, preservatives, and allowable holding times for analytical parameters. Holding times start from the moment that the sample is collected.

- 1. Place samples in coolers with sufficient ice to ensure the sample will be delivered to the lab with ice in the cooler.
- 2. Place the Analytical Request/Sample Chain of Custody form (see Procedure DC-05, GW-05, PW-04, SW-05, and SS-04) inside or attached to the cooler (sealed in a Ziploc plastic bag to protect from moisture) for shipment to the laboratory.
- 3. Packaging of samples to be submitted to an external laboratory require additional measures to prevent breakage of sample containers.

Please refer to Attachments - Table DC-3: Sample Containers, Preservation Techniques, and Holding Times

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

2.7 PROCEDURE DC-07: ELECTRONIC FIELD DATA COLLECTION SYSTEM

Laptop/Desktop computers are used for field data documentation. Appropriate information is entered into the computer at each site and regenerated to a hard copy later in the day, at the Environmental Laboratory. Use laptop computers as follows:

- Obtain a laptop/desktop computer. Be sure it contains the "Groundwater program" by turning on the computer and locating the icon in the Windows program. Re-charge laptop computers when they are not in use.
- 2. Place the mouse arrow on the icon and double click on the icon with the left mouse button to bring up the main "Groundwater" screen.
- 3. To enter a sampling site, click on the "New Well" box on the main screen. Scroll down until you find the sample site that you want and then left click on the sample number. You can also enter the Sample site by highlighting the location button and manually typing the site I.D. into the box. You will receive a prompt asking you if you want to "Start a New Well". Click "Yes". The date and time will be automatically inserted with the date and time of that exact moment. Date and time may be edited to give a more accurate arrival time.
- 4. Enter the following information as indicated by labels on the individual boxes:
 - Samplers Initials
 - Depth to water reading
 - Measured or assumed total depth of well
 - Calculated purge volume (if necessary, no purge volume from table)
 - Select the type of pump used (if no pump used select Grab)
 - Pump identification number (if necessary)
- 5. At the end of each sampling event, calculate the total volume purged by multiplying the calculated flow rate by the total minutes the water was being purged. Enter the calculated volume in the "Total Volume Pumped" box.
- 6. To activate the remarks window, place the mouse arrow on the "Remarks window" found in the "Remarks" box and double click with the left mouse button. Record the appropriate information such as other samplers on site, well conditions, changes in flow rate, or any other comments that are believed to be necessary. To close the remarks window, click on the "X" in the box at the upper right-hand corner of the "Remarks" window.
- 7. Record the number of sample bottles filled and submitted for analysis during the sampling event in the "Number of Bottles" box.
- 8. Record the time the sampling event was completed in the "Completion Time" box.
- 9. If the sampler leaves the well for any amount of time during the purge of the well, the time spent away from the well must be recorded in the "Time Spent Away from Well" box.

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

10. The "Observation" button creates a new data entry line for each field measurement sampling event. When activated a new line will be created with the date, and time automatically inserted. The date and time may be edited to give a more accurate sampling time. The "Observation" pane is a tool bar that contains the functions used for entering field data.

Click on the "Observation" box and the observation window will appear. Double click anywhere on the window and a window will appear to enter a single sampling observation. The following are entered in this window:

- Flow
- Conductivity
- Temperature
- pH
- Sampling Time
- Date

Once the desired data has been entered, click on the "Done" button. Repeat this procedure until all sampling observations have been entered and then click "Close" on the main observation screen.

- 11. The "New Well" button creates a new field data entry screen upon the arrival or start of a new sampling event.
- 12. To generate a hard copy of the field data sheet and the analytical request sheet and chain of custody the sampler must connect the laptop computer to the KEL server by inserting the LAN (RJ-45) cable to the specified slot in the computer. The user must be logged on to their computer using the user name "Ranch" and the current password to be able to log on the KEL server. Once the cable is connected, the computer will automatically detect the computer and will connect to the server. Open the "Groundwater" program, and then click on the "Utilities" button on the main screen. Then click on the "Check In" button. A screen will then appear giving the options to print "Transfer to Server", "COC (Chain of Custody)", and "Field Sheets", then click on the respective document that you need. When the window of the document appears, you will be prompted that a copy has been placed on the server. To print a copy, click on the "Print" and then you will be prompted with a "Print Setup" screen. Once settings are correct, click on "OK" to print document.
- 13. To export the data to the RTK lab's server, return to the "Check-in" screen of the "Utilities" section and click on "Transfer to Server". A bar graph will show the progress of the transfer. The program will then export the data and give a completed transfer message.
- 14. After the hard copies have been generated and have been reviewed for any anomalous data and the data has been transferred to the RTK lab's server, delete the data from the computer's memory. To delete, select "Utilities" from the main "Groundwater" screen and click on the "Check Out" button. You will be prompted several times asking you if you are sure that your data will be deleted. This will remove the data that has been exported and should refresh the screen and clear all samples saved in the memory.
- 15. Fill in the appropriate information on the field data sheet such as field logbook reference numbers and circling methods of measurements. Fill in the appropriate information on the analytical request sheets such

as control numbers, sample submitted by, and conformation of sample being turned in on ice. Sign both documents and submit proper personnel. If any problems are found on the field sheet, after the sample has already been exported, alert the Sampling Supervisory for immediate correction.

3 EQUIPMENT MAINTENANCE AND DECONTAMINATION

This section presents procedures for the activities associated with equipment maintenance and documentation as listed below.

3.1 PROCEDURE MD-01: EQUIPMENT MAINTENANCE

Equipment and instrument maintenance is required to ensure that accurate data are collected during field investigations with minimal equipment problems. This procedure discusses the required field maintenance. Procedure GF-01 includes equipment calibration steps. In addition to these procedures, consult instrument manuals for the proper preventative maintenance and calibration details for each instrument.

Routine daily maintenance procedures will be conducted in the field to ensure that equipment is operable:

- 1. Remove surface dirt and debris.
- 2. Replace disposable parts (e.g., probe membranes) as required by equipment manual.
- 3. Store equipment in a secure, dry place, protected from dust, wind, and precipitation.
- 4. Large equipment stored outside will be protected by covering sensitive parts to protect them from dust, wind, and precipitation.
- 5. Inspect equipment and instruments for possible problems (e.g., cracked or clogged lines or tubing, weak batteries) daily, and
- 6. Charge battery packs for equipment when not in use and when necessary. All equipment maintenance will be documented in the field logbook.

Rev: 10 | Rev Date: December 2023

3.2 PROCEDURE MD-02: EQUIPMENT DECONTAMINATION

Decontaminate all non-disposable equipment used for the collection, preparation, preservation, and storage of samples prior to their use and after each subsequent use.

The materials needed for decontamination are dependent upon the equipment to be cleaned. The following is a list of equipment to be used during decontamination:

- Cleaning solutions, tap water, and de-ionized/distilled water for the final rinse.
- Storage vessels to transport large volumes of de-ionized/ distilled water to the site.
- Buckets and wash basins for use in the washing and rinsing of equipment.
- Paper or cloth towels and Chemwipes. For use in cleaning all outside surfaces or surfaces that do not come into contact with the sample; and,
- Plastic garbage bags to contain all disposable items (gloves, paper towels, etc.).

Decontaminate meters measuring general field parameters and glassware as described below:

- Rinse equipment for several seconds with de-ionized/distilled water.
- Rinse two times with the water that is being sampled before collecting a sample for the parameters being measured.
- Periodically, at the sampler's discretion, glassware will be immersed in a 10% hydrochloric acid solution, followed by manually scrubbing with a non-phosphate detergent.

Decontaminate non-disposable sampling equipment such as stainless-steel buckets, bailers, pumps, and dippers as described below:

- Manually scrub with a non-phosphate detergent. Hot water if the equipment is used in a petroleum contaminated well.
- Rinse with tap water, and then with de-ionized/distilled water.
- Rinse three times with de-ionized/distilled water.
- If sampling for organic compounds, rinse with pesticide-grade acetone or pesticide-grade methanol.
- Air dry equipment; and,
- Place all disposal items into plastic garbage bags and transport to the appropriate garbage receptacle on RTK property.

Larger pieces of equipment require specialized decontamination procedures. The small-diameter evacuation pumps will be decontaminated by rinsing the exterior of the pump, and the portion of the hose that was immersed, with clean tap water. The interior will be decontaminated by placing the pump intake into a five-gallon container filled with clean tap water and by pumping the water through the pump and hose. After the tap water wash, the pump will be appropriately decontaminated as per the above procedures using de-ionized/ distilled water in the second tank.

The tubing used for the Bennett pump will be decontaminated by pumping de-ionized/distilled water through the tubing. The outside of the tubing will be decontaminated by rinsing with de-ionized/ distilled water.

Rev: 10 | Rev Date: December 2023

A pressure sprayer steam cleaning can be used to effectively decontaminate the outside of the pump and tubing. At locations where a clean tap water source is available, the submersible pump will also be decontaminated by pumping 50 to 75-gallons through it and the discharge tubing. A clean 35-gallon or larger, plastic barrel may be used for this purpose.

All disposal items will be placed in plastic garbage bags and transported to the appropriate garbage receptacle on RTK property.

Rinseate will be disposed of as described in Procedure GW-06.

3.3 PROCEDURE MD-03: MAINTENANCE AND CALIBRATION OF WATER LEVEL METERS

All water level meters will be calibrated annually or after any repairs to ensure the marks on the tape used for measurement of the water levels are in the correct position, and that the tape has not slipped. The calibration shall be made to a steel tape. If these measurements show the marking to be incorrect or that the tape has stretched more than 0.1 percent of its length, the wire will be repaired or replaced.

The water level probe will be checked, cleaned, and or replaced whenever a clear and distinct signal is not obtained when making water level measurements. If probe wire repair results in the cutting of the water level meters measurement line, the wire beneath the cut will be replaced with wire containing the proper measuring marks and factory-made splice joints.

4 QUALITY CONTROL SAMPLING

This section presents procedures for general field measurement activities. Quality control (QC) samples will be collected to measure accuracy and precision of analyses as affected by field methodologies. Field QC samples appropriate to water sampling include trip blanks, equipment rinseate blanks, duplicates, and external laboratory duplicates. Rates of QC sample collection is specified in the project plan. QC samples will be documented and handled in the same manner as other samples prior to submittal to the laboratory (see Procedures).

4.1 PROCEDURES QC-01: BLIND DUPLICATES

Duplicates will be collected at a rate specified in the project plan, generally one duplicate will be collected for every twenty (20) sample points. At least one duplicate sample will be collected from each facility that requires ground water monitoring for a Ground Water Discharge Permit each quarter. The sites selected for the collection of duplicate samples will represent the general quality of water recently sampled. Duplicates should represent the range of water quality sampled throughout the year. Additional duplicates will be collected, if there is a concern that special problems may be encountered in particular samples that are not represented by other duplicate samples.

Duplicates will be collected by alternately filling the primary and duplicate sampling containers to ensure that representative samples are collected. The first three letters of the sample name will be "DUP", and the next three numbers will indicate the sequence number for the duplicate sample. For example, "DUP63", where the number "63" indicates the sixty-third duplicate sample collected. Each year the sequence will start over at 01.

The actual name of the sample duplicated will be recorded in the field logbook, and reported to the laboratory after a final Certificate of Analysis is obtained.

4.2 PROCEDURE QC-02: EXTERNAL LABORATORY DUPLICATES

When required External laboratory duplicates will be collected by alternately filling the primary and duplicate sample containers to ensure that representative samples are collected. When requested, an internal duplicate will be collected at each sampling site where an external duplicate is collected. The first three letters of the sample name will be "EXL", and the next three numbers will indicate the sequence number for the duplicate sample. For example, "EXL052", where the number "052" indicates the fifty- second external laboratory duplicate collected. For new year the number sequence will start over and begin at "001".

The Project Plan may require the collection of as many as five external laboratory duplicates during a given sampling event. When multiple sampling duplicates are required, the duplicate sample containers should be alternately filled to ensure representative samples. A letter will be appended to the sample identification number to uniquely identify each sample. For example, EXL052c would represent the third external duplicate.

The actual name of the sample duplicated will be recorded in the field logbook, and reported to the laboratory after a final Certificate of Analysis is obtained.

4.3 PROCEDURE QC-03: MATRIX SPIKE SAMPLES

Matrix spiking will be done at the frequency identified in the Project Plan, generally one (1) a day or one (1) in every twenty (20), whichever is greater. Laboratory personnel will select samples for matrix spiking. Additional samples may be submitted by field personnel for laboratory spiking. Samples collected in the field for laboratory spiking will be assigned a sample identification number starting with the letters "QC" followed by the numeric portion of the sample point identification number and any trailing letters followed by the letters "SK" for the spike sample and "SD" for the spike duplicate. For example, a sample collected from well "NEM478" for spiking would be labeled "QC478SK" and the spike duplicate would be "QC478SD". Any spiking instructions must be clearly identified on the analytical request form. Laboratory personnel will assign control numbers to all spiked samples.

Samples selected for spiking by field personnel will be collected by alternately filling the primary and spike sample containers to ensure that the samples collected are representative of each other.

4.4 PROCEDURE QC-04: TRIP BLANKS

Trip blanks will be collected at the rate specified in the Project Plan. In general, the collection rate will be one (1) for each day an equipment blank is collected and generally one (1) in every twenty (20) samples. Trip blank samples will be submitted and labeled with a special identification number. The first three letters of the sample name will be "TBK", and the next two or three numbers will indicate the sequence number for the trip blank. For example, "TBK23", where the number "23" indicates the twenty-third trip blank collected. Each new year the number sequence will start over and begin at "01". The sample containers will be prepared using the proper preservatives and filled with ultrapure, deionized (Type II) reagent grade water. The containers will accompany the sampling crew that day and will be delivered to the laboratory along with the other samples.

4.5 PROCEDURE QC-05: EQUIPMENT RINSEATE BLANKS

For inorganic samples, a set of sample containers will be prepared (labeled and preserved) for approximately one (1) in every twenty (20) sample points by each sampling device. The rate of equipment rinseate blank sampling will be approximately 1 in 10 for sampling events that require organic analyses. The actual rate will be specified in the Project Plan. The sample containers will be prepared using the proper preservatives and filled with the final rinse water used on the sampling device (i.e., non-dedicated pump or bailer). The water used for this final rinse will be reagent grade, ultrapure (Type II) de-ionized water. The first two or three letters of the sample name will be "EQB", and the next three numbers will indicate the sequence number for the equipment rinseate. For example, "EQB41", where the number "41" indicates the forty-first rinseate blank collected. Each new year the number sequence will start over and begin at "01".

The final rinse of sampling equipment shall be collected as the rinseate blank. The rinsing procedure should, to the extent possible, be the same as normally used during the sampling event. A description of the equipment rinsed, and the name of the location sampled will be recorded on the field sampling form.

5 GENERAL FIELD MEASUREMENTS

This section presents procedures for the general field measurement activities listed below.

5.1 PROCEDURE GF-01: EQUIPMENT CALIBRATION

This procedure discusses the calibration of field equipment. In addition to these procedures, consult instrument manuals for the proper preventative maintenance and calibration details for each instrument.

Calibration solutions must not be reused and must be renewed prior to expiration dates stamped on the manufacturer's container. Equipment calibration ensures that measurements obtained are accurate in reference to a known standard. A calibration schedule is provided below for field equipment and instruments:

TABLE GF-1. Equipment Calibration Schedule

Instrument	Frequency
pH Meter	Prior to each site
Specific conductance meter	Prior to each site
Dissolved oxygen meter	Prior to each site
Turbidity meter	Prior to each site when requested

5.1.1 CALIBRATION OF A PH METER:

- 1. Calibrate the pH meter prior to use at each sampling site in the field.
- 2. Use specific calibration techniques according to the manufacturer's instructions using two of the standard buffer solutions (either 4 and 7 or 7 and 10, depending on the expected range of pH). If the meter does not automatically compensate for temperature, the pH values of these buffers will be compensated for temperature according to the values supplied on the manufacturer's bottle label. The temperature at which the sample pH was measured will then be used to compensate for temperature on the meter.
- Document calibration information in the Field Logbook. Information to be recorded includes all
 calculations and adjustments made to the meter. The time, standard concentrations, and water
 temperature, when not using a temperature compensating meter, will also be recorded.

5.1.2 CALIBRATION OF TEMPERATURE-COMPENSATING SPECIFIC CONDUCTIVITY METER

- 1. Calibrate the meter in the field prior to use at each sampling site according to the manufacturer's specifications. Check the calibration according to the manufacturer's recommendation to ensure that proper measurements are taken.
- 2. In general measure the conductance of the standard using the meter to be calibrated. Make adjustments as directed by the manufacturer's specifications.
- 3. Record calibration information in the Field Logbook or on the appropriate Field Data Sheet. Information to be recorded includes all calculations, adjustments made to the meter, and accuracy prior to calibration. Documentation will also include time of calibration, standard concentrations, and water temperature.

5.1.3 CALIBRATION OF SPECIFIC CONDUCTIVITY METER (WITHOUT TEMPERATURE COMPENSATION

- 1. Calibrate the specific conductance meter prior to use at each sampling site in the field, and document in the Field Logbook. Documentation will include standard concentration(s), time of calibration, water temperature, and all calculations. Check the calibration as necessary to ensure that proper measurements are taken.
- 2. Calibrate in the field using a 1,000 mhos/cm (KCl) standard solution. The conductivity probe cell constant will be calculated according to the formula:

$$K = \frac{E}{C}$$

Where:

K = probe cell constant (unitless)

C = measured conductance value of standard (mhos/cm); and

E = expected conductance at observed temperature of standard solution (see Table GF-2).

Using the cell constant calculated above, correct the field specific conductance measurements to 25°C using the following equation:

$$S = \frac{K * C}{1 + [0.02(T - 25)]}$$

Where:

S = specific conductance at 25°C (mhos/cm).

K = cell constant calculated above.

C = specific conductance (mhos/cm) measured in field; and

T = temperature (°C) of sample in which conductance was measured.

3. Document calibration details on the field data sheet. Information to be recorded includes all calculations, adjustments made to meter, and accuracy prior to calibration.

Conductivity Temperature Corrections for 1,000 mhos/com Conductivity Standard

Temperature C	Conductivity (mhos/cm)
0	604
1	616
2	629
3	642
4	655
5	668
6	682
7	696
8	709
9	724
10	739
11	754
12	769
13	785
14	801
15	817
16	834
17	851

Rev: 10 | Rev Date: December 2023

18	868
19	886
20	904
21	922
22	941
23	960
24	980
25	1,000
26	1,020
27	1,040
28	1,061
29	1,082
30	1,104
31	1,126
32	1,148
33	1,171
34	1,194
35	1,218

5.1.4 CALIBRATION OF DISSOLVED OXYGEN METER

Follow this procedure for the air calibration method for a meter with a membrane probe. Be aware that the calibration can be disturbed by physical shock, touching the membrane, or drying out the probe. If the dissolved oxygen meter does not have a membrane probe (or is not an Orion Research O2 on a pH meter), calibrate the dissolved oxygen meter in accordance with the instruction manual.

- 1. Adjust the "ZERO" reading while in the "OFF" position.
- 2. Switch to "RED LINE" and adjust the reading to align with the red line.
- 3. Switch to "ZERO" and adjust to zero with the zero-control knob.
- 4. Plug in probe and tighten retainer.
- 5. Insert probe into the calibration chamber making certain the chamber is slightly moist and the rubber plug is watertight. Place the calibration chamber (with probe in place) into the water being sampled and wait 10-15 minutes for the temperature to stabilize.
- 6. Switch to "TEMPERATURE" and read.
- 7. Determine the solubility of oxygen at that temperature from the calibration table included with the instrument.
- 8. Determine the altitude correction factor and multiply this factor by the solubility figure. This is the corrected saturation value (mg/L).
- 9. Switch to the appropriate scale and adjust the calibration knob to the corrected saturation value.
- 10. Wait two minutes to verify the stability of the reading and readjust if necessary.
- 11. Document calibration details in the Field Logbook or on the appropriate Field Data Sheet. Documentation will include time of calibration, water temperature, and all calculations. The condition of the probe will be checked prior to each measurement.

5.1.5 TURBIDITY METER CALIBRATION

Calibrate the turbidimeter in accordance with this procedure or manufacturer's instructions, as appropriate:

- 1. Check the zero setting and adjust as necessary with turbidimeter in the "OFF" position.
- 2. Place the opaque plastic tube into the cell to block all light and allow the zero setting to be calibrated. Calibrate zero at all scale settings.
- 3. Place a standardized solution (usually provided with the meter) into the cell and cover with light shield. Keep this tube absolutely clean. Wipe with a soft cloth after handling and prior to calibrating. Discard if the tube becomes scratched or etched. Calibrate meter to exactly the reading of the standard solution.
- 4. Document calibration details in the Field Logbook or on the appropriate Field Data Sheet. Documentation will include time of calibration, water temperature, and all calculations. The condition of the probe will be checked prior to each measurement.

Rev: 10 | Rev Date: December 2023

5.2 PROCEDURE GF-02: PH MEASUREMENT

- 1. If the measurement cannot be made within the water body, collect a sample in a clean beaker. Record the time the sample is collected.
- 2. Measure the temperature with a clean thermometer and adjust the temperature knob accordingly (for meters which do not compensate for temperature).
- 3. Rinse the probe with distilled water prior to immersing into the sample.
- 4. Allow the meter to stabilize (change less than 0.05 units in a one-minute period with no systemic drift). Read and record the pH value on the Field Data Sheet. Record the time the measurement is taken.
- 5. Repeat steps 1 through 4 if the results are questionable.
- 6. Verify the accuracy of the measurement, if necessary, by re-testing a buffer solution. This step need not be performed after each measurement if no drift is detected in the meter after an initial test.
- 7. Rinse the probe.
- 8. If a digital pH meter is used, add DI water if the electrolyte is not sufficient to cover the electrode.
- 9. Store the meter according to the manufacturer's recommendations.

5.3 PROCEDURE GF-03: EH MEASUREMENT

The ability of a natural environment to bring about an oxidation or reduction process is measured by a quantity called its redox potential and is designated as Eh. Eh is a measure of the ability of an environment to supply electrons to an oxidizing agent or to take up electrons from a reducing agent.

- 1. Check the accuracy of the Eh probe:
 - a. Prepare equipment according to manufacturer's specifications.
 - b. Check the accuracy of electrode system with a reference solution of known Eh (ZoBell solution). Record the following information in the Field Logbook.
 - Bring the reference ZoBell solution to sample temperature and record the temperature.
 - Measure potential, in millivolts, of the ZoBell solution at sample temperature (Eh ZoBell(obs)) and check against theoretical value at measured temperature. This value should be + 10 millivolts (EH ZoBell + Ref).
 - e. Place electrode in Eh cell or water sample container and allow readings to stabilize (after several minutes).
 - f. If using a cell, turn off water flow to prevent streaming potential and immediately take reading.
 - g. Record data (Eh) and calculate Eh relative to standard hydrogen electrode.
 - h. Calculate system Eh as follows: Ehsys = EH obs + Eh ZoBell+Ref Eh ZoBell(obs).
 - i. Record Eh to the nearest + 10 millivolts. (Oil and grease in the sample solution may coat the noble-metal electrode and provide erroneous readings. Note any oil in the Field Logbook.)
- 2. Take Eh measurements in accordance with the manufacturer's specifications in water sample or cell.
- 3. Record the measurements on the appropriate Field Data Sheet.
- 4. Recalibrate and check meter accuracy in accordance with the manufacturer's recommendations.

5.4 PROCEDURE GF-04: SPECIFIC CONDUCTANCE MEASUREMENT

- 1. If the measurement cannot be made within the water body, collect a sample in a clean beaker. Record the time the sample is collected.
- 2. Immediately take a temperature measurement and "set" the temperature control if appropriate for the meter used.
- 3. Immerse the probe into the sample, shake lightly, and allow the reading to stabilize.
- 4. Record the reading on the Field Data Sheet. Record the time the measurement is taken. If questionable, repeat steps "1" through "3".
- 5. Rinse the probe thoroughly with distilled water.

5.5 PROCEDURE GF-05: MEASUREMENT OF CARBONATE AND BICARBONATE

This procedure describes the measurements of carbonate and bicarbonate to be conducted at the Environmental Field Laboratory (the Ranch), and laboratory calculations to be conducted at the RTK Environmental Laboratory to determine carbonate and bicarbonate concentrations in water samples.

When alkalinity is due to carbonate or bicarbonate content, the pH at the equivalence point of the titration is determined by the concentration of CO2 at that stage, which, in turn, depends on the total carbonate species originally present and any losses that may have occurred during titration. The following pH values are suggested as expressed equivalents points for the corresponding alkalinity concentrations in milligrams of CaCO3 per liter:

- Phenolphthalein (pH 8.3)
- Bromocresol green (pH 3.8)

Equipment

- Brinkmann 25 ml Digital Buret
- 250 ml glass beaker
- Water Quality Field Data Sheet

Reagent Needed

• 0.1 normal hydrochloric acid (HCl) or sulfuric acid (H2SO4)

Carbonate

- 1. Place 100 mL of sample into a borosilicate beaker.
- 2. If the pH is equal to or greater than 8.3 add phenolphthalein to the sample to obtain a pink color in the sample. If no color is obtained, carbonate is not present. Proceed to the bicarbonate procedure.
- 3. Slowly titrate using 0.1 normal acid and a Brinkmann 25 ml Digital buret. Add the acid to the sample until the sample becomes clear again.
- 4. Record molarity and the number of milliliters of acid used to achieve the color change on the Water Quality Field Data Sheet.

Bicarbonate

- 1. Add bromocresol green to the same 100 ml of sample until it is dark green.
- 2. Slowly titrate using 0.1 normal acid and the Brinkman 25 ml Digital burette until the color changes to a lime green.
- 3. Record acid type, molarity, and the number of milliliters of acid added to the sample on the Water Quality Field Data Sheet.

Calculation

The number of milliliters used in both titrations are taken from this sheet in order to calculate milliequivalents of carbonate (CO3=) and bicarbonate (HCO3-) using the following equations1:

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

Phenolphthalein

50000 = milliequivalent

A = ml of standard acid used

N = normality of acid used

Carbonate Alkalinity, mg CaCO3/I = A x N x 50000

ml of sample

Bromocresol Green

50000 = milliequivalent

A = ml of standard acid used

N = normality of acid used

Bicarbonate Alkalinity, mg CaCO3/I = $\underline{A \times N \times 50000}$

ml of sample

¹American Public Health Association (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. Seventh Edition. Prepared and published jointly by the American Public Health Association, American Water Works Association, and Water Pollution Control Federation. Washington, D.C.

5.6 PROCEDURE GF-06: DISSOLVED OXYGEN MEASUREMENT

- 1. If a dissolved oxygen meter with membrane probe is not used, use CHEMets ampoules to measure dissolved oxygen.
- 2. If an ampoule flow-through cell is available, position ampoule in cell2. Divert water flow through the cell. When the cell is filled with water, break the ampoule at the neck. Stop the flow of water and remove the ampoule. Compare the color with the standard ampoules and record the dissolved oxygen concentration by extrapolating between the colors of the standard ampoules to + 0.5 ppm.
- 3. If a flow-through cell is not available, collect a sample of water in a clean sample cup. Follow the directions provided with the CHEMets ampoules for measuring dissolved oxygen. After waiting the recommended time, but no longer than five minutes, compare the color of the ampoule with the standard ampoules and record oxygen concentration by extrapolating between the colors of the standard ampoules to + 0.5 ppm.
- 4. Record the value for dissolved oxygen and the test method on the Field Data Sheet. Record the time the sample is collected and the time the measurement is taken.
- 5. If no color is shown, record the lowest value on the standard ampoule as the detection limit. Do not record zero.

²Reference: Walton-Day, Katherine, Macalady, D.L., Brooks, M.H., and Tate, V.T. 1990. Field Methods for Measurement of Ground Water Redox Chemical Parameters. Ground Water Monitoring Review. Fall issue.

5.7 PROCEDURE GF-07: FERROUS IRON MEASUREMENT

- 1. Use CHEMets ampoules to measure ferrous iron. Follow the same procedures as used for dissolved oxygen ampoules.
- 2. Extrapolate the concentration of dissolved ferrous iron and record to + 0.05 ppm.
- 3. If the ampoule color is darker than the range of standard ampoules, dilute a fresh sample of well water one-to-one with de-ionized/distilled water and measure ferrous iron immediately. The tested sample must be one-half well water and one half de-ionized/distilled water. The result should be recorded as twice the value of the selected standard.
- 4. Record the value of ferrous iron, the method used to include any dilutions done, and the final ferrous iron value on the Field Data Sheet. Record the time the sample is collected and the time the measurement is taken.
- 5. See preceding procedure.

5.8 PROCEDURE GF-08: SULFIDE MEASUREMENT

The following procedures describe the methods used to complete field analyses for sulfide. This procedure is completed in two steps. The first step is the identification of sulfide concentration greater than the detection limit, and the second is the quantification of the concentration of sulfide present, if measurable concentrations are detected.

Step 1 - Presence of detectable concentrations of sulfide.

- 1. Fill a clear glass container with the water to be analyzed. The container should be filled in a manner that minimizes the disturbance of the sample and does not result in aeration of the sample.
- 2. Insert a lead acetate strip and check the sample for the presence of a black precipitate on the lead acetate strip.
- 3. If a black precipitate is present, proceed with Step 2, otherwise record the concentration as less than 0.01.
- Step 2 Use CHEMets ampoules to measure sulfide concentrations as described below. This method uses the K-9503 Vacu-vials using the "methylene blue" colorometric test method. Using the equipment provided in the CHEMets test set complete the analyses as follows:
- 1. Fill the sample cup to the 25 ml mark with your sample.
- 2. Add 3 drops of A-9500 Activator Solution. Stir quickly with the top of the Vacu-vial ampoule.

Caution:

A-9500 Activator Solution to ferric chloride in concentrated hydrochloric acid. Avoid contact. Remove from the glass bottle only when in use. In case of contact, flush skin, or eyes with water. Seek prompt medical attention if swallowed. READ MSDS BEFORE USING.

- 3. Immediately snap the tip of the Vacu-vial ampoule by placing the tapered tip down in the bottom of the sample cup and pressing the ampoule against the side. The sample will fill the ampoule and begin to mix with the reagent.
 - NOTE: A small bubble of inert gas will remain in the ampoule to facilitate mixing.
- 4. Remove the Vacu-vial ampoule from the cup. Mix the contents of the ampoule by inverting it several times, allowing the bubble to travel from end to end each time, until the solution is uniform in color.
- 5. Wipe all liquid from the exterior of the ampoule and wait 5 minutes.
- 6. After 5 minutes, read the transmittance of the Vacu-vial ampoule in your spectrophotometer or filter photometer. Use the correct calibration table to obtain analytical results as mg/l sulfide.

For additional information on the test described above, review the instructions provided in the CHEMetric test kit, contact CHEMeterics, Inc. (Phone 1-800-356-3072) or look up the method in APHA Standard Methods, 17, ed., p.4-192, 1989.

5.9 PROCEDURE GF-09: TURBIDITY MEASUREMENT

- 1. Collect a representative, mixed sample of the water to be tested in a clean sample tube. Record the time the sample is collected. Allow sufficient time for bubbles to escape.
- 2. Carefully wipe the sample tube with a soft cloth to remove water spots and fingerprints. Discard sample tubes if scratched or etched.
- 3. Place the sample tube into the light cell with the proper orientation. Cover the tube with the light shield.
- 4. With the scale setting on the highest range (0-100 NTUs), read the meter, and adjust the range setting as needed. Once the reading has stabilized, record the reading on the Field Data Sheet. Record the time the reading is taken.
- 5. If the reading exceeds 100 NTUs, dilute the sample with distilled water as needed. A 50:50 dilution reflects a reading which is one half the true value.
- 6. Thoroughly rinse and wipe the sample tube clean after use.

5.10 PROCEDURE GF-10: MEASUREMENT OF LIGHT NON-AQUEOUS PHASE LIQUID (LNAPL)

This procedure applies to detection and measurement of non-aqueous phase liquids, such as petroleum products, which are less dense than water. Use this procedure at monitoring wells suspected of, but not known to contain such contamination.

- Immediately after removing the well cap and prior to well evacuation, sample the air in the well head for
 organic vapors using either a photo ionization analyzer or an organic vapor analyzer. Document the time
 and reading (including units) of the measurement on the Field Data Sheet. This step may be skipped if
 the well is known to contain hydrocarbons.
- 2. Lower the interface probe to determine the presence of an immiscible organic layer above the groundwater.
- Follow the instructions provided with the meter to determine the depth to the top of the liquid layer and the
 interface between the liquid and the groundwater. Document the time and reading (including units) of the
 measurements on the Field Data Sheet.
- 4. Decontaminate the meter prior to and after each use.

5.11 PROCEDURE GF-11: MEASUREMENT OF DEPTH TO WATER AND DEPTH TO BOTTOM

The depth to water and depth to bottom of a monitoring well casing are required in order to calculate purge volumes for evacuation prior to sampling, development of new wells, and in preparation for well abandonment. See Procedure GW-09 for site-wide water-level measurements to determine the potentiometric surface. If water levels are taken independent of a sampling event use the field data sheet shown in Figure GF-1.

Depth to Water

Measure the depth to water prior to well evacuation and at other times, as needed, as follows:

- Lower the meter probe into the casing and measure to the nearest one-hundredth of a foot below the
 measuring point elevation (top of PVC casing marked with an indelible ink marker or another method to
 standardize its location If casing is not marked, use the North side of the PVC). In flowing wells, either
 use a transducer or standpipe to measure head above top of well. (See Procedure GF-12 and GF-13.)
- 2. If an oily substance is observed on the meter probe, follow Procedure GF-10 to detect the presence of the floating liquid. Record observations and readings on the Field Data Sheet and arrange to sample for organic constituents as directed by the Project Manager or Project Work Plan.
- 3. Decontaminate the meter prior to each use with three rinses of de-ionized water.

Measure depth to the bottom of the casing in RTK wells without dedicated pumps at least once per year; every two years in wells with small, removable pumps; and, for larger pumps when serviced, as follows:

- 1. Remove dedicated pump if it will obstruct the measurement.
- 2. Insert the decontaminated, weighted depth-to-water meter or steel tape into the casing until the bottom is reached.
- 3. Measure to the nearest one-tenth of a foot below the measuring point evaluation (top of the protective casing previously marked with an indelible ink marker or another method to standardize its location).
- 4. Record the depth on the Groundwater Quality Field Data Sheet.
- 5. Decontaminate the outside of the pump. Inspect the pump for a potential maintenance problem and repair, if required, prior to re-installation according to Procedure MD-02. Record inspection and repairs in the Field Logbook.

Field Data Sheet Used for Water Level Measurements Taken Independent of a Sampling Event.

Date	Time	Depth of Water	Measured By	Remarks
			7	

Rev: 10 | Rev Date: December 2023

5.12 PROCEDURE GF-12: MEASUREMENT OF HHYDRAULIC HEAD USING IN-SITU TRANSDUCER

The following operation and calibration procedures apply to the In-Situ Transducer Model No. PTX-161D and the In-Situ Level head Digital Readout Meter Model No. LH10HE. For additional information, refer to the Level head operator's manual.

Use the following operation procedure to measure feet of head in a flowing well:

- 1. Slip a 1.5-inch or 2-inch flowing well valve adapter, rubber washer, and coupling over the transducer probe. Place the adapter on the probe and position such that the holes in the black tip are just exposed beneath the inside lip of the adapter. (This will align the tip of the probe with the top of the flowing well valve, which is the measuring point of the well.) Tighten the coupling.
 - NOTE: Flowing well valves on the older wells (with round, yellow protective casing) accept the 2-inch adapter. Flowing well valves on the newer wells (500 series with square, silver, galvanized protective casing) accept the 1.5-inch adapter.
- 2. Screw the adapter into the flowing well valve. Attach one end of the connector cable to the Level head meter and the other end of the cable to the faceplate of the transducer reel.
- 3. Turn on the meter to the proper pressure range indicated on the transducer (10 psi for Model No. PTX-161D). Turn the Zero Adjust Knob until the digital readout equals zero.
 - NOTE: The pressure-sensing diaphragm in the probe is extremely sensitive. Therefore, it is difficult to set the meter on a stabilized zero reading. However, it is possible to set the meter within 0.005 to 0.010 inch.
- 4. Open the well valve. Check for leaks in the connections. (Significant leaks will cause lower than actual head measurements due to pressure losses.)
- 5. While allowing the head to stabilize, note variations in the readout of the meter.
- 6. Head will be a positive readout on the meter, representing the potentiometric surface or the actual distance in feet above the measuring point of the well that the water would rise in a manometer tube. Record the positive value when the reading has stabilized.
 - NOTE: The 10-psi transducer will not accurately respond to heads greater than +19.6 feet.
- 7. Close the valve and remove the instruments from the well.

Use one of the following field or in-house calibration methods to check the accuracy of the transducer and meter prior, or after, each use:

Well Method

- 1. Zero the meter in air.
- 2. Lower the probe into a well to a predetermined depth (5, 10, or 15 feet) below the water level.
- 3. Determine if the instrument is reading the correct depth. This method works best in wells where the water level is visible inside the casing and very close to the measuring point of the well.

NOTE: Because depths are not marked on the transducer cable, accurate calibrations in wells with deeper water levels can be performed by taping the wireline of a water level meter to the transducer cable. The correct depth of the water level and the pre-determined calibration depth can then be read off the wireline.

Rev: 10 | Rev Date: December 2023

4. If the meter requires calibration adjustments, refer to the Level head operator's manual.

Manometer Check

- 1. Perform head measurements with the transducer and meter using the Operation Procedure described above. Record the stabilized head measurement.
- 2. Remove the instruments from the well. Install a manometer capable of measuring within the range of the recorded head measurement.
- 3. Open the valve and allow the water level in the manometer to stabilize.
- 4. Determine if the instrument readout was the same head measurement as seen in the manometer.
- 5. If the meter requires calibration adjustments, refer to the Levelhead operator's manual. In-House
- 6. In the absence of a well or a manometer, a shallow-depth calibration can be performed. Fill a sink or an ice chest with water.
- 7. Lower the probe to a pre-determined depth. Lower a steel measuring tape to the same depth.

 NOTE: The zero point on the transducer probe is the top of the probe (not the holes where the diaphragm is located).
- 8. Determine if the instrument is reading the same depth below water level as on the measuring tape.
- 9. If the meter requires calibration adjustments, refer to the Level head operator's manual.

5.13 PROCEDURE GF-13: MEASUREMENT OF HYDRAULIC HEAD IN FLOWING WELLS

This procedure describes the use of manometers and standpipes for the measurement of head in flowing (artisan) wells. The use of a pressure transducer is preferred since it does not require the discharge of water.

The standpipe used in the measurement of these heads is a clear plastic pipe that is screwed into the value on top of the well. After the standpipe is installed, the height to which the water rises in the standpipe is measured with a steel tape, read accurate to 0.01 feet. A minimum of at least 2 measurements must be taken at least 5 minutes apart. If the measured water level changes by more than 0.01 feet, additional measurements must be taken until the measurements stabilize. For slowly recharged wells, this may take hours.

The manometer is a small clear plastic hose that is attached to the valve at the top of the well. The plastic tube is elevated, and the water allowed to rise in the tubing. The height of the water in the tubing measured vertically above the well is measured using a steel tape read accurate to 0.01 feet. A minimum of at least 2 measurements must be taken at least 5 minutes apart. If the measured water level changes by more than 0.01 feet, additional measurements must be taken until the measurements stabilize.

The resulting measurements will be recorded in the field notes. Any significant leakage of water from the well prior to, during, or after the measurements will also be recorded in the field records.

No leakage should be allowed, and if it is not corrected should be reported to the field supervisor.

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

5.14 PROCEDURE GF-14: REQUESTING NEW SAMPLE LOCATION NUMBER

Each time a new monitoring point is added to the monitoring system, a new sample location number should be requested using the form shown in Figure GF- 2. The request for a new sample location number will be made to the Sampling Supervisor.

Included in this request will be the site location and survey data. If the sampling point is a newly constructed well, the well documentation identified in Procedure GW-11 will be provided to the Sampling Supervisor within 90 days of the well's construction.

Immediately after the first sampling of this site, the site documentation required by Procedures GW-02, SW-02, PW-02, DW-02, or SD-02 will be provided to the Sampling Supervisor.

Example of Form Used to Request Addition of Sample Number to Sample Authorization Table.

SETUP DATA FOR WELL LOCATION AUTHORITY ON TABLE

Division	UCD
Program -ID	WTR
Region - Area	
	(Refer to SOP-Water Sampling [DC-7] for acronyms)
System -ID	
Alias	
Date Installed	
Status	
Site Use	
Sample Type	
Deposit to State	(G-Groundwater, S-Surface, P-Process)
Report to State	
Priority	(1 through 5; 1-Permit site, 5-general)
Total Metals	(anogh of a remaind of Security
	(Yes-Total & Diss: No-Diss only)
Sample Frequency	
	(M=Monthly;Q=Quarterly;S=Seni;A=Annual;E=Every other Year;F=Five Year;NS=No Sample)
Element Group	Basic
	Minor
	Major Ions
	Trace Metals 1
	Trace Metals 2
	Trace Metals 3
	Radionuclides
	Organics
	Other
Owners Code	
	(K-Kennecott,P-Private)
Owners Name	
Site Description	
Northing	
Easting	
Site Elevation (Ground)	
Mark Elevation (PVC)	
Screen Top (Depth from Ground)	
Well Depth (Depth from Ground)	
Submitted By:	Date:
Approved	
G1' G'	Lab Diseases

5.15 PROCEDURE GF-15: TEMPERATURE MEASUREMENTS

Temperature Measurement

- 1. For flowing runoff water, select a location where the water is moving (at the section of greatest velocity) and well mixed.
- 2. Stand in a position such that a shadow is cast upon the area chosen for the temperature determination.
- 3. Hold the thermometer by the top and immerse it in the water in the shadowed area. Allow at least 60 seconds for the thermometer to stabilize.
- 4. If the water is too rough or turbid to measure in situ, then fill a container and immediately read the temperature. Use a container large enough to allow full immersion of the thermometer. Bring the container to the same temperature as the stream prior to filling with water.
- 5. Without removing the thermometer from the water, position the thermometer such that the scale can be read. Read the temperature to the nearest 0.5oC and record on the Field Data Sheet.

5.16 PROCEDURE GF-16: PURGE AND RINSEATE WATER HANDLING

Prevent removed water from entering natural surface water bodies.

Use containers to store water until it may be properly disposed of if it has any of the following characteristics:

- 1. Oil on the water surface.
- 2. Concentrations of organic and metal constituents at or above the RCRA Characteristic Hazardous Waste threshold values.
- 3. A pH value of less than 4.0.

Waters that meet the above criteria must be collected and disposed of by the following protocols:

- 4. Waters containing elevated metal concentrations are to be disposed of in the smelter East Process Water Pond.
- 5. Waters with a pH below 4.0 are to be collected and disposed of in the Zone 1 Desilting Basin.

6 GROUNDWATER

This section presents procedures for activities associated with ground water sampling as listed below. These procedures generally follow the recommendations given by the EPA in the RCRA Ground Water Monitoring Enforcement Guidance Document (1986).

6.1 PROCEDURE GW-01: PIEZOMETER AND WELL IDENTIFICATION

All RTK ground water sampling locations are identified utilizing a three- or four-letter identification acronym followed by a unique number ranging between 0001 and 0999, and a final letter code. No dashes and/or spaces are used in the well name. Special identification numbers for QC samples are described in Procedures QC-01 through QC-05.

Well names for new wells will be assigned and approved by the Sampling Supervisor. The information listed at the end of Procedure GW-11 must accompany requests for new names.

The procedure for naming new sampling locations is provided in Procedure DC-02. The following sections describe, in general, conventions used in identifying well locations prior to the present system.

Site Identification Acronym

The identification acronym consists of a two-letter code identifying the general location of the sample and a third letter identifying a facility and/or type of well. For example, the acronym "NES" identifies a north end well (NE) located at the Smelter (S).

General location acronyms used to date include:

- VW Valley Well, a well located on the east valley side of the Oquirrh Mountains.
- NE North End, a well located along the north end of the Oquirrh Mountains.
- TV Tooele Valley, a well located along the west end of the Oquirrh Mountains.
- TLL Tailings Lysimeter

Well type and/or facility acronyms used to date include:

- A A well located in the general vicinity of the old Arthur Concentrator.
- D Diving Board Area.
- K A monitoring or production well owned by RTK.
- L RTK well located in the landfill area near Magna.
- M A well located in the general vicinity of the Magna Concentrator or the City of Magna.
- P A large-diameter piezometer.
- R A well located in the general vicinity of the Refinery.
- S A well located in the general vicinity of the Smelter.
- T A well located in the general vicinity of the tailings impoundment.
- W A well located in the general vicinity of the Wastewater Treatment Plant or a privately-owned monitoring or production well. The use of this acronym to identify privately-owned wells is restricted to use in conjunction with the identification acronym "VW".

Rev: 10 | Rev Date: December 2023

Sample Location Number

A sequence number or character is associated with each sampling point. That number is unique to the sampling point and will not be used in other well names. Many of the sequence numbers are also reserved for surface water sampling locations.

Final Character

An optional final character may be attached to the well name to indicate well depth. This final character will be assigned to wells installed in a well nest which are drilled to evaluate aquifer changes as a function of depth. The shallowest well will be assigned the letter "A". Successively deeper wells will be assigned sequentially higher alphabetic letters. For example, well VWP272C is the third deepest well at well site VWP272.

6.2 PROCEDURE GW-02: WELL INSPECTION

This procedure describes a general well inspection to be conducted each time a well is sampled and a comprehensive well inspection to be completed once for each well and after any major modification or problem with the well.

General Well Inspection

Each time the well is sampled a general well inspection is to be completed. As a minimum, the following items should be checked to determine if a problem exists:

- General condition of the well and well pad.
- Recent damage to the well.
- Well locked on arrival.
- · Water flowing from the well.
- · Broken or missing well caps; and
- Broken valves on flowing wells.

If this inspection indicates a problem, the problem should be noted and recorded in the Field Logbook. Any serious problems should be reported directly to the Sampling Supervisor.

Comprehensive

The comprehensive well inspection is to be completed at least once for each well. This inspection should be done immediately on all wells for which it has not previously been done and after any major modifications or problems with the well. Inspect the well for all items listed on the Well Inspection Report (see Figure GW-1). Unless previously done, prepare a well location map and photographs to document the well location and elevation marker point.

Map and Photograph

- 1. Draw a sketch on the Well Inspection Report, including field-measured distances to permanent or semipermanent landmarks (natural features and/or man-made structures) and a north arrow.
- 2. Attach a copy of an existing map, if possible, with notations on distances from map features.
- 3. Once a map has been sketched for a given well, do not redraw unless landmarks have changed, disappeared, or new landmarks have appeared in the area which would be beneficial in locating the wells.
- 4. Shoot at least two photographs at each well site for all wells included in the monitoring network. Shoot one photograph with the well in the foreground, and landmarks (shown on the well location map) in the background. Shoot another photograph with the location of the marker point (used to measure depth to water and depth to bottom in the well) clearly visible.
- Attach photographs to the Well Inspection Report which will be filed in the Water Quality Data Filing System. For domestic and production wells, also provide the Well Inspection Report to the Project Manager or Field Team Leader to attach to these procedures for use in the field.

Well Inspection

 Inspect the locking cap on the protective external casing. Check that the locking hasp is not broken and that the shackle of the lock will not fall out of the hasp. Check the lock for smooth operation. Lubricate if necessary.

- 2. Examine the external casing if present. Note its outside diameter and construction material. Check the condition of the paint. Make sure the Well I.D. # is marked on the external casing. Note if the external casing is badly corroded or weathered.
- 3. Examine the well pad if present. Note its construction material, thickness, and Well I.D.# markings.
- 4. Inspect the inner casing. Note its outside and inside diameters. Note construction material and type of adapter if present. If no adapter, inspect condition of top of casing for smoothness. Check to see if marker point is present and if it is labeled. Inspect the annular seal for fill height and condition of material.
- Measure the depth to the bottom of the casing in accordance with Procedure GF-11.
- 6. Note whether a pump is present. Indicate type of pump if present.
- 7. If the well is a flowing well, inspect the condition of the shut off valve. Indicate if a head measurement is possible.
- 8. Note any other pertinent items about the condition of the well, special sampling considerations, or its surroundings not included in the above information.

Please refer to Attachments - Figure GW-1. Example Well Inspection Report

6.3 PROCEDURE GW-03: WELL EVACUATION

Determine purge volume using this procedure prior to removing water and measuring field parameters (See Procedure GW-04). Purge volume is calculated as the standing well and sand pack porosity. If an immiscible phase is detected for the first time, collect an immiscible phase sample (Procedure GW-9) prior to any purging activities (see Procedure GF-10).

Purging Well

For monitoring wells of known construction, evacuate a minimum of three (3) standing well casings and sand pack porosity volumes to help ensure the collection of a sample which is representative of the surrounding aquifer. The removal of at least three volumes is believed to result in a sample which is not influenced by stagnant water remaining in the well casing. Limiting the evacuation to five volumes, given that the indicator parameters have stabilized, prevents the pumping of diluted or more concentrated ground water from another area within the aquifer. If the well goes dry during evacuation, allow the water level to recover and re-evacuate, if possible, until at least one and one-half (1.5) volumes are purged. When organic constituents will be analyzed, do not pump or bail the well to dryness if the recharge rate causes formation water to cascade vigorously down the sides of the screen. The pumping rate during the sampling of the well will, to the extent possible, be lowered to provide the lowest possible turbidity achievable at the time of sampling.

Determine Purge Water Volume

The volume of porosity is calculated as follows:

- 1. Measure the inside diameter of the well casing if not known.
- 2. Determine the depth to water as described in Procedure GF-11. Enter the measured value at "Measured Initial Depth to Water" on the Ground Water Quality Field Data Sheet. If the well is flowing or the depth cannot be measured, enter the value at "Assumed Initial Depth to Water" on the Sheet. Assume the depth to water for flowing wells is 0.0 ft. Use the previous measurement for the well if conditions do not permit measurement. Decontaminate the water level indicator prior to use in each well as described in Procedure MD-02.
- 3. Determine the total depth to the bottom of the well from the measuring point at least once per year (see Procedure GF-11). Enter the measured value at "Measured Depth to Bottom of Casing" on the Ground Water Quality Field Data Sheet. If the depth is not measured, enter the previous measurement at "Assumed Depth to Bottom of Casing" on the Sheet.
- 4. Calculate the number of linear feet of standing water by subtracting the depth to water (WL) from the depth to bottom (WD). Record this value on the Ground Water Quality Field Data Sheet.

$$V = 1.872r[(WD-WL)(D2C) + 0.3(L)(D2-D2)]$$

5. Calculate the standing water volume in gallons as follows:

Where:

V = Volume of standing water (gallons)

L = Length of screened interval (ft)

0.3 = Assumed porosity of sand pack

WD = Depth to bottom of screen (ft)

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

WL = Depth to water (ft)

DB = Diameter of borehole (ft)

DC = Diameter of casing (ft)

$$V = [1.872r(WD-WL)(D2C)] + V_{SP}$$

If the sand pack volume, V_{sp}, is known, calculate the standing water volume as follows:

6. Multiply the standing water volume by three (3) to obtain the minimum purge volume.

The volume of water to be purged from the well may be calculated as indicated above. Record the value for water purged on the Ground Water Quality Field Data Sheet.

Standardize the purging method, flow rate, and purge volume per foot of standing water in well casing for each well, when possible, to ensure that the monitoring results will be comparable from one sampling event to the next.

Pump Operation

In high-yielding, non-flowing wells without dedicated pumps, place the pump near the top of the water column rather than in the screened area. This will ensure evacuation of the standing water above the screen. If well yield is low to moderate, place the pumps at the bottom of the screened interval. For flowing wells, install a spigot to allow measurement of flow rate or volume during purging.

The following procedures describe pump operation:

<u>Dedicated Grundfos (Submersible) Pumps</u>

- 1. Remove the electric cord and discharge tubing coiled within the well casing.
- Connect the electric cord from the submersible pump to the power supply. Turn the pump on. When
 pumping commences, note the time and flow rate on the Ground Water Quality Field Data Sheet.
 Calculate the time to run the pump using this flow rate and the calculated purge water volume. Measure
 parameters as per Procedure GW-04.
- 3. After purging and sampling, turn off the pump. Recoil the electric cord and discharge tubing and place them inside the protective casing. Replace the locking cap and lock the well.

Non-dedicated Grundfos Pumps

- 1. Rinse the exterior of the pump and tubing with deionized water prior to lowering down the casing. Do not allow rinse water to enter the well casing. Lower the pump and tubing into the well to the desired depth.
- 2. Follow steps No. 1 and No. 2 for dedicated Grundfos pumps above.
- 3. After purging and sampling, remove the pump from the well. Rinse with de-ionized water any portion of the tubing that has come in contact with well water.
- 4. Decontaminate the pump following Procedure MD-02. Shut off the compressor and generator. Replace the locking cap and lock the well.

Bennett Pump

- Start the generator and allow it to warm up until the generator is idling at a constant RPM. Plug the air compressor and reel motor into the receptacle outlets. Connect the compressor to the pump and allow the air pressure to build until there is sufficient pressure to activate the pumping action of the Bennett pump.
- 2. Rinse the exterior of the pump and tubing with deionized water prior to lowering down the casing. Do not allow rinse water to enter the well casing. Lower the pump and tubing into the well to the desired depth.
- 3. Monitor the discharge of the pump. When pumping commences, note the time and flow rate on the Ground Water Quality Field Data Sheet. Calculate the time to run the pump using this flow rate and the calculated purge water volume. Measure parameters as per Procedure GW-04.
- 4. After purging and sampling, remove the pump from the well. Rinse with de-ionized water any portion of the tubing that has come in contact with well water.
- 5. Decontaminate the pump following Procedure MD-02. Shut off the compressor and generator. Replace the locking cap and lock the well.

Peristaltic Pump

- 1. If a dedicated discharge hose is not present, rinse the new tubing with de-ionized water. Lower the tubing into the well to the desired depth. Do not allow rinse water to enter the well casing.
- 2. Connect the tubing to the intake side of the peristaltic pump. Connect the peristaltic pump control box to a power source (12-volt battery or 115-volt generator).
- 3. Turn the control box on. When pumping commences, note the time and flow rate on the Ground Water Quality Field Data Sheet. Calculate the time to run the pump using this flow rate and the calculated purge water volume. Measure parameters as per Procedure GW-04.
- 4. After purging and sampling, remove the tubing from the well unless the tubing is dedicated to the well. Purge and spray the tubing with de-ionized water. Store the tubing in a clean plastic bag.
- 5. Decontaminate the pump following Procedure MD-02. Replace the locking cap and lock the well.

6.4 PROCEDURE GW-04: FIELD MEASUREMENTS

Measure temperature, pH, and specific conductivity during the pumping for well evacuation. Measure dissolved oxygen, and ferrous iron at the end of pumping, when required.

- 1. Collect samples in new, laboratory-cleaned or decontaminated containers for measurement with meters.
- 2. Take readings of temperature, pH, Eh (if required), and specific conductivity immediately upon the start of pumping, and periodically thereafter (e.g., every one-half to one well volume). As the total pumped volume approaches three well volumes, record the readings more frequently. When the pH has stabilized to within 0.05 pH units and other parameters have stabilized to within + 10% for four sequential readings, the well evacuation is complete. Record readings on the laptop Ground Water Quality Field Data Sheet, including comments regarding unsuccessful stabilization of parameters after the removal of five well volumes.
- 3. Record a physical description of the sample, noting turbidity and general appearance.
- 4. If required, measure Eh, dissolved oxygen, ferrous iron, and sulfide just before pumping is ceased.
- 5. If a dissolved oxygen meter with membrane probe is not used, use CHEMets ampoules to measure dissolved oxygen (see Procedure GF-06).
- 6. Use CHEMets ampoules to measure ferrous iron Procedure GF-07.

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

6.5 PROCEDURE GW-05: GROUNDWATER QUALITY FIELD DATA SHEETS

A sample Ground Water Quality Field Data Sheet is shown in Figure GW-2. All blanks at the top of the sheet will be filled in (or marked "NA" if the item is not applicable). Each item is described below:

Continued on Sheet Number: Additional Sheets used to record measurements during well evacuation for a

particular visit.

Well ID #: Identification number for the well which is being sampled.

Date, Time: Date and time that work began at the well.

Meter ID Numbers and Calibration: Record a reference to a field logbook and page where serial or other

numbers and calibration details for the meters used to measure all field

parameters has been recorded.

Method of Evacuation: Method of pumping water used to evacuate well.

Measured Initial

Depth to Water: Measured depth to water prior to pumping (when measured).

Measured Depth to Bottom of Casing: Measured depth to the bottom of casing (when measured).

Calculated Standing Water Volume: The volume of standing water calculated by Procedure GW-03.

Required Purge Volume

(Standing Volume X 3): The calculated standing water volume (above) multiplied by 3.

Total Volume Pumped: The total volume of water pumped when purging was ceased prior to

sample collection.

Body of Table: Time, flow rate, and readings for periodic conductivity, temperature, pH,

Eh, and dissolved oxygen measurements during or after well excavation. Enter the method used to measure dissolved oxygen below the table.

Carbonate, Bicarbonate, Time: The titration amounts, acid types, acid molarity, and the time that the

work was conducted in the field or the Field Office.

Ferrous Iron Measurements: Measurements of iron, including dilutions and method used.

Sulfide Measurements: Measurements of sulfide and method used.

A copy of the Ground Water Quality Field Data Sheet is filed in the Water Quality Data Filing System.

Example Groundwater Quality Field Data Sheet

			TT UTAH COPI VATER QUALI		Page	of
Sampler(s Measured Measured	Depth to Botton	FIELD Time: Water: m of Casing:	DATA SĤEET (ft) (ft)		and Calit Field Lo Page	Numbers bration See: g Book
Calculated Required l Total volu	l Standing Wate Purge Volume (ime pumped: _	r Volume: _ Standing Volum _gal	e X 3): (gal)	(gai	1)	
Time	Flow Rate gal/min	Conductivity umhos/cm	Temperature OC	pН	Eh	Diss. Oxygen
Carbonate	e (CO ₃): mi ate (HCO ₃): <u>ntl</u> F on Measuremer	od Used: Colorm I H ₂ SO ₄ titrate, .1 H ₂ SO ₄ titrate, .1N ats (Color Metric	etric/Probe 1N mg/I Time:			t if needed.) am/pm am/pm am/pm am/pm
		Sampl	ler Signature		me Sampli	ng Complete

Rev. '11/93

6.6 PROCEDURE GW-06: BAILING

Bailers will be constructed of Teflon or stainless steel. A wire or single untwisted synthetic filament (such as nylon) line will be used*. The following procedure will be followed for bailer use:

- 1. Lower the bailer into the well, retrieve and empty it once to ensure that the bailer has been rinsed of any decontamination fluids.
- 2. When collecting the ground water needed for filling the sample bottles, gently lower the bailer sufficiently into the water column to collect a sample unaffected by equilibration with the atmosphere (approximately ten feet, if possible), jerk the bailer gently to ensure that the ball valve is closed, and retrieve the bailer at a steady rate to the surface.
- 3. When transferring the water from the bailer to the sample containers, take care to avoid agitation to the sample which will promote the loss of volatile constituents and promote chemical oxidation.
- 4. Do not allow the bailer line or wire to touch the ground or come into contact with any other equipment. Roll up the line or wire on a spool or feed it into a bucket lined with clean plastic.
 - *For inorganic samples, the use of a braided or twisted cord is allowed if the used cord is disposed of after each use, and if leachate tests of the cord show no potential to affect the quality of the sample.
- 6. Decontaminate all equipment and materials coming into contact with the inside casing of the wells or the ground water (Procedure MD-02). Handle rinseate water as described in Procedure GF-16.
- 7. When sampling for organic constituents only bottom spigot bailers will be used.

6.7 PROCEDURE GW-07: HYDRASLEEVE SAMPLING

Collecting samples from monitoring, domestic, or production wells via HydraSleeve (HS) is described below. Follow the general procedures for documentation, sample handling, and quality control (DC, MD, and QC series procedures).

HydraSleeve Deployment

- 1. Acquire specific well data such as total depth and screen interval.
- 2. Decontaminate a calibrated water level meter.
- 3. Measure the depth to water (DTW) of well in a manner that minimizes disturbance to the water column.
- Document DTW and screen interval.
- 5. The HS will be placed so that the top of the sleeve is the length of the HS below the midpoint of the screen interval.
- 6. With clean nitrile gloves, measure out the necessary tether length. Account for the length of tether that will be securing the HS above the well head.
- With clean nitrile gloves, open the HS from its packaging and acquire new or decontaminated clips and weight.
- 8. Attach the weight clip to the bottom of the HS.
- 9. Attach the weight to the bottom clip.
- 10. Attach the tether top clip to the top of the HS through the inside of the HS tether clip holes by bending out the reinforcing HS top strips.
- 11. Secure the premeasured tether to the top clip.
- 12. Slowly lower the HS down the well in a manner that minimizes disturbance to the water column while ensuring it does not get stuck and tension is felt once completely lowered, indicating it has reached the desired depth.
- 13. Anchor the tether either through the cap on the well or a secure location near the well head.
- 14. The HS should be deployed for at least 5 minutes before retrieval for the sleeve to reach equilibrium with groundwater.

HydraSleeve Retrieval

- 1. Prepare the tether for retrieval.
- 2. In one smooth motion, pull the tether up the distance of the HS at a rate of about one foot per second or faster. The motion will open the top check valve and allow the HS to fill.
- 3. Continue to retrieve the HS to the surface.
- 4. Once the HS has been taken out of the well, squeeze the top near the reinforced strips to remove excess water that is captured above the closed check valve. This water is not part of the sample.
- 5. Suspend the full HS in a manner that allows for the transfer of sample water to appropriate sample containers.

- 6. Use the provided straw to puncture the bottom of the HS and collect the sample. Be careful not to pierce both sides of the sleeve.
- 7. Collect and document required field parameters.
- 8. Decontaminate the clips and weight for future use.
- 9. Replace the locking cap and lock the well.
- 10. Complete final documentation of the sampling event.

Refer to step by step photo log.

For additional detailed HS instructions, reference; Standard Operating Procedure: Sampling Groundwater with a HydraSleeve, 2016 GeoInsight.

6.8 PROCEDURE GW-08: SAMPLE COLLECTION – GENERAL IONS AND METALS

General Protocol

Collect samples from monitoring wells, domestic wells, or production wells as described below, also following the general procedures for documentation, sample handling, and quality control (DC, MD, and QC series procedures).

Complete well documentation and inspection as required by Procedure GW-02.

Sample Collection from Monitoring Wells

- 1. Measure the water level in accordance with Procedure GF-11.
- 2. If an immiscible organic layer is detected above the ground water for the first time, samples will be analyzed for organic constituents using Procedure GW-09 for sampling.
- 3. Evacuate the well in accordance with Procedure GW-03.
- 4. Collect samples in prepared containers with the proper preservatives. If required, measure carbonate and bicarbonate in the Environmental Field Sampling Room (Bucking Room) according to Procedure GF-05.
- 5. Attach the in-line filtering device with a 0.45-micron filter to collect samples which require filtering. Install a peristaltic pump in flowing wells as necessary to provide the pressure for in-line filtering. Follow the manufacturer's instructions for filter use. If field filtering is impossible, fill extra containers (labeled with the Well ID # in indelible ink) for transport to the Field Office for filtering and filling of containers on the same day as sample collection. Note this variance in the field form, Procedure GW-05.
- 6. If any preservative is lost prior to or during the filling of a sample container (i.e., spilling or overflow), use another prepared container.
- 7. Thoroughly decontaminate all equipment and instruments used to sample and check the depth to water (Procedure MD-02).

Sample Collection from Domestic Wells

Purge domestic wells in accordance with Procedure GW-03 unless photographs and specific instructions for the well are available. Generally, use the same equipment used for monitoring wells with the exception of pumps and bailers. Use the following procedure in the sampling of domestic wells:

- 1. Contact the owners or operators of the wells to determine what tools, valves, hoses, etc., will be needed. Wrenches may be needed for opening and closing faucets or spigots.
- Obtain information about the size of the fittings required and accessibility of the sampling spigot. It may
 be convenient to attach a section of inert plastic (such as Teflon) tubing to the spigot, especially under
 very cramped quarters.
- 3. Collect residential samples from a sampling port or spigot which is positioned as close to the well head as possible, and prior to any type of treatment system, such as a water softener, chlorination or granular activated carbon unit. Residential wells generally have a spigot located at the base of the pressure tank. This is usually the closest tap to the actual well head.

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

4. When collecting raw samples from the tap off the pressure tank, turn on the cold-water faucet and run a minimum of five minutes and/or until temperature stabilization (two readings within + 10%).
Measurements of pH and/or conductivity also can be used to indicate that fresh water is entering the pressure tank.

- 5. After stabilization has been achieved, continue to run the cold-water faucet, and collect samples from the tap off the pressure tank. This will ensure collection of a representative sample.
- 6. For most residential wells, collect the samples directly into the sample bottles. Use in-line filters where possible for the appropriate inorganic samples. Use a peristaltic pump to provide the pressure for in-line filtering. Follow the manufacturer's instructions for filter use. If field filtering is impossible, fill extra containers (labeled with the Well ID # in indelible ink) for transport to the Field Office for filtering and filling of containers on the same day as sample collection. Note this variance in the field data sheet.

Sample Collection from Production Wells

Generally, use the same equipment used for monitoring wells with the exception of the pumps and the bailer. Since production wells are high volume water producers, there is no necessity for evacuating the well when the well is in operation. Use the following procedure in the sampling of production wells:

- Contact the operators of the wells to determine what tools, valves, hoses, etc., will be needed. Wrenches
 may be needed for opening and closing faucets or spigots. Often spigots on production wells may be too
 large, resulting in a high-volume flow which will make sampling difficult. In this case, it will be necessary to
 reduce the flow by using appropriate fittings.
- 2. Sample production wells during a pumping cycle to ensure that stagnant water is not sampled.
- 3. Clear the lines between the well and the spigot.
- 4. Collect samples from a sampling port or spigot which is positioned as close to the well head as possible, and prior to any type of treatment system, such as a water softener, chlorination, or granular activated carbon unit.
- 5. For most production wells, collect directly into the sample bottles. Use in-line filters where possible for the appropriate inorganic samples. Use a peristaltic pump to provide the pressure for in-line filtering. Follow the manufacturer's instructions for filter use. If field filtering is impossible, fill extra containers (labeled with the Well ID # in indelible ink) for transport to the Field Office for filtering and filling of containers on the same day as sample collection. Note this variance on the Field Data Sheet.

6.9 PROCEDURE GW-09: SAMPLE COLLECTION – ORGANIC COMPOUNDS

- 1. Measure the water level in accordance with procedure GF-11.
- 2. If an immiscible organic layer is detected above the ground water for the first time:
 - a) Measure the thickness of the immiscible layer according to Procedure GF-10 if not already done.
 - b) If a sample of the immiscible phase is to be collected, conduct the sampling as follows:
 - If the thickness of the immiscible phase is two feet or greater, collect the immiscible phase sample using a bottom-valve bailer. Lower the bailer slowly into the well until it contacts the surface of the immiscible phase. Continue lowering the bailer to a depth less than the predetermined thickness of the immiscible layer.

If the thickness of the immiscible layer is less than two feet, a top filling bailer must be used. The bailer can be weighted with a length of small-diameter stainless steel pipe. Lower the bailer slowly into the well until the top of the bailer is level with the pre-determined top of the immiscible layer. Lower the bailer an additional one-half thickness of the immiscible layer and retrieve the sample.

- 4. Evacuate the well in accordance with Procedure GW-03.
- Prior to sample collection, allow the water level in non-flowing wells to recover in order to produce the necessary sample volume. Thoroughly decontaminate instruments used to check the depth to water prior to use in the well and between purging and sampling (Procedure MD-02).
- 6. When collecting organic samples for VOC analyses with a pump, do not exceed 100 milliliters per minute in pumping rate. If these rates are unattainable, use a bailer for sample collection (see Procedure GW-06). Fill sample containers completely, leaving no head space.
- 7. Collect samples in prepared containers with the proper preservatives. If required, measure carbonate and bicarbonate according to Procedure GF-05.
- 8. If any preservative is lost prior to or during the filling of a sample container (i.e., spilling or overflow), use another prepared container.

6.10 PROCEDURE GW-10: SITE-WIDE WATER-LEVEL MEASUREMENTS

In order to determine the potentiometric surface for a given aquifer or to determine the gradient between aquifers, take water-level measurements during a relatively short period of time.

- 1. Measure the depth to water in non-flowing wells using Procedure GF-11.
- 2. If an oily substance is observed on the meter probe, follow Procedure GF-10 to measure the depth to the immiscible layer and the depth to the oil/water interface.
- 3. Determine the hydraulic head of flowing wells using a manometer (for heads a few feet above the casing) or transducer Procedures GF-12 and GF-13.
- 4. If using a manometer, measure the head above the marker point to the nearest 0.10 ft.

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

6.11 PROCEDURE GW-11: NEW MONITORING WELL CONSTRUCTION

This group of procedures provides a protocol for installing new monitoring wells, including preparation for drilling, installation using various drilling methods (auger, air rotary, mud rotary, and cable tool), surveying, geophysical borehole logging, well development, and well documentation.

Preparation For Monitoring Well Installation

Follow these steps prior to a drilling and well installation project, including preparation of a drilling permit, preparation of a statement of work for the drilling contractor, locating underground utilities, and obtaining necessary field equipment. The regulatory requirements are based on the "State of Utah Administrative Rules for Water Well Drillers", adopted July 15, 1987, which remain in effect as of June 1, 1999. The Water Rights Division at 538-7240 may be contacted for updates.

- For wells over 30 feet, submit an application for a drilling permit to the Utah Division of Water Rights and allow at least 30 days for a reply. Mail the application to: State Engineer (currently Mr. Robert L. Morgan), Division of Water Rights1594 West North Temple, Suite 220, P.O. Box 146300 Salt Lake City, Utah 84114-6300. The written request must include the following information using the form provided in Figure GW-3:
- a) Name, address, and phone number of RTK contact.
- b) Current property owner.
- c) Total anticipated number of wells to be installed.
- d) Diameters, approximate depths, and type of completions (materials to be used for casing, screen, pack and grout).
- e) Name, address, and telephone number of Project Manager.
- f) General location or common description of the monitoring project.
- g) Name and license number of driller contracted to install the wells.
- h) Projected start and completion dates.
- i) Specific course and distance locations of all requested locations or location by 1/4, 1/4 section.
 - Upon written approval from Division of Water Rights, the project will be assigned an approved authorization number to be referenced by the licensed driller on all start cards and well drillers reports as required by Sections 4.1.1 and 4.3 of the "State of Utah Administrative Rules for Water Well Drillers".
- 2. Request a sampling point identification number from the Sampling Supervisor.
- 3. Prepare a statement of work for a licensed drilling contractor including schedule, the number of wells, type of each well, approximate depths, size of boreholes, expected subsurface materials, requirements for borehole geophysical logging, required drilling and decontamination equipment, soil and water sampling requirements, specifications for well construction materials, requirements for self-contained water or power, water source criteria, tanks for recirculation methods, and labor support necessary to complete the wells. Use the appropriate technical specifications, depending on drilling method selected

by the Project Manager or Field Team Leader. Drilling personnel must have current 40-hour OSHA Hazardous Materials training.

- 4. After the general location for the monitoring well has been determined, check the area for buried utilities using existing site maps and knowledgeable RTK personnel. Contact Bluestakes at 532-5000 at least 48 hours prior to anticipated drilling. Provide Bluestakes with a description of the area to be staked, the drilling company name and address, and your name. Obtain a request number from Bluestakes and record it in the Field Logbook for the project.
- 5. Acquire necessary equipment for fieldwork as follows:
- · Personal protective equipment, including hard hat, safety boots, ear plugs, safety glasses, leather gloves, rubber gloves, and two-way radio.
- · Field Logbook, waterproof indelible ink markers, pens, pencils.
- · Borehole Log forms, 10X hand lens.
- Plastic bags, sample jars, sample labels.
- Knife, spade, screwdriver or other similar devices to probe split spoon samples.
- Strainer to catch cuttings (rotary drilling).
- Grain size and color charts.
- Buckets (calibrated in gallons or liters).
- Decontamination bucket, wash water, laboratory detergent solution, de-ionized rinse water.
- Steel tape, blue chalk, engineer's tape, or electronic water meter.
- pH meter, conductivity meter, litmus paper.
- · Available nearby lithologic or well data.
- Dilute HCl acid (5-10%).
- · Map.

Please refer to Attachments - Figure GW-03. Request for Monitor Well Construction

Oversight of Drilling and Installation

Follow this procedure when serving as field geologist during installation of ground water monitoring wells. Select the appropriate drilling method based on subsurface materials (unconsolidated or consolidated), requirements for sampling (disturbed or undisturbed), and depth of borehole. Log and sample only the deepest borehole in nested well installations. The drilling of deep boreholes will be interrupted to install a temporary casing and seal in the confining layer (see "Deep Monitoring Well Installation" below). Continue sampling and formation logging upon the resumption of drilling.

 Use a Borehole Log (see Figure GW-4) during drilling and well construction to record information as discussed below. Also use a Field Logbook to record activities each day (date, time, personnel on site, problems/solutions, drilling conditions).

2. For drilling techniques which require the collection of undisturbed samples, use a Shelby tube, a split-spoon sampler, or a core barrel to collect soil samples at least every five (5.0) feet and at major changes in material. Record the number of blows required to advance the split spoon one-half (0.5) ft.

- 3. When drilling through contaminated soils, arrange for the proper containment and disposal of cuttings, regardless of drilling method.
- 4. If contamination by organic compounds is suspected, place some of the drill cuttings or soil samples into a clean glass jar and cover with aluminum foil. Allow the temperature of the soil to equilibrate with ambient temperature. Insert the probe of a photoionization detector (PID) through the foil and into the glass jar. Record the PID measurement on the Borehole Log at the appropriate depth.
- 5. Collect soil samples for laboratory analyses in sample jars or leave intact in stainless steel sleeves as directed by the Project Manager or Project Work Plan. Place sample containers in a sealed Ziplock plastic bag. Place the sample in a cooler with ice if organic analyses are planned. Record sample numbers at the depth sampled on the Borehole Log and on the sample label. Include on the sample label and Borehole Log the following:
 - Well I.D.#;
 - Time and date.
 - Depth of sample.
 - Analyses to be done; and
 - The person collecting the sample.
- 6. Record on the Borehole Log the project name, borehole location, well I.D.#, date and time drilling began, weather conditions (i.e., temperature, wind direction and speed, precipitation), drilling company, drilling method, drilling crew names and your name. Provide a sketch of the well location noting measured distances (approximate) from established landmarks and indicate the north direction.
- 7. During drilling, collect drill cuttings and record descriptions of soil samples using the Unified Soil Classification System on the Borehole Log. Use standard geologic terminology to classify rock materials. Note the color, moisture, texture, sorting, roundness/angularity, degree of cementation/consolidation, fabric, bedding, orientation, depositional environment, formation name, and any evidence of contamination or other characteristics related to hydrogeologic conditions.
- 8. Decontaminate the sampling device prior to collecting another sample (see Procedure MD-02).
- 9. Record the total borehole depth and drilled diameter per depth interval at the top of the Borehole Log. Enter the approximate surface elevation.

Well Construction Oversight

Document well construction activities for each well installed, including all wells in nested sets.

Shallow Monitoring Well Installation

A "shallow" well is one which is drilled to less than 25 ft below the water table.

Upon drilling to the desired depth, select the screened interval based on anticipated annual water table
fluctuation at the site. Inform the driller of the lengths and intervals of casing and screen to be installed.
Measure the slot size and length of each section of screen and casing. Record the length, diameter, type
of casing used and screen slot size at the top of the Borehole Log. Locate a single centralizer in the

middle of the screen to ensure an evenly distributed sand pack. Ensure that the casing and screen are sealed in contaminant-resistant wrappers prior to use and are handled and stored in a manner which prevents contamination.

- 2. Ensure that the driller installs the PVC screen and casing through the augers or temporary casing, and that care is taken not to contaminate the casing and screen. If an immiscible organic layer is presumed to be present above the potentiometric surface, the top of the screen must be positioned in the well above the potentiometric surface to allow sampling of the immiscible layer. Where well clusters are installed, one well may be screened where the immiscible layer is expected, and another well may be screened in the uppermost portion of the aquifer.
- 3. The sand must be added slowly to avoid "bridging" in the annulus between the PVC casing and borehole wall. Preferably, use a tremie pipe for sand installation.
- 4. Confirm the depth to the sand pack ("tag the pack") periodically using a measuring tape with a weight attached.
- 5. Ensure that the augers or temporary casing are slowly pulled as sand is added to the bottom of the borehole.
- 6. Tag the pack to see how much sand is lost to the formation.
- 7. Repeat steps 3 through 6 until sand pack has been installed to two feet above the uppermost slot of the well screen. Record on the Borehole Log the sand grain size and gradation, sand pack interval (depth to top and bottom), and total amount of sand used (volume or weight).
- 8. Instruct the driller to add bentonite pellets or chips to form a bentonite seal at least two (2.0) feet thick. Record the bentonite seal interval (depth to top and bottom) and the total amount of bentonite pellets or chips used.
- 9. If the borehole is dry at the top of the sand pack, ensure that the driller adds approximately one gallon of distilled water to swell the bentonite. Record the volume of water added to the borehole.
- 10. Instruct the driller to grout or concrete the annulus to the surface. Re-fill annulus as necessary to replace concrete lost to porosity in the formation. Record the total amount of grout or concrete used.
- 11. Instruct the driller to install a protective casing (minimum of two feet above the ground surface, and a locking cap) or manhole cover (sealed with an O-ring gasket) as detailed in the driller's statement of work and specifications. Ensure that a vent hole in the well casing and a drain hole in the protective casing are drilled as per specifications. Arrange for the installation of a grounding rod for pump generators.
- 12. Ensure that a locking cap is installed on the protective casing. Record key number on the Borehole Log.

 The driller will also install a concrete pad (with an elevation marker point on the north side of the well) and steel barricades (in high traffic areas) according to specifications.
- 13. Measure the water level inside the well and record at the top of the Borehole Log. At a minimum, return to the well site in 24 hours to obtain another water level and record it on the Borehole Log.
- 14. Ensure that the driller steam cleans all down-hole equipment prior to beginning each new borehole.

 Decontaminate water-level measurement equipment prior to use.
- 15. Complete the Borehole Log and submit it to the Project Manager or Field Team Leader. File a copy in the Water Quality Data Filing System.

Monitoring Well Installation in Confined Aquifers

A "deep" well is a borehole in which the screened interval must not receive flow from an overlying perched water zone or aquifer. Deep wells are typically drilled through a confining layer in order to sample the confined aquifer and may result in a flowing well.

- 1. Select temporary casing large enough to allow smaller drill bits or augers to pass through to complete the well. Larger augers may be used in place of temporary casing when the auger method is used.
- 2. Ensure that the driller installs the temporary casing at least one foot into the confining layer, although not into the confined aquifer.
- 3. Instruct the driller to check the seal by pulling the drill rods and bailing the temporary casing or augers drv.
- 4. Ensure that the driller adds a small quantity of bentonite to ensure the viability of the seal.
- 5. Instruct the driller to allow the temporary casing or augers to sit overnight.
- 6. Check the water level to ensure the integrity of the seal.
- 7. If the seal is intact, continue drilling through the confining layer to the desired depth.
- 8. Inform the driller of the lengths and intervals of casing and screen to be installed. Measure the slot size and length of each section of screen and casing. Record the length, diameter, type of casing used and screen slot size at the top of the Borehole Log. Locate a single centralizer in the middle of the screen to ensure an evenly distributed sand pack. Ensure that the casing and screen are sealed in contaminant-resistant wrappers prior to use and are handled and stored in a manner which prevents contamination.
- 9. Ensure that the driller installs the PVC screen and casing through the temporary casing or augers, and that care is taken not to contaminate the screen and casing. If an immiscible organic layer is presumed to be present above the potentiometric surface, the top of the screen must be positioned in the well above the potentiometric surface to allow sampling of the immiscible layer. Where well clusters are installed, one well may be screened where the immiscible layer is expected, and another well may be screened in the uppermost portion of the aquifer.
- 10. The sand must be added slowly to avoid "bridging" in the annulus between the casing and borehole wall. The use of a tremie pipe is mandatory.
- 11. Confirm the depth to the sand pack ("tag the pack") periodically using a measuring tape with a weight attached or a wire line with a depth counter. Allow the sand to settle (approximately five minutes) to ensure a more accurate top-of-sand measurement.
- 12. Ensure that you don't pull the temporary casing until you have a good seal at the bottom of confining layer.
- 13. Tag the pack to see how much sand is lost to the formation.
- 14. Repeat steps 10 through 13 until sand pack has been installed to two feet above the uppermost slot of the well screen. Record on the Borehole Log the sand grain size and gradation, sand pack interval (depth to top and bottom), and total amount of sand used (volume or weight).
- 15. Instruct the driller to add bentonite pellets or chips to form a bentonite seal at least two (2.0) feet thick. Record the bentonite seal interval (depth of top and depth of bottom) and the total amount of bentonite

pellets or chips used. If the bentonite seal must be installed through a column of water greater than 20 feet, install the bentonite seal as a slurry using a tremie pipe.

- 16. If the borehole is dry at the top of the sand pack, ensure that the driller adds approximately one gallon of distilled water to swell the bentonite. Record the volume of water added to the borehole.
- 17. Instruct the driller to grout or concrete the annulus to the surface. If the column of water above the top of the bentonite is greater than 20 feet, install the grout using a tremie pipe. Install concrete in lifts of no more than approximately 50 feet to avoid melting of PVC casing during curing. Re-fill annulus as necessary to replace concrete lost to porosity in the formation. Record the total amount of grout or concrete used. If the temporary casing is to be extracted, assure that the grout or concrete seal is at least 1 foot above the bottom of the confining layer before the temporary casing is extracted. This will ensure that no water flows from the upper or perched aguifer into the underlying aguifer.
- 18. Instruct the driller to install a protective casing (minimum of two feet above the ground surface, and a locking cap) or manhole cover (sealed with an O-ring gasket) as detailed in the driller's statement of work and specifications. Ensure that a vent hole in the well casing and a drain hole in the protective casing are drilled as per specifications. Arrange for the installation of a grounding rod for pump generators.
- 19. Ensure that a locking cap is installed on the protective casing. Record key number on the Borehole Log. The driller will also install a concrete pad (with an elevation marker point on the north side of the well) and steel barricades (in high traffic areas) according to specifications.
- 20. Measure the water level inside the well and record at the top of the Borehole Log. At a minimum, return to the well site to obtain another water level 24 hours from the first reading and record on the Borehole Log.
- 21. Ensure that the driller steam cleans all down-hole equipment prior to beginning each new borehole.

 Decontaminate water-level measurement equipment prior to use.
- 22. Complete the Borehole Log and submit it to the Project Manager or Field Team Leader. File a copy in the Water Quality Data Filing System.

Please refer to Attachments - Figure GW-4. Example Borehole Log

Surveying

- Prepare a statement of work for a licensed surveying contractor to determine the location and elevation of the ground surface and the top of the protective casing. The horizontal control will be Kennecott Mine Datum to within + 3 ft (+ 1 meter). The elevation of the monument marker will be surveyed to within + 0.01 foot (+ 0.3 cm) using the National Geodetic Vertical Datum of 1929. Corrected survey data will include loop closure for survey accuracy within these limits.
- 2. The surveyor's report will include a list of coordinates, elevations, and system used. The report must also include a map, and a description and location of all permanent and semipermanent reference points used for horizontal and vertical control. This report will be filed in the Water Quality Data Filing System.

Geophysical Borehole Logging

Borehole geophysical techniques provide an efficient and cost-effective means to collect lithologic and hydrologic information from wells and borings. These methods provide continuous measurements of physical properties along the entire length of the borehole, supplementing the discrete information gathered by coring.

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

Calibrate and field-check all logging probes each day prior to beginning work at the site. Conduct testing
and calibration according to the manufacturer's recommendations. Document calibration and field-check
information for each particular logging probe on the borehole Log Header for that instrument. The
required Log Header information is provided in Figure GW-5. An example Log Header is presented in
Figure GW-6.

- 2. When borehole logs will be used for quantitative analyses, check each probe with the field standard before and after the probe is run in the hole. Record the type of field standard used and the field check values on the appropriate Log Header.
- 3. Choose an appropriate logging speed for each borehole technique based on the type of probe used, noise conditions, and data resolution requirements. Record the logging speed on the Log Header.
- 4. Choose a vertical log scale based on appropriate resolution requirements, but not greater than 20 feet per inch, or 2.5 meters per centimeter. Choose a horizontal scale to accommodate a reasonable range of signal variation.
- 5. Reference log starting depth to a surveyed surface point.
- 6. When probes are used in combination, ensure that no probe shall interfere with the performance of another probe in the same combination. Document the combinations used on the Log Header. Correct the borehole measurements for difference measuring depths between probes. Note the correct logs as such.

Procedures for Specific Borehole Geophysical Techniques

- 1. Electrical Logs: Measure and record the temperature of a sample of the drilling fluid on the Log Header. If the logs are used in an augured hole, measure a sample of the borehole fluid immediately after logging.
- 2. SP Logs: Do not use SP logs for quantitative analysis except for the special case of no log response. Do not adjust the shale baseline on an SP log while the log is being recorded.
- 3. Resistivity Logs: When resistivity logs will be used for quantitative analysis, apply the corrections to the analyzed intervals. Make corrections appropriate to the type and make of probe used and document the corrections. For short-normal resistivity logs, use probes with measurement electrode spacings of no greater than 16 inches. For long-normal resistivity logs, use probes with measurement electrode spacings of no greater than 64 inches.
- 4. Caliper Logs: Use a caliper probe with a minimum of three measuring arms. The arms should be of the finger type and possess sufficient length to record the entire range of diameter change within a given borehole.
- 5. Nuclear Logs: The logging supervisor will ensure that the individual performing the borehole geophysical logging with probes containing radioisotopes shall be in compliance with all state and federal regulations for handling, storing, and using radioactive sources. Run all other borehole logs chosen as part of the logging suite prior to running any nuclear probes containing a radioisotope source. Use SPI units of measurement on all nuclear logs. When using analog equipment, choose a time constant appropriate to the data needs and site conditions, but which does not exceed 15 seconds. Choose a logging speed appropriate to the data needs and site conditions which does not exceed 30 feet per minute. Correct the data from the nuclear log for lag effects. Record the time constant, logging speed, and correction method on the log header.

6. Acoustic Televiewer Logs: When an ATV log is deeper than 100 feet and will be quantitatively analyzed, correct the ATV log using the data obtained from a borehole deviation log of the same borehole.

REQUIRED LOG READER INFORMATION

- WELL INFORMATION
- Well Name/Number
- Location/Site Name
- Surface Elevation
- Casing Height (above surface)
- Depth Reference (description)
- Borehole Diameter
- Casing Information (Type, Diameter, Location)
- Drilling Fluid Description (Type, Resistivity, Temperature)
- Construction Information (Locations cement, perforations, screen)
- Drilling Information (Date Drilled, Name of Driller, Drilling)
- Methods, Drilled Depth
- LOG INFORMATION
- Type of Log
- Run Number
- Name(s) of Operators, Observers
- Date Logged
- Probe Description (Name, Serial Number)
- Logging Speed
- Recorder Scale
- Module/Panel Settings
- Calibration Data
- Listing of all other logs run on same date.
- Miscellaneous Information
- Additional comments (e.g., adverse weather, logging conditions, any irregularities in calibration, logging procedure)

Note: Log header information required for all borehole geophysical logs. Header information must be as complete as possible. Missing information must be so noted on the header form (Keys, 1989).

Please refer to Attachments - Figure GW-6. Example Log Header

Monitoring Well Documentation

The following information will be documented for all wells used in the monitoring network. This information will be published in the GCMP upon its next revision. Supporting documentation for this information, as well as Well Inspection Reports (Procedure GW-02), will be filed in the Water Quality Data Filing System.

- Well Identification Number.
- Alias Well Identification Number.
- Survey location (Kennecott Mine Coordinates, feet) and elevation of collar (feet).

- Elevation of the ground surface above mean sea level (feet).
- Elevation of protective casing (feet).
- Location of marker point used to measure depth to water (feet).
- Elevation of marker point.
- Depth to water (feet), a recent measurement.
- Total depth to the bottom of the casing (feet).
- Borehole diameter (feet).
- Casing diameter (feet).
- Depth to top of screen (feet).
- Depth to bottom of screen (feet).
- Depth to top of sand (feet).
- Depth to pump setting for dedicated or portable pumps (feet).
- Pack purge volume (gallons).
- One purge volume (gallons).
- Sampling frequency (per year).
- Frequency of site-wide water-level measurements for potentiometric surface (per year)
- Analytical suite.
- Slug test permeability (ft/day).

6.12 PROCEDURE GW-12: WELL ABANDONMENT

Follow this procedure for permanent abandonment of monitoring wells which have been determined to be no longer useable or will be destroyed due to construction activities.

Preparation

Prepare a statement of work for a licensed drilling contractor to completely fill the well in a manner to prevent vertical movement of water within the borehole and annular space surrounding the well casing. Include the following requirements3 in the specifications:

- 1. The following materials may be used:
- a) Neat Cement conforming to ASTM standard C150-94 of sufficient weight (not less than 15 lbs/gallon) to prevent the flow of any water into the hole from any aquifer penetrated.
- b) Cement grout consisting of equal parts of cement conforming to ASTM standard C150 and sand/aggregate with no more than six (6) gallons of water per 94lb sack of cement.
- c) Bentonite-based products specifically designed for permanent well abandonment, which are mixed and placed according to manufacturer's recommended procedures (i.e., Plug-Gel, Shur-Gel, Benseal etc.).
- d) The uppermost ten feet of the abandoned well casing or borehole shall consist of neat cement or cement grout.
- e) The liquid phase of the abandonment fluid shall be non-saline water containing no chemicals or toxic materials or other substances which may decompose or possibly contaminate the ground water supply.
- f) Abandonment materials placed opposite any non-water bearing intervals shall be at least as impervious as the formation prior to penetration during the drilling process.
- The casing will be pulled, if feasible and possible, while neat cement and cement grout are introduced at the bottom of the wells and placed progressively upward using a grout pipe, tremie line or dump bailer in order to avoid segregation, dilution, or bridging of materials. If the casing cannot be pulled and the seal is of questionable integrity, the casing should be perforated. The screened and perforated intervals will be pressure grouted. Bentonite-based products shall be mixed and placed according to manufacturer's recommended procedures.
- 3. In flowing wells, a cement or grout plug will be placed in the confining stratum overlying the artesian zone.

 The remainder of the well will be filled with cement grout, concrete, or bentonite products.
- 4. The casing, if left in place, shall be severed a minimum of two (2.0) feet below either the natural ground surface adjacent to the well or at the collar of the hole, whichever is lower. A minimum of two feet of compacted native material shall be placed above the abandoned well upon completion.
- 5. Upon completion, the site will be cleaned, and waste materials will be disposed of properly.

 3This list is based on the "State of Utah Administrative Rules for Water Wells Drillers", adopted July 15, 1987. As of January 25, 1991, these rules remain in effect. Contact the Water Rights Division at 538-7240 for updates.
- 6. A report will be submitted to the Division of Water Rights by the driller within 30 days of completion of well abandonment activities in accordance with Section 12.7 of the "State of Utah Administrative Rules For Water Well Drillers".

7. If wells are to be abandoned in areas that may encounter hazardous materials, all personnel must have current 40-hour OSHA Hazardous Materials training.

Oversight

An on-site engineer or geologist will:

- 1. Verify the water level and depth to the bottom of the well prior to abandonment activities using Procedure GF-11.
- 2. Observe and verify all abandonment activities performed by the driller and document the information as listed in the next section, "Documentation".
- 3. Twenty-four hours after abandonment is completed, check the borehole for settlement. Arrange for the addition of grout and check in 24 hours, repeating until grout remains firm up to a point two (2.0) feet below the surface. Arrange for the placement of two (2.0) feet of compacted native soil above the abandoned borehole. Alternatively, if so directed by the Project Manager or Project Work Plan, arrange for the installation of a concrete plug with a metal marker such that the borehole may be located in the future.

Documentation

- 1. Document all field events for the well abandonment process in a Field Logbook, including the following information:
- a) Well I.D.# and Water Right or Drilling Permit Number.
- b) Location with respect to the replacement well or to the nearest landmark.
- c) Water level and depth to bottom prior to grouting and date measured.
- d) Date, time and duration of each field event associated with the abandonment.
- e) Description and amount of grout used initially and for each interval.
- f) Description and daily quantities of grout used to compensate for settlement.
- g) Drilling method.
- h) Names of all on-site personnel and licensed drillers.
- i) Explicit descriptions of problems encountered and/or any deviations from the planned approach.
- j) Casing and materials (e.g., tremie pipes) left in hole (depth, composition, and size).
- 2. File a copy of the above field notes, as well as a diagram of the abandoned well column (materials/depth), with the original borehole log in the Water Quality Filing System.
- 3. Ensure that the driller submits the required report to the Division of Water Rights within 30 days of completion of well abandonment procedures.

6.13 PROCEDURE GW-13: WELL DEVELOPMENT

Well development is necessary to restore the natural hydraulic conductivity of the surrounding formation and remove all foreign sediment. All new wells will be developed prior to sampling. Existing wells producing turbid samples may also require development. Use this procedure after the monitoring well has been constructed.

- 1. Develop monitoring wells within 48 hours after well installation.
- 2. Measure the depth to water and the depth to the bottom of the well according to Procedure GF-11.
- 3. Subtract the depth to water from the depth to bottom to obtain the number of linear feet of standing water. For flowing wells, the depth to water used in this calculation will be 0.0 ft. Calculate the volume of standing water (casing and sand pack volume) as described in Procedure GW-03. Remove at least five volumes by pumping. Development will be considered complete when the turbidity has substantially decreased and the pH, temperature, and specific conductivity have stabilized.
- 4. Contain purged waters in the proper drums if contamination is suspected (see also Procedure GW-06).
- 5. Decontaminate the pump or bailer (if a non-disposable bailer is used) prior to developing another well.
- 6. Document all measurements and activities in the Field Logbook. The method of development, pH, conductivity of casing water, removed volume of water during development, and length of time spent developing the well will be recorded.

6.14 PROCEDURE GW-14: SAMPLE COLLECTION - RADIONUCLIDES

This procedure is for the collection of radionuclides to include Gross Alpha, Gross Beta, Radium 226, Radium 228, and Uranium.

Follow general procedures for sample documentation, sample handling, and equipment decontamination as directed in Procedures DC-01, DC-03, DC-04, DC-05, MD-01, and MD-02.

- 1. Prepare all sample containers in accordance with Procedure DC-03.
- 2. Label the sample containers in accordance with Procedure DC-04.
- 3. The prepared sample containers should already be rinsed and contain appropriate preservatives, if not, rinse three times with sample water and preserve according to Table DC-3. Fill the following container directly from the pump discharge hose:
- 4. 1 half gallon plastic container
- 5. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.
- 5. Since all of these, except for Uranium, must be shipped to an outside laboratory for analysis, the following MDL's have been set:
- · Gross Alpha Dependent on TDS
- · Gross Beta Dependent on TDS
- Radium 226 2 pCi/L
- · Radium 228 1 pCi/L
- · Uranium 0.005 mg/L

6.15 PROCEDURE GW-15: SAMPLE COLLECTION - LYSIMETER

LYSIMETER IDENTIFICATION

All RTK soil moisture lysimeter sampling locations are identified utilizing a three-letter identification acronym followed by a unique number ranging between 4100 and 4199. The site letter acronym identifies the general location of the lysimeter as outlined in the procedures in GW-01.

LYSIMETER INSPECTION

Each time a lysimeter is to be sampled the inspection procedures outlined in GW-02 are to be followed. However, additional troubleshooting may be required. For instance, if there is no remaining suction and no sample, follow-up corrective action may be required. The status of the lysimeter is to be recorded as described in GW-02, as well as on the lysimeter record keeping field form, using the appropriate lysimeter status number outlined in the troubleshooting section.

TROUBLESHOOTING

The following is a troubleshooting guide for suction lysimeter field sampling:

Lysimeter Status No.

- Lysimeter has vacuum remaining that ranges from 20 to 50 centibar, sample volume is greater than 100ml. Meaning: Lysimeter is operating properly, if soil matrix potential is much less than applied suction. Correction Action: None.
- 2. Lysimeter has vacuum remaining that ranges from 20 to 50 centibars, sample volume collected is 10 to 100ml. Meaning: Lysimeter is operating properly, if soil matrix potential is near applied suction. Corrective Action: None; however, special precautions are needed to be observed in the analysis of low volume samples. Prioritize analytical request.
- 3. Lysimeter has vacuum remaining that is greater than 20 centibars, no sample. Meaning: Lysimeter is operating properly, if soil matrix potential is greater than the applied suction. Corrective Action: None.
- 4. Lysimeter has no vacuum remaining, no sample. Meaning: Soil matrix potential is less than the air entry value or the lysimeter leaks. Corrective Action: Compare to water content records and to other lysimeters at the same depth to see if it possible for the suction to be less than -2 bars. If not, inject 50ml of deionized water and reapply vacuum. If vacuum is gone within an hour, replace lysimeter.

FIELD MEASUREMENTS

Field measurements will be collected during the procedure outlined in GW-04, including pH, specific conductance, temperature, dissolved oxygen, ferrous iron, and sulfide (see CHEMets ampoules due to limited sampling volume). Also, nitrites and nitrates are required for field measurements, using CHEMets ampoules specified for these analyses. Follow the instructions provided with these CHEMets sample kits. A sample volume estimation is also required after sample collection (0-700ml).

SAMPLING PROCEDURES - SAMPLE CONTAINER PREPARATION

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

Prepare sample containers prior to the sampling event. Use new laboratory-cleaned sample containers.
 The containers should be rinsed three times with deionized water. Label the containers as directed by procedure DC-04.

2. Use the proper containers and preservatives for each analytical parameter as specified in lysimeter analysis priority table. Note: Due to the small amount of sample available, smaller containers are sufficient for collection.

APPLYING VACUUM

- 1. Remove the cap from the PVC casing. Lightly pull on the two tubings found inside of casing. Be careful to not pull the connected end of the tubings out of the lysimeter. Remove the plastic O-rings from the free ends of the tubing.
- 2. Connect the hose of the nitrogen bottle regulator to the black tubing of the lysimeter. Open the regulator valve, allowing no more than 15 lbs. pressure through the lysimeter. Purge lysimeter with nitrogen gas until all stagnant water is evacuated and the gas is coming out of the white tubing.
- 3. Disconnect the regulator tubing from the lysimeter, bend the black neoprene end of the white tubing and replace the O-ring--this restricts any inflow of air into the lysimeter.
- 4. Connect the black tubing of the lysimeter to the pressure-vacuum hand pump (Model 1920K1) on the vacuum valve (valve must have vacuum dial gauge) at the bottom of the pump. Apply a vacuum to the lysimeter until a stable 60 centibars is read on the vacuum dial gauge. Observe the gauge for a few seconds to make sure lysimeter is holding the vacuum. Record the time, date, and the vacuum applied (centibars) as indicated on the record keeping field form.
- 5. Before removing the black tubing from the hand pump, bend the neoprene end of the black tubing, and replace the O-ring so it restricts any inflow of air. This will maintain the vacuum inside the lysimeter.
- 6. Replace both tubing's back into the PVC casing. Replace cap on the casing head. Wait 24 hours to let lysimeter collect a sufficient sample.

COLLECTING SAMPLE

- 1. Remove PVC cap from the head of the lysimeter casing. Lightly pull on the tubing, being careful to not pull the connected ends out of the lysimeter.
- 2. Before removing the O-rings from the tubing, connect the black tubing to the vacuum valve of the pressure-vacuum hand pump. Remove the O-ring and record the remaining value in the indicated space on the record keeping field form.
- 3. Remove the O-ring from the white tubing. Thoroughly rinse the black neoprene endings of both tubes with deionized water.
- 4. Connect the hose of the nitrogen bottle regulator to the end of the black tubing. Open the regulator valve, allowing no more than 15 lbs. pressure through the lysimeter. Purge the lysimeter with nitrogen gas until all the sample water is evacuated. Collect the sample in the pre-washed bottles required. Fill the unpreserved bottle first. This will provide the fluid for field measurements. Be sure to take the samples temperature upon purging the lysimeter to ensure it is a representative reading. NOTE: Take the temperature from the sample in the unpreserved bottle--chemical reactions can affect the temperature reading, giving an incorrect number.

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

5. When all the sample water is evacuated and collected, turn the nitrogen pressure off and remove the hose from the black tubing. Replace the O-rings on the neoprene ends of the tubing, bending the ends to prevent contamination of the lysimeter.

6. Replace both tubing back into the lysimeter PVC casing and replace cap on the casing head.

Please refer to Attachments - FIGURE GW-7: EXAMPLE LYSIMETER RECORD KEEPING FIELD FORM

7 PROCESS WATER SAMPLING

This section presents procedures associated with process water sampling activities.

7.1 PROCEDURE PW-01: SAMPLE POINT IDENTIFICATION

New process water sampling locations are identified utilizing a three- or four-letter identification acronym followed by a unique number ranging between 0001 and 9999, and a final letter code. No dashes and/or spaces are used in the well name. Special identification numbers for QC samples are described in Procedures QC-01 through QC-05.

Names for new process water sampling points will be assigned or approved by the Sampling Supervisor. The requirements for naming new sampling sites are identified in Procedure DC-02.

7.2 PROCEDURE PW-02: SITE INSPECTION

This procedure describes sampling site inspections. Two types of site inspections are to be completed at each site, one a general site investigation to be conducted each time a sample is collected and the other a comprehensive inspection to be performed when the site is first designated, or for existing sites, as soon as possible. These inspections are to be done in addition to other inspections that may be required by specific procedures.

General Site Inspection

Upon arrival at each process water sampling site, the site will be inspected. The purpose of this inspection is to document the sampling point is functional, the sampling equipment dedicated to the site (if any) is operating correctly, and that the sampling point and/or equipment has not been tampered with. Any problems identified at the site will be noted in the Field Logbook or designated Field Data Sheet and any equipment problems corrected. Any major equipment problems or evidence of tampering will be reported to the Sampling Supervisor.

Comprehensive Inspection

The purpose of the comprehensive inspection is to document the sampling site. Sufficient detail and description is to be provided to allow the exact location of the sampling site and the identification of sampling equipment present at the site. A map of the site is to be drawn that locates all major features related to the sampling point. Photographs of the site and sampling equipment will be taken to show sampling points, all measuring points, and permanent sampling equipment. Any pertinent items concerning the condition of the sampling point, sampling equipment, special sampling considerations, or its surroundings not included in the above information will be noted.

For open water or seeps, the documentation required by Procedure SW-02 will also be provided. Process water samples collected from wells will be documented as described in Procedure GW-02.

7.3 PROCEDURE PW-03: FIELD MEASUREMENTS

Field measurements will be collected using Procedure SW-03 or GW-04 as indicated by media type. The specific sampling procedure for the process water sampling point will be reviewed to ensure that any modifications to the above procedures are noted and followed. Field measurements will be conducted according to the specific procedure requirements.

7.4 PROCEDURE PW-04: FIELD DATA SHEETS

A Field Data Sheet will be completed for each process water sample collected. This sheet is described in Procedure GW-05, if the sample is collected from a well or well like device, as identified in procedure SW-05 for an open water, and/or as indicated on the specific sampling procedures and/or plans.

7.5 PROCEDURE PW-05: SAMPLE COLLECTION - SMALL RESERVOIR AND LEAK DETECTION SUMPS

This procedure is for the collection of water samples representative of the Small Reservoir and the Small Reservoir leak detection sumps. These sites will be sampled to fulfill the requirements of the Small Reservoir groundwater discharge permit and associated water quality sampling plan.

Follow Procedure DC-01 to keep a Field Logbook of all sampling activities conducted at the Small Reservoir. The following sample identification numbers will be used for the Small Reservoir sampling sites:

Sample Site Sample Identification

Small Reservoir SRP850

Lower Leak Detection Sump (east sump) SRP851

Pressure Relief Sump (west sump) SRP852

Follow general procedures for sample container preparation, DC-03; sample labeling, DC-04; sample custody, DC-05; sample preservation and packaging, DC-06; equipment maintenance, MD-01; equipment decontamination, MD-02; quality control sampling, QC-01 through QC-05; equipment calibration, GF-01; pH measurement, GF-02; specific conductance measurement, GF-04; carbonate and bicarbonate measurement, GF-05.

Small Reservoir Sampling

- 1. Prepare sample containers in accordance with Procedure DC-03.
- 2. Coordinate sample collection with the South Area Water Services (SAWS) personnel.
- 3. SAWS personnel will accompany the samplers during sample collection to ensure the best possible represented sample is collected.
- 4. Label sample containers in accordance with Procedure DC-04.
- 5. The prepared containers should already be rinsed and contain appropriate preservatives, if not, rinse three times with sample water and preserve according to Table DC-3. Fill the following sample containers directly from the tap:
- 1 half gallon plastic containers for major ions analyses,
- 1-8oz plastic container for total metal analyses; and,
- 1–16-oz plastic container for sulfate when pH is less than 4.5.
- Collect an additional sample in either a stainless-steel bucket or a clean plastic bottle for the field measurements of temperature, pH, and electrical conductivity, and for preparing a filtered sample for dissolved metal analyses.
- 7. Collect the dissolved metal sample from the stainless-steel bucket using a peristaltic pump and an in-line filtering device with a 0.45-micron filter. The peristaltic pump will provide the pressure for in-line filtering. Fill 8 ounces into a plastic container for dissolved metal analyses.
- 8. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

9. Collect QA/QC samples in accordance with the GCMP. Name the duplicate as described in Procedure QC-01.

10. Close the sample tap securely.

Lower Leak Collection Sump and Pressure Relief Sump Sampling

- 1. Prepare sample containers in accordance with Procedure DC-03.
- 2. Obtain access to the Small Reservoir area from Mine Personnel.
- 3. Obtain a confined space entry permit from the Mine Safety Officer. Turn on the down hole fan and lights and wait for at least 5 minutes. Do not enter the sump until air quality has been verified. A watch person must always be stationed at the surface of the sump during all sampling activities.
- 4. If the sumps are full and liquid is flowing through the v-notch weir(s) in the sump, catch a water sample as water flows out the weir. If water is not flowing out the weir, sample using a peristaltic pump with either new clean vinyl tubing or vinyl tubing dedicated to the sump. Pump enough water through the tubing to rinse it thoroughly before collecting a sample. In cases where a peristaltic pump is not available, a clean dipper can be used; the dipper will be rinsed three times with sump water before filling the sample bottles.
- 5. Label sample containers in accordance with Procedure DC-04.
- 6. The prepared sample containers should already be rinsed and contain appropriate preservatives, if not, rinse three times with sample water and preserve according to Table DC-3. Fill the following sample containers:
- 1-half gallon plastic containers for major ions analyses,
 - At least 8-ounces into a plastic container for total metal analyses,
- at least 8-ounces into a plastic container for dissolved metal analyses; and
- at least 8 ounces into a plastic container for sulfate when pH is less than 4.5.
- 7. Collect additional samples in either a stainless-steel bucket or a clean plastic bottle for the field measurements of temperature, pH, and electrical conductivity, when necessary, for filtering for dissolved metals.
- 8. Collect the dissolved metal sample from the stainless-steel bucket using a peristaltic pump and an in-line filtering device with an 0.45-micron filter. The peristaltic pump will be used to provide the pressure for inline filtering. If a peristaltic pump is already being used, collect the sample directly from the end of vinyl tubing and filtering device. Fill at least 8 ounces into a plastic container for dissolved metal analyses.
- 9. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.
- 10. Collect QA/QC samples in accordance with the GCMP. Name the duplicate as described in Procedure QC-01.
- 11. Take precautions in bringing the samples and equipment out of the sump.
- 12. Secure the lid to the sump and turn off the down hole fan and lights.

7.6 PROCEDURE PW-06: SAMPLE COLLECTION - LARGE RESERVOIR (DESILTING BASIN, ZONE 1 AND ZONE 2 RESERVOIR AND LEAK DETECTION SUMPS)

This procedure is for the collection of representative samples of the Desilting Basin, Zone 1, and Zone 2 Reservoirs and Zone 1 and Zone 2 leak detection sumps. These sites will be sampled to fulfill the requirements of the Large Reservoir Groundwater Discharge Permit and the associated water quality sampling plan.

There are three chambers located within the Desilting Basin and there are five leak detection sumps located within the Zone 1 Reservoir liner system and five leak detection sumps located within the Zone 2 Reservoir liner system. Each individual sump has a dedicated monitoring pipe set that extends between the liners and emerges above the surface of the Divider Dike crest. Sump samples will be collected via the monitoring pipe sets, generally with the use of a Grundfos pump.

Follow Procedure DC-01 to keep a Field Logbook of all sampling activities conducted at the Desilting Basin, Zone 1, and Zone 2 Reservoirs. The following sample identification numbers will be used for the Desilting Basin, Zone 1, and Zone 2 Reservoir sampling sites:

Sample Site	Sample Identification
Desilting Basin No. 1 (west pond	d) LRP1320
Desilting Basin No. 2 (north pon	ld) LRP1321
Desilting Basin No. 3 (south por	nd) LRP1322
Zone 1 Reservoir	LRP896
Sump 01 (north sump)	LRP891
Sump 02	LRP892
Sump 03	LRP893

Sample Site	Sample Identification
Sump 04	LRP894
Sump 05 (south sump)	LRP895
Zone 2 Reservoir	LRP1319
Sump 01 (north sump)	LRP1314
Sump 02	LRP1315
Sump 03	LRP1316
Sump 04	LRP1317
Sump 05	LRP1318

Follow general procedures for sample container preparation, DC-03; sample labeling, DC-04; sample custody, DC-05; sample preservation and packaging, DC-06; equipment maintenance, MD-01; equipment decontamination, MD-02; quality control sampling, QC-01 through QC-05; equipment calibration, GF-01; pH

Rev: 10 | Rev Date: December 2023

measurement, GF-02; specific conductance measurement, GF-04; carbonate and bicarbonate measurement, GF-05.

Desilting Basin, Zone 1, and Zone 2 Reservoirs

- Prepare all sample containers in accordance with Procedure DC-03.
 Coordinate sample collection with South Area Water services (SAWS) personnel.
- 2. SAWS personnel will accompany the samplers during sample collection to ensure the best possible represented sample is collected.
- 3. Label the sample containers in accordance with Procedure DC-04.
- 4. The prepared containers should already be rinsed and contain appropriate preservations, if not, rinse three times with sample water and preserve according to Table DC-3. The following containers will be filled:
- 1- half gallon plastic containers for major ions analyses,
- At least 8 ounces into a plastic container for total metal analyses,
- At least 8 ounces into a plastic container for dissolved metal analyses.
- 5. Collect the dissolved metal sample from the stainless-steel bucket using a peristaltic pump and an in-line filtering device with an 0.45-micron filter. The peristaltic pump will provide the pressure for in-line filtering. Fill 1–8-ounce plastic containers for dissolved metal analyses.

Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.

Leak Detection Sumps

- 1. Prepare sample containers in accordance with Procedure DC-03.
- 2. Water quality samples will be collected from the pumping device used to conduct the sump pump test. A sample will be collected if a 3.5 gpm (5000 gallons per day) pumping rate is maintained for one hour.
- 3. Label the sample containers in accordance with Procedure DC-04.
- 4. The prepared sample containers should already be rinsed and contain appropriate preservatives, if not, rinse three times with sample water and preserve according to Table DC-3. Fill the following containers directly from the pump discharge hose:
- 1/2 gal. plastic containers for major ions analyses,
- At least 8 ounces into a plastic container for total metal analyses,
- At least 8 ounces into a plastic container for dissolved metal analyses.
- Collect additional samples in either a stainless-steel bucket or clean plastic bottles for the field measurements of temperature, pH, and electrical conductivity and possibly for the dissolved metal sample.
- 6. Collect the dissolved metal sample by attaching an in-line filtering device with an 0.45-micron filter attached to the end of the Grundfos discharge line. Fill at least 8 ounces into a plastic container for dissolved metal analyses. If desired, a dissolved metal sample can alternately be collected from a stainless-steel bucket as described in Step 6 of Zone 1 Reservoir Sampling.

7. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.

7.7 PROCEDURE PW-07: SAMPLE COLLECTION SMELTER INTERIM PROCESS WATER POND

This procedure is for the collection of a representative sample of the Smelter Interim Pond. Follow general procedures for sample documentation, sample handling, and equipment decontamination as directed in Procedures DC-01, DC-03, DC-04, DC-05, MD-01, and MD-02.

- 1. Prepare all sample containers in accordance with Procedure DC-03.
- 2. Collect water samples quarterly from the Interim Pond by lowering either a Grundfos or Bennett pump down the pond liner until the pump is submerged and begin pumping.
- 3. Allow the water to flow freely for several minutes to ensure adequate flushing of the pump hoses.
- Label sample containers in accordance with Procedure DC-04 prior to sampling.
- 5. The prepared sample containers should already be rinsed and contain appropriate preservatives, if not, rinse three times and preserve according to Table DC-3. Fill the following containers:
- 1/2 gal. plastic containers for major ions analyses,
- At least 8 ounces into a plastic container for total metal analyses,
- An 8-ounce amber glass bottle for mercury analyses.
- 6. Collect additional samples in either a stainless-steel bucket or clean plastic bottles for the field measurements of temperature, pH, and electrical conductivity and for filtering for dissolved metals. Collect the dissolved metal sample from the stainless-steel bucket using a peristaltic pump to provide pressure for an in-line filtering device. The filtering device will contain an 0.45-micron filter.
- 7. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.

7.8 PROCEDURE PW-08: SAMPLE COLLECTION - BLUEWATER REPOSITORY SUMP

This procedure is for the collection of water samples representative of the Bluewater Repository sump to fulfill requirements of the Bluewater Repository Groundwater Discharge Permit and associated water quality sampling plan.

Follow Procedure DC-01 to keep a Field Logbook of all sampling activities conducted at the Bluewater Repository. The sample identification number for the Bluewater sump is BRP292.

Follow general procedures for sample container preparation, DC-03; sample labeling, DC-04; sample custody, DC-05; sample preservation and packaging, DC-06; equipment maintenance, MD-01; equipment decontamination, MD-02; quality control sampling, QC-01 through QC-05; equipment calibration, GF-01; pH measurement, GF-02; specific conductance measurement, GF-04; carbonate and bicarbonate measurement, GF-05.

- 1. Prepare sample containers in accordance with Procedure DC-03.
- 2. When it has been determined that flow is present in the sump, a sample will be collected from the bucket in the sump which is located at the end of the seepage collection pipe.
- 3. Label containers in accordance with Procedure DC-04.
- 4. The prepared containers should already be rinsed and contain appropriate preservatives, if not, rinse three times with sample water and preserve according to Table DC-3. Fill the following sample containers directly from the sump bucket:
- 1 half gallon plastic container for major ions analyses.
- At least 8 ounces into a plastic container for total metal analyses,
- At least 8 ounces into a plastic container for sulfate when pH is less than 4.5.
- 5. Collect an additional sample for field measurements of temperature, pH, and electrical conductivity.
- 6. Collect the dissolved metal sample directly from the dedicated sump bucket using a peristaltic pump and an in-line filtering device with an 0.45-micron filter. The peristaltic pump will provide the pressure for the in-line filtering. Fill at least 8 ounces into a plastic container for dissolved metal analyses.
- 7. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.
- 8. Collect QA/QC samples in accordance with the GCMP. Name the duplicate as described in Procedure QC-01.
- 9. Empty the bucket, rinse it with de-ionized water, and return it to collect any water from the seepage collection pipe.
- 10. Secure the man-hole lid.

7.9 PROCEDURE PW-09: SAMPLE COLLECTION - UPDES (GENERAL)

This procedure is for the collection of water samples at permitted UPDES outfalls to C-7 Ditch and drainages to the Great Salt Lake and Bingham Creek.

- 1. Prepare sample containers in accordance with Procedure DC-03.
- 2. Complete UPDES Field Data Sheet (Figure PW-1).
- 3. Place sample containers on flat, stable surfaces for receiving samples.
- 4. Remove the large sample container from the automatic sampling unit and shake to mix the composite sample. Continue to agitate the composite sample to ensure a homogeneous sample is collected.
- 5. Rinse the sample containers at least three times using the water to be sampled (unless previously prepared with preservatives).
- 6. Transfer the sample until the containers are completely filled.
- 7. For samples to be submitted to an external laboratory, secure the cap tightly.
- 8. If sample site does not have an identification number, assign a sample identification number in accordance with Procedure PW-01.
- 9. Label samples in accordance with Procedure DC-04.
- 10. Handle the sample as described in Procedures DC-05 and DC-06.
- 11. Collect QA samples and process in the same manner as other samples with respect to documentation and handling.

Please refer to Attachments - Figure PW-1. UPDES Field Log Sheet

7.10 PROCEDURE PW-10: SAMPLE COLLECTION - UPDES (ORGANIC)

The following procedure will be followed to collect process water samples for organics (VOC). Follow general procedures for sample documentation, sample handling, and equipment decontamination as directed in Procedures DC-01, DC-03, DC-04, DC-05, DC-06, MD-01, and MD-02.

- 1. Prepare sampling equipment and sample containers, (Procedure DC-03) prior to visiting sample site.
- 2. Remove the acid vial, transfer pipette and one sample vial from the kit. Avoid contamination of any part of the collection kit from petroleum products or cleaning solvents.
- 3. Remove the cap on the first sample vial keeping the cap away from any sources of contamination.
- 4. Fill the sample vial to overflowing but take care not to flush out the preservative. No air bubbles should pass through the sample as the bottle is filled or be trapped in the sample when the vial is sealed.
- 5. The pH of the sample must be adjusted to a pH of <2 by carefully adding two drops of acid from the acid vial. Highly buffered water may require more acid. Samples received are tested for pH prior to testing and will be discarded for a pH of 2 or greater.
- 6. Following the addition of acid, the vial must be sealed with the Teflon face down, shaken vigorously for one (1) minute, and store at 4EC (40EF) until received by the Division of Laboratory Services.
- 7. The process is repeated for the remaining three sample vials.

Rev: 10 | Rev Date: December 2023

7.11 PROCEDURE PW-11: SAMPLE COLLECTION – BARGE

- 1. Prepare all sampling equipment and sample containers, including QC samples (Procedure DC-03), prior to visiting the station.
- 2. Place sample containers on flat, stable surfaces for receiving samples.
- 3. Remove the large sample container from the automatic sampling unit and shake in order to mix the composite sample.
- 4. Rinse the sample container at least three times using the water to be sampled (unless previously prepared with preservatives).
- 5. Transfer the sample until the container is completely filled.
- 6. For samples to be submitted to an external laboratory, secure the cap tightly.
- 7. Assign a sample identification number in accordance with Procedure PW-01.
- 8. Label samples in accordance with Procedure DC-04.
- 9. Handle the sample as described in Procedures DC-05 and DC-06.
- 10. Collect QA samples and process in the same manner as other samples with respect to documentation and handling.

7.12 PROCEDURE PW-12: SAMPLE COLLECTION - TAILINGS POND RETURN

Follow general procedures for sample documentation, and sample handling as directed in Procedures PW-01, DC-04, DC-05, and DC-06.

- 1. Prepare sample containers in accordance with DC-04 prior to visiting the sample site.
- 2. Samples can be collected as needed directly from the return canal at the Southeast corner of the tailings impoundment using a sample dipper.
- 3. The dipper should be rinsed three times with the sample water prior to collecting the sample.

The prepared containers should already be rinsed and contain appropriate preservatives, if not, rinse three times with sample water and preserve according to Table DC-3. Fill the following sample containers directly from the dipper:

- 1 half gallon plastic container for major ions analyses,
- At least 8 ounces into a plastic container for total metal analyses,
- At least 8 ounces into a plastic container for sulfate when pH is less than 4.5.
- 4. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.

7.13 PROCEDURE PW-13: SAMPLE COLLECTION - TAILINGS POND SEEPS

The following procedure will be followed to collect samples of seeps and drainage water from the tailings pond, or samples of similar type elsewhere on RTK property (i.e., tunnels).

- 1. Perform site inspection described in Procedure SW-02.
- 2. Prior to sample collection, review the general sampling protocol presented in Procedure SW-06.
- Draw a sketch of the sampling point (to scale, if possible) on the Surface Water Quality Field Data Sheet and complete the field sheet as required in Procedure SW-05. Note distances from fixed landmarks such that the site may be located again.
- 4. Collect and record field measurements as required in Procedure SW-05.
- 5. Collect sample by holding the sample container under the flowing seep as described in Procedure SW-07. If the flowing seep is not exposed, sample the standing water in accordance with Procedure SW-06.
- 6. Assign a sample identification number in accordance with Procedure DW-01.
- 7. Label samples in accordance with Procedure DC-04.
- 8. Handle the sample as described in Procedure DC-05 and DC-06.
- 9. Collect QC samples as directed by Procedures QC-01 through QC-05. Process these samples in the same manner as other samples with respect to documentation and handling.
- 10. Arrange for the surveying of new sample locations if required by the Project Work Plan or the Project Manager (see Procedure DW-01).

7.14 PROCEDURE PW-14: SAMPLE COLLECTION - TAILINGS POND DRAINS

The following procedure will be followed to collect samples of seeps and drainage water from the tailings pond, or samples of similar type elsewhere on RTK property (i.e., tunnels).

- 1. Perform site inspection described in Procedure SW-02.
- 2. Prior to sample collection, review the general sampling protocol presented in Procedure SW-03.
- 3. Draw a sketch of the sampling point (to scale, if possible) on the Surface Water Quality Field Data Sheet and complete the field sheet as required in Procedure SW-05. Note distances from fixed landmarks such that the site may be located again.
- 4. Collect and record field measurements as required in Procedure SW-05.
- 5. Collect sample by holding the sample container under the flowing drainpipe.
- 6. Assign a sample identification number in accordance with Procedure DW-01.
- 7. Label samples in accordance with Procedure DC-04.
- 8. Handle the sample as described in Procedures DC-05 and DC-06.
- 9. Collect QC samples as directed by Procedures QC-01 through QC-05. Process these samples in the same manner as other samples with respect to documentation and handling.
- 10. Arrange for the surveying of new sample locations, if required, by the Project Work Plan or the Project Manager (see Procedure DW-01).

7.15 PROCEDURE PW-15: SAMPLE COLLECTION - SMELTER PROCESS WATER SUMPS

This procedure is for the collection of water samples representative of the Smelter Process Water sumps to fulfill requirements of the Smelter Ground Water Discharge Permit and associated water quality sampling plan.

Follow Procedure DC-01 to keep a Field Logbook of all sampling activities conducted at the Smelter Process Water sumps.

Follow general procedures for sample container preparation, DC-03; sample labeling, DC-04; sample custody, DC-05; sample preservation and packaging, DC-06; equipment maintenance, MD-01; equipment decontamination, MD-02; quality control sampling, QC-01 through QC-05; equipment calibration, GF-01; pH measurement, GF-02; specific conductance measurement, GF-04.

- 1. Prepare sample containers in accordance with Procedure DC-03.
- 2. Smelter operations will determine when there is sufficient water present in the sump for a sample to be collected.
- 3. Procure a sample by removing water from the sump with a portable pump or a dedicated pump if provided.
- Label containers in accordance with Procedure DC-04.
- 5. The prepared containers should already be rinsed and contain appropriate preservatives, if not, rinse three times with sample water and preserve according to Table DC-3. Fill the following sample containers from the pump discharge hose:
- 1/2-gallon plastic container for major ions analyses.
- At least 8 ounces into a plastic container for total metal analyses,
- 1-gallon stainless steel bucket for procuring a dissolved metal sample and for field measurements of temperature, pH, and electrical conductivity.
- 6. Collect the dissolved metal sample directly from the stainless-steel bucket using a peristaltic pump and an in-line filtering device with an 0.45-micron filter. A peristaltic pump will provide the pressure for the in-line filtering. Fill at least 8 ounces into a plastic container for dissolved metal analyses.
- 7. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.
- 8. Collect QA/QC samples in accordance with the GCMP. Name the duplicate as described in Procedure QC-01.

8 DRINKING WATER SAMPLING

This section presents procedures associated with drinking water sampling activities.

SMD1048

SMD1049

8.1 PROCEDURE DW-01: SAMPLE POINT IDENTIFICATION AND LOCATION

Drinking water sampling locations are identified utilizing acronyms listed below:

Sam	ole Identification	Number Location
_	BMD1009	Freeman Culinary Tank After Chlorination
-	BMD1010	Mine 6290 Office Janitor's Mop Sink
-	BMD1011	Mine Visitor Center Men's Restroom Wash Basin
-	BMD1012	Mine 6290 Change House Washroom Sink
-	BMD1013	Mine 6190 Truck Shop Washroom
-	BMD1014	Mine 6190 Truck Shop Foreman's Restroom
-	BMD1015	Copperfield Tire Shop Sink
-	BMD1016	Mine 6190 Bull Gang Restroom Wash Basin
-	BMD1017	Mine 6190 Redi Room Men's Restroom Wash Basin
-	BMD1018	Mine 6190 Redi Room Women's Restroom Wash Basin
-	BMD1019	Mine 6190 Office Building Lunchroom Wash Basin
-	BMD1020	Mine 6190 Office Building Ladies Restroom Wash Basin
-	BMD1021	Markum Shop Kitchen Sink
-	BMD1022	Mine Safety Office Janitor's Mop Sink
-	BMD1023	Mine Dry Fork Shops Women's Restroom Wash Basin
-	BMD1024	Mine Dry Fork Shops Electrical Foreman's Restroom Wash Basin
-	BMD1025	Mine Dry Fork Shops Welding Shop West Sink
-	BMD1026	Mine Dry Fork Shops Electrical Office Test Area Wash Room
-	BMD1027	Mine Dry Fork Shops Lineman Trailer Wash Basin
-	BMD1028	Mine Dry Fork Shops Dozer Repair Lunchroom Wash Basin
-	BMD1029	Mine Dry Fork Shops Car Shop Lunchroom Wash Basin
-	BMD1036	Bingham Mine Safety Office Rest Room Wash Basin
-	BMD1037	6190 Admin Conference Room Kitchen Sink
-	BMD1038	6190 Admin Office Women's Rest Room Wash Basin
-	BMD1039	6190 Admin Office Men's Rest Room Wash Basin
-	BMD1040	6190 Admin Office Kitchen Sink Faucet
-	ECD1030	SAWs Plant Control Room Mop Sink
-	ECD1031	SAWS Plant Foreman's Washroom Wash Basin
-	ECD1032	SAWS Plant Janitor's Mop Sink
-	ECD1033	Mine Car Whacker Restroom Wash Basin
-	ECD1034	Mine Copperton Tower Restroom Wash Basin
-	ECD1035	Barney Tunnel Culinary Tank
-	SMD1045	Smelter Environmental Monitoring Center
-	SMD1046	Smelter #8 Acid Plant Repair Building Mop Sink
<u>S</u>	ample Identification	Number Location
-	SMD1047	Smelter Change house Downstairs Mop Sink

Smelter Central Warehouse Outside Tap Dock

Smelter Mechanic Shop Wash Basin

-	SMD1068	Smelter #8 Acid Plant Field Repair Restroom Wash Basin
-	SMD1069	Smelter Safety Office Exam Room Wash Basin
-	SMD1070	Smelter Environmental Office Restroom Wash Basin
-	SMD1071	Refinery Administration Building. Men's Rest Room Wash Basin
-	SMD1075	Smelter Engineering Kitchen Sink
-	SMD1095	Smelter Upstairs Lunch Room in Maintenance Building Kitchen Sink
-	SMD1096	Smelter EDX Building Men's Rest Room Wash Basin
-	SMD1097	Smelter Flash Furnace Building Level 3 Men's Rest Room Wash Basin
-	SMD1098	Smelter Filter Plant Maintenance Building Women's Rest Room Wash Basin
-	RFD1051	Refinery Administration Building Janitor's Room Mop Sink
-	RFD1052	Refinery Maintenance Shops Foreman's Restroom Wash Basin
-	RFD1053	Refinery Warehouse Wash Basin
-	RFD1054	Refinery Field Repair Foreman's Office Sink
-	RFD1055	Refinery Boiler Plant Upstairs Restroom Wash Basin
-	RFD1094	Refinery P.M. Building Women's Rest Room Wash Basin
-	MCD1056	Magna Pipe Shop Shower
-	MCD1057	Magna Central Garage Washroom
-	MCD1058	Magna Safety Office Rear Washroom Wash Basin
-	MCD1059	Magna Flotation Sample Department Storage Room Wash Basin
-	MCD1060	Magna Central Change Building Women's Washroom Wash Basin
-	MCD1073	Magna Pipe Shop Lunchroom Sink
-	PCD1041	Power Plant 3rd Floor Rest Room Wash Basin
-	PCD1042	Power Plant 5th Floor Rest Room Wash Basin
-	PCD1061	Bonneville Grind Building Control Room Restroom
-	PCD1062	Bonneville Dumper Building Furnace Room Mop Sink
-	PCD1067	Bonneville Dumper Building. Control Washroom
-	ARD1063	Arthur Carpenters Shop Shower
-	ARD1064	Arthur Administration Building Furnace Room Mop Sink
-	ARD1066	Arthur Administration Downstairs Women's Washroom Basin
-	ARD1074	Arthur Central Shop Restroom Wash Basin
-	LSD1078	Section 21 Pump House Combined After Chlorination
-	BYD1080	Copperton Concentrator Changehouse Janitor's Sink
-	BYD1081	Copperton Concentrator Outside Services Kitchen Tap
-	BYD1082	Copperton Concentrator Grinding Plant Millwrights Kitchen Tap
-	BYD1083	Copperton Concentrator Grinding Plant Operations Kitchen Tap
-	BYD1084	Copperton Concentrator Moly Plant Systems Kitchen Tap
-	BYD1085	Copperton Concentrator Grinding Plant Electrical Kitchen Sink
-	BYD1086	Copperton Concentrator Met Lab Kitchen Sink
-	BYD1087	Copperton Concentrator Moly Operations Kitchen Sink
-	BYD1088	Copperton Concentrator Flotation Plant Millwright Kitchen Sink
-	BYD1089	Copperton Concentrator Recordkeeping Center Bathroom Wash Sink
-	BYD1090	Copperton Concentrator Culinary Tank After Chlorination
-	WTD1065	Garfield Security Restroom Wash Basin
-	ECP2796	Zone A RO Product Water

Sample identification names for new drinking water sampling points will be assigned and approved by the Sampling Supervisor.

*Not Valid Points

8.2 PROCEDURE DW-02: SITE INSPECTION

The purpose of the inspection is to document the sampling site. Sufficient detail and description is to be provided to allow identification of the exact sampling site. A map of the site is to be drawn that locates all major features related to the sampling point. Photographs of the site should be taken to show the sampling point. Note any pertinent items concerning the condition of the sampling point, special sampling considerations, or its surroundings.

8.3 PROCEDURE DW-03: FIELD MEASUREMENTS

The following procedure will be followed for field measurements of pH, temperature, and specific conductivity for drinking water.

- 1. Begin written documentation as appropriate (see Procedure DC-01, and DW-04).
- 2. Allow water to flow for at least 5 to 10 minutes from the designated sample point to ensure adequate flushing of the immediate supply pipes.
- 3. Collect samples in new, laboratory-cleaned, or decontaminated containers for measurement with meters.
- 4. Follow Standard Operating Procedures GF-01, GF-02, and GF-04 for calibrating and measuring pH and specific conductance.

8.4 PROCEDURE DW-04: FIELD DATA SHEETS

A Drinking Water Field Data Sheet will be completed for each sample collected that is analyzed for drinking water parameters only. A sample Drinking Water Field Data Sheet is shown in Figure DW-01.

For samples collected from a well for the purpose of monitoring drinking water sources, Procedure GW-05 will be followed for the completion of a Field Data Sheet.

Please refer to Attachments - Figure DW-1. Drinking Water Field Data Sheet

8.5 PROCEDURE DW-05: SAMPLE COLLECTION - DRINKING WATER

BACTERIOLOGICAL EXAMINATION

The following procedure will be followed to test drinking water samples for residual chlorine, and to collect samples for bacterial counts:

- 1. Begin written documentation as appropriate (see Procedure DC-01 and Figure DW-02).
- 2. Assign a sample identification number in accordance with Procedure DW-01.
- 3. Decontaminate tap using antibacterial wipes and holding an open flame under the tap. Allow cold water to run freely for five to ten minutes prior to sampling. While water is flowing, the sampler should wash hands in a separate sink, if possible, to help minimize sample contamination.
- 4. Collect a sample for bacterial count by filling two sterile plastic bottles from the tap. Prevent contact by any object (including sampler's hands) on the bottle opening or interior.
- 5. Label and handle samples in accordance with Procedures DC-01 through DC-05.
- Measure residual free chlorine by following instructions provided in a Chlorine Colorimetric sample kit.
 Record the residual chlorine concentration on the Utah State Department of Health Form (Figure DW-02) and in the Sample Logbook in the Field Office.
- 7. Place samples in coolers with ice for immediate shipment to KEL and the State Health Laboratory for analysis.

Please refer to Attachments - Figure DW-2. Example Utah State Form for Bacteriological Examination

8.6 PROCEDURE DW-06: SAMPLE COLLECTION - DRINKING WATER

The following procedure will be followed to collect drinking water samples with the exception of samples collected for first draw analyses of lead and copper and samples collected for organic analyses.

Follow general procedures for sample documentation, sample handling, and equipment decontamination as directed in Procedures DC-01, DC-03, DC-04, DC-05, DC-06, MD-01, and MD-02.

- 1. Prepare all sampling equipment and sample containers, (Procedure DC-03) prior to visiting sample site.
- Samples should be collected at the well, or at a point in the system where different water sources blend.
 Sample point will be prior to any water treatment process (does not include chlorination) and before entry into the distribution line.
- 3 Sample should be collected directly from spigot or sample port. If a hose is attached, it should be removed prior to collecting sample.
- 3. Allow water to flow freely from the designated sample point for at least 5-10 minutes to ensure adequate flushing of the immediate pipes. This is necessary in order to procure a representative sample.
- 4. Label sample containers in accordance to Procedure DC-04 prior to sampling.
- 5. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.

8.7 PROCEDURE DW-07: SAMPLE COLLECTION DRINKING WATER LEAD AND COPPER FIRST DRAW TAP SAMPLING

The following procedure will be followed to collect drinking water samples for lead and copper first draw tap sampling:

Follow general procedures for sample documentation, sample handling, and equipment decontamination as directed in Procedures DC-01, DC-03, DC-04, DC-05, DC-06, MD-01, and MD-02.

- 1. Arrange sampling schedule with appropriate plant supervisor prior to the day of sampling.
- 2. At least six hours prior to sample collection, locate each site to be sampled and thoroughly flush the lines by turning on the faucet for a minimum of 5 minutes.
- 3. After sufficient flushing of the supply line, post each individual site by securely attaching a DO NOT USE tag to the faucet.
- 4. Prepare all sample containers in accordance with Procedure DC-03) prior to visiting the sites. Sample containers will be acidified with 4 mL of HN03 to ensure sample preservation.
- 5. Label sample containers in accordance with Procedure DC-04.
- 6. After the six hour "minimum" waiting period, remove the tag from each location immediately prior to collecting a sample.
- 7. Always collect the first water coming from the tap and always collect a one-liter sample in one container only.
- 8. Handle the samples and documentation in accordance with Procedures DC-05 and DC-06.

8.8 PROCEDURE DW-08: SAMPLE COLLECTION - COLIFORM BACTERIA

8.8.1 INTRODUCTION

This plan is for the collection of coliform bacteria samples for KUC drinking water systems as required by U.A.C. R309-104-4.5.4.d.

RTK has five (5) public drinking water systems. All are classified as non-community, non-transient systems. The following table lists the system name and identification number, bacteriological sample frequency, and area served for each system.

SYSTEM ID AND NAME	FREQUENCY	SERVICE AREA
18003 Section 21	Monthly	All North End Facilities
18136 Copperton Concentrator	Quarterly	Copperton Concentrator Area
18141 Utah Metals Tunnel	Quarterly	Bingham Canyon
18152 Lark System	Quarterly	Mine Entrance
18161 Zone A RO	Monthly	Municipal

8.8.2 PROJECT RESPONSIBILITIES

The KUC Environmental Sampling Supervisor will have overall responsibility for the sampling and compliance program, quality control, and reporting. The KUC Environmental Technicians will have the responsibility of collecting, handling, and documenting of all water samples.

8.8.3 WATER QUALITY SAMPLING LOCATIONS

Sample sites and sample identifications are listed for the five systems in the attached KUC Standard Operating Procedure DW-01. Sample site locations shall be rotated within each system according to the sampling frequency for each water system. Sample identification numbers beginning in: "BMD" applies to the Utah Metals Tunnel System; "BYD" to the Copperton Concentrator System LTG to the Lark System; ECP to the Zone A RO and all others apply to Section 21 System.

8.8.4 WATER QUALITY SAMPLING PROCEDURES

All bacteriological water samples will be taken in accordance with the attached KUC Standard Operating Procedures DW-02, DW-04, and DW-05.

8.9 PROCEDURE DW-09: SAMPLE COLLECTION - ORGANICS (VOC)

The following procedure will be followed to collect drinking water samples for organics (VOC). Follow general procedures for sample documentation, sample handling, and equipment decontamination as directed in Procedures DC-01, DC-03, DC-04, DC-05, DC-06, MD-01, and MD-02.

- 1. Prepare sampling equipment and sample containers, (Procedure DC-03) prior to visiting sample site.
- 2. Allow water to flow freely from the designated sample point for at least 5-10 minutes to ensure adequate flushing of the immediate pipes. This is necessary in order to procure a representative sample.
- 3. Remove the acid vial, transfer pipet and one sample vial from the kit. Avoid contamination of any part of the collection kit from petroleum products or cleaning solvents.
- 4. Remove the cap on the first sample vial keeping the cap away from any source of contamination.
- 5. Fill the sample vial to overflowing but take care not to flush out the preservative. No air bubbles should pass through the sample as the bottle is filled or be trapped in the sample when the vial is sealed.
- 6. The pH of the sample must be adjusted to a pH of <2 by carefully adding two drops of acid from the acid vial. Highly buffered water may require more acid. Samples received are tested for pH prior to testing and will be discarded for a pH of 2 or greater.
- 7. Following the addition of the acid, the vial must be sealed with the Teflon face down, shaken vigorously for one (1) minute, and store at 4EC (40EF) until received by the Division of Laboratory Services.
- 8. The process is repeated for the remaining three sample vials.

For all other organic sampling, bottles should be procured from an independent laboratory and their sampling procedures should be followed for sample collection.

Rev: 10 | Rev Date: December 2023

8.10 PROCEDURE SW-01: SAMPLE POINT IDENTIFICATION

All permanent surface water sampling locations are identified utilizing a three-letter identification acronym followed by a unique number ranging between 0001 and 9999. No dashes and/or spaces are to be used in the sample name. Special identification numbers for QC samples are described in Procedures QC-01 through QC-03.

Names for new sampling points will be assigned and approved by the Sampling Supervisor. The information listed in Procedure SW-02 will accompany requests for new names.

Procedures to be used for naming new sampling points are provided in Procedure DC-02. A sample point identification must be obtained for all new sampling points, whether permanent or not, to assure that if this site is ever sampled again in the future the data from past sampling events can be identified. Prior to the selection of a new sampling point, consideration should be given to the use of an existing sampling point. Existing sampling points are identified in Table DC-01.

The following sections describe the general conventions used in identifying surface water sampling points prior to the implementation of the present system.

Site Identification Acronym

The identification acronym consists of a three-letter code identifying the general location of the sample. For example, the acronym "LCS" identifies a surface sampling point on Lee Creek.

General location acronyms used to date include:

VWS - Surface water sampling point located on the valley side of the Oquirrh Mountains.

LCS - Lee Creek.

RTC - Riter Canal.

BDC - Brighton Drain.

RWC - Right-of-Way Canal.

SZS - Spitz Spring

CSC - C-7 Ditch

CWC - C-7 Ditch (west)

KCS - Kersey Creek

RSC - Ridgeway South Canal

CLC - Clarification Canal

Sample Location Number

A sequence number or character is associated with each sampling point. That number is unique to the sampling point and will not be used in other points.

8.11 PROCEDURE SW-02: SAMPLE POINT DESCRIPTION

Mark and survey each sample point for the first time. Follow this procedure to enable surveying. As directed by the specific Project Work Plan, some points may require permanent markers.

- 1. Drive a pre-painted, orange wooden stake (2x2x24 inches) 12 to 14 inches into the ground. Use a waterproof, indelible ink pen or place a metal label on the stake containing the sample identification number.
- Measure the location of the stake using a compass and range finder or surveying equipment. Record the location in coordinates or a compass bearing and distance from a permanent object or from a section corner on a USGS map. For non-permanent sampling points, locate the site on a USGS topographic or another suitable map.
- 3. Document the sample point location on the Surface Water Quality Field Data Sheet.
- 4. Use a camera with date and time indicator if possible. Check current date and time to ensure accuracy.
- 5. Shoot a picture of the stake with reference points in the background. Reference points include stationary objects used in locating the point. Shoot a picture of the stake relative to the overall site if site conditions are relevant to the study.
- 6. Shoot a picture of the gauge used in measuring water level, as well as the location at which samples are collected.
- 7. Record the picture numbers and roll number on the Surface Water Quality Field Data Sheet, as well as the direction facing when taken.
- 8. Take other pictures as deemed necessary and record the above information on the Field Data Sheet.
- 9. Arrange for the installation of a temporary marker or permanent marker at the sampling location, depending on the type of sampling point, as directed by the Project Work Plan.
- 10. If survey coordinates are to be obtained, prepare a statement of work for a licensed surveying contractor to determine the location and elevation of the ground surface and permanent monument marker. The horizontal control will be Kennecott Mine Datum to within + 3 ft (+ 1 meter). The elevation of the monument marker will be surveyed to within + 0.01 foot (+ 0.3 cm) using the National Geodetic Vertical Datum of 1929. Corrected survey data will include loop closure for survey accuracy within these limits.
- 11. The surveyor's report will include a list of coordinates, elevations, and system used. The report must also include a map, and a description and location of all permanent and semipermanent reference points used for horizontal and vertical control. This report will be filed in the Water Quality Data Filing System.

Rev: 10 | Rev Date: December 2023

8.12 PROCEDURE SW-03: GENERAL PROTOCOL

- 1. Record pertinent site observations. Include a sketch and photographic documentation for first-time visits to the site (Procedure SW-02). Identify sample location on the Surface Water Quality Field Data Sheet.
- 2. Measure the water levels relative to the monument marker described in Procedure SW-02. Measurement should be accurate to 0.01 feet.
- 3. Thoroughly decontaminate instruments used in the sampling process. (Procedure MD-02).
- 4. Place sample containers on flat, stable surfaces for receiving samples.
- 5. Plan to collect samples first from those areas suspected of being the least contaminated to minimize the risk of cross contamination.
- 6. Measure field parameters (pH, temperature, conductivity, etc.) as required by the Project Work Plan.

 Measure these parameters at the source rather than in containers when possible. Record the time the sample is collected and the time the field measurements are measured.
- 7. Collect samples in prepared containers with the proper preservatives. If required, measure carbonate and bicarbonate according to Procedure GF-05.
- 8. Collect sample and securely close containers as quickly as feasible, eliminating any air space.
- 9. Attach the in-line filtering device with a 0.45-micron filter to collect samples which require filtering. Follow the manufacturer's instructions for filter use. If field filtering is impossible, fill extra containers (labeled with the Well ID # in indelible ink) for transport to the Field Office for filtering and filling of containers on the same day as sample collection.
- 10. If any preservative is lost prior to or during the filling of a sample container (i.e., spilling or overflow), use another prepared container.

Rev: 10 | Rev Date: December 2023

8.13 PROCEDURE SW-04: FLOW MEASUREMENT

Flow Measurement Using Floats

The measurement of discharge volumes using floats can be performed within an accuracy range of + 10 percent under good conditions. The estimate may be as much as 25 percent in error if a poor reach is selected and an inadequate number of float runs are conducted.

- 1. Prepare a surface float by partially filling a bottle with water. A rod float may also be used (ie., a wooden rod with a weighted end) if the water is deep enough such that the rod will not touch the stream bed.
- 2. Select two cross sections in the channel which are separated by a travel time of approximately two (2.0) seconds. Shorter travel times may be used if a straight stretch is not available.
- 3. Measure the float time between the two cross sections several times at several sections across the stream width.
- 4. Calculate the mean velocity of a given section as follows:

$$VS = VF (0.85)$$

where: VS = Mean velocity of section (feet per second);

VF= Float velocity (feet per second); and

0.85 = Coefficient to allow for the vertical velocity profile and

relative depth of immersion.

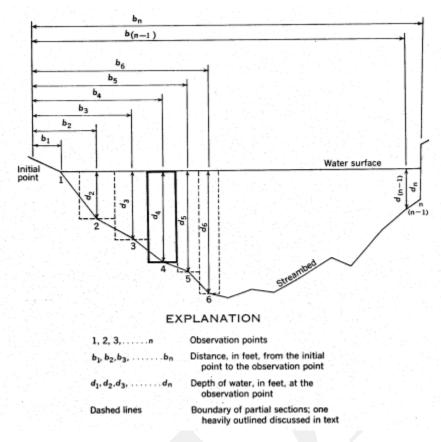
- 5. Calculate the area of each section (AS) as shown in Figure 1. This requires the measurement of depth at each section center (i.e.., the location at which the float was placed).
- 6. Measure the water level relative to the monument marker.
- 7. Calculate the discharge for each section as follows:

$$DS = AS(VS)$$

$$Dg = Ds (60) (7.485)$$

where: DS = Discharge of section (cubic feet per second);

AS = Area of section (square feet); and


VS = Velocity in section (feet per second).

Dg = Discharge in gallons per minute

Calculate the total discharge rate for the channel by summing all sectional discharge rates.

Flow Measurement Using a Container

1. Calibrate container (e.g., 5-gallon bucket, 2-liter beaker, graduated cylinder)

Measurements (Buchanan and Somers. 1976).

- 2. Place container opening under the entire flow stream, if possible.
- 3. Record the time to fill container using a stopwatch or wristwatch with second hand.
- 4. Calculate the flow rate (Q) where:

Q= VT

Q = flow rate, gpm

V = captured volume, gallons

T = time required to capture V, minutes

Measurement of Surface Water Flow Velocity with A Pygmy Water Current Meter

The Pygmy Water Current Meter measures velocities between 0.5 and 3.0 feet/second (ft/sec) and is recommended for use in shallow streams, flumes, and canals where low velocities and/or shallow water are encountered. Options for use include a earphone and battery for counting bucket wheel revolutions or digital readout for determining velocity. Velocity in ft/sec equals the revolutions of the bucket wheel per second.

- 1. Assemble the current meter and test for proper operation in accordance with the manufacturer's instructions.
- 2. Partition stream into sections (with tagline or bridge railing), visually observing the velocity and general flow of the stream. Establish enough stations to prevent more than 10 percent of the total discharge from

SOP - Groundwater Sampling

Rev: 10 | Rev Date: December 2023

passing through any individual partial section. Check the measurements and if necessary, readjust the partitioned sections to upgrade the quality of the readings. Where possible, try to use the same cross section throughout the study period and during all stream calibrations. However, the number and position of stations within the cross section may be changed, if necessary, to accommodate changing flow conditions.

- 3. Record stream gauge as indicated by one of the staff gauges (mark monument described in Procedure SW-02) and record this value on the water level recorder chart at the point of pen contact.
- 4. Record a minimum of the following items on the data form or in the Field Logbook:
- Sample Identification Number.
- Site
- Date
- Time at start of measurements
- Stream stage at start of measurements
- Approximate wind direction and speed
- · General stream condition (e.g., turbid, clear, low level, floating debris, water temperature, type of streambed material, etc.)
- Other factors having a bearing on discharge measurements
- · Location of initial point
- Total width of stream to be measured
- Type of current meter and conversion factor, if applicable; and
- Name of field staff taking above reading
- 5. Determine the depth and mean velocity at the first station or "initial point" if possible and record this information. Always hold the wading rod vertical. When practical, make all measurements standing behind and well to the side of the meter. Avoid disturbing or standing along the streambed beneath the cross-sectional measuring points.
- 6. Measure the depth at the second station from initial point and record. Record the observed velocity at a point 0.6 (60%) of the total depth below the surface as the mean velocity for the vertical. This method (six-tenths depth method) works best for depths between 0.3 to 2.5 feet and is the measurement of choice when measurements must be made quickly.
- 7. Perform the same procedure at each successive station as rapidly as possible.
- 8. Determine the depth and mean velocity at the last station, or endpoint, and record.
- 9. Record the ending time of this series of measurements and the stage.
- 10. Enter the ending stage value on the recorder chart at the point of pen contact. This information will illustrate the interval of time and stage variations during the cross-sectional measurements. Also enter the date and indicate that a calibration has taken place over this interval.

Rev: 10 | Rev Date: December 2023

11. Remove the tagline (if used); rinse the current meter in clean water, if necessary; allow the current meter to dry; then pack it away in its carrying case.

12. To determine the volumetric flow through each subsection per unit of time, multiply the mean velocity of each stream subsection by the area of that subsection. To determine the total discharge rate, sum all the volumetric flows for each subsection across the entire cross section of the stream. To determine average stream velocity, divide the total discharge rate by the total cross-sectional area.

Measurement of Surface Water Flow Velocity Using Pitot Tubes

Pitot tubes can be used to measure flow velocities in open channels because the difference in pressure between an upstream reading and a downstream reading is directly related to flow velocity at the point of measurement. Pitot tubes should be used where velocities are high enough to generate readable differences in pressure. They are inaccurate at velocities less than one ft/sec. They are not reliable for streams carrying high concentrations of suspended matter because the tube inlet plugs easily. Measurements are best made when the upstream straight section is 15 to 20 times the channel width.

- 1. Partition the stream into subsections and position the Pitot tubes according to manufacturer's specifications.
- 2. Determine the upstream pressure at the first station and record the value as P2.
- 3. Determine the downstream pressure at the first station and record the value as P1.
- 4. Repeat Steps No. 2 and 3 for each subsection of the stream.
- 5. To calculate the discharge rate:

Q = AV

Where Q is flow in ft3/sec, A is cross-sectional area of separate subsections of the channel in ft2, and V is flow velocity in ft/sec.

6. To calculate V:

V = [2g(P2-P1)/d]0.5

Where g = 32.2 ft/sec, P2-P1 is the change in pressure in lb/ft2, and d is 62.4 in lb/ft3 (the density of water). Substituting values for the two constants gives:

V = 1.02 (P2-P1)0.5

7. To determine the total discharge rate for the entire cross-sectional area, sum the discharge rates of the individual subsections.

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

8.14 PROCEDURE SW-05: SURFACE WATER QUALITY FIELD DATA SHEET

An example Surface Water Quality Field Data Sheet is shown in Exhibit 8. Each item is described below:

Sample Location ID #:

number).

Identification number for the water sampling location (acronym plus sequence

Date and Time: Date and time work began at site.

Sampling Personnel: Names of sampling personnel on site.

Site Sketch: A sketch of the site with a map showing major features and landmarks in the

area. Note north direction.

Site Description: A description of the site with sufficient details such that the site may be located

again.

Photograph: Roll number, photograph (frame) number and direction faced while photograph

was taken.

Sample Description: Identification number for the sample, time of collection, depth of collection,

reference point used to measure depth, and disturbances of sediment during

sampling.

Sampling Method: Sampling device and method or procedure used.

Field Parameters: Meter I.D. # and readings for all field measurements, including temperature, pH,

conductivity, dissolved oxygen (method used in determining) and turbidity.

Titration amounts, titrate type, and molarity for carbonate and bicarbonate analyses. Include time of titration. Include time readings were made.

Ferrous Iron Measurements: Measurements of iron, including dilutions and method used.

Sulfide: Measurements of sulfide including dilutions.

Discharge Measurement: Method or procedure used, and measurements and calculations made to arrive

at discharge rate (including units).

Signature: The sampler or samplers will sign the Sheet prior to submittal of the samples to

the laboratory.

A copy of the Surface Water Quality Field Data Sheet will be submitted to the laboratory with the Chain of Custody form (see Procedure DC-05). A copy is also filed in the Water Quality Data Filing System.

Please refer to Attachments - Figure SW-2. Example Surface Water Quality Field Data Sheet

8.15 PROCEDURE SW-06: SAMPLE COLLECTION - STANDING WATER

- 1. Prior to sample collection, review the general sampling protocol presented in Procedure SW-03.
- 2. Locate non-permanent sample sites on a parcel map and aerial photograph.
- 3. Travel to the site and mark the sample point in accordance with Procedure SW-01 if the sample site is to be surveyed.
- 4. Begin written and photographic (for first-time visits) documentation as directed in Procedure SW-02.
- 5. Note distances from fixed landmarks such that site may be located again.
- 6. Avoid surface scum, and sample far enough from the shoreline to avoid variations from inflowing tributaries or waste discharges.
- 7. Measure the water level relative to a permanent gauge if available.
- 8. If wading, minimize disturbance in the area to be sampled. Do not wade in greater than 3.0 feet of water.
- 9. Rinse the bottle (to be used with the sampling device) at least three times using the water to be sampled.
- Submerge a stainless-steel dipper or other suitable device with minimal surface disturbance. Do not disturb bottom sediments. Record the approximate depth and location of the sample source on the Surface Water Quality Field Data Sheet.
- 11. Allow the device to fill slowly and continuously.
- 12. Retrieve the dipper or device from the surface water with minimal disturbance.
- 13. Remove the cap from the prepared sample container and slightly tilt the mouth of the bottle below the dipper or device edge.
- 14. Empty the dipper or device slowly, allowing the sample stream to flow gently down the side of the container with minimal entry turbulence.
- 15. Continue delivery of the sample until the container is completely filled.
- 16. Secure the cap tightly.
- 17. Assign a sample identification number in accordance with Procedure SW-01.
- 18. Label samples in accordance with Procedure DC-04.
- 19. Place the properly labeled sample container in an appropriate carrying case or cooler. Pack with ice when required as a preservative.
- 20. Dismantle the sampler. Follow Procedure MD-02 for proper decontamination of equipment.
- 21. Handle the sample as described in Procedure DC-05 and DC-06.
- 22. Collect QA samples, as described in Procedures QC-01 through QC-05, and process in the same manner as other samples with respect to documentation and handling.

8.16 PROCEDURE SW-07: SAMPLE COLLECTION - SPRINGS

- 1. Prior to sample collection, review the general sampling protocol presented in Procedure SW-03.
- 2. Locate non-permanent sample sites on a parcel map and aerial photograph.
- 3. Travel to the site and mark the sample point in accordance with Procedure SW-02 if the sample site is to be surveyed.
- 4. Begin written and photographic (for first-time visits) documentation as directed in Procedure SW-02.
- 5. Note distances from fixed landmarks such that site may be located again.
- 6. Collect samples by holding the sample container under the flowing spring if possible. If the spring is not exposed, sample the standing water in accordance with Procedure SW-06. Use a shovel to carefully deepen the pond if necessary. Allow sediments to settle and clear prior to sampling.
- 7. Assign a sample identification number in accordance with Procedure SW-01.
- 8. Label samples in accordance with Procedure DC-04.
- 9. Handle the sample as described in Procedures DC-05 and DC-06.
- 10. Collect QA samples, as described in Procedures QC-01 through QC-05, and process in the same manner as other samples with respect to documentation and handling.
- 11. Arrange for the surveying of new sample locations if required by the Project Work Plan or the Project Manager.

8.17 PROCEDURE SW-08: SAMPLE COLLECTION - RUN-

Follow this procedure to collect run-off water samples from stockpiled tailings, soil and/or waste rock with a sampling device which allows the transfer of samples into prepared sample containers.

- 1. Prior to sample collection, review the general sampling protocol presented in Procedure SW-03.
- 2. Locate non-permanent sample sites on a parcel map and aerial photograph.
- 3. Travel to the site and mark the sample point in accordance with Procedure SW-01 if the sample site is to be surveyed.
- 4. Begin written and photographic (for first-time visits) documentation as directed in Procedure SW-02.
- 5. Note distances from fixed landmarks such that site may be located again.
- 6. Select a sampling location where run-off water is in direct contact with subject material, i.e. tailings, waste rock etc.
- 7. Measure and record the appropriate field parameters (e.g., temperature, pH, dissolved oxygen and estimated flow rate) of the runoff discharge at the time the first flush sample is collected as described in Procedure SW-04.
- 8. Collect a first flush grab sample within thirty minutes of the initiation of runoff discharge (storm event). If possible, collect grab samples directly from the downstream end of the runoff into the storage bottles. If this is not possible due to sampling access, collect the sample using a sampling device such as a beaker with a long handle and transfer the sample into the storage bottle.
- Submerge the storage bottle or other suitable sample collection device with minimal surface disturbance.
 Do not disturb surface sediments. Record the approximate location of the sample source on the Surface Water Quality Field Data Sheet.
- 10. Allow the device to fill slowly and continuously.
- 11. Retrieve the sample bottle or device from the runoff water with minimal disturbance.
- 12. If transferring the sample, remove the cap from the prepared sample container and slightly tilt the mouth of the bottle below the sampling devices edge.
- 13. Empty the device slowly, allowing the sample stream to flow gently down the side of the container with minimal entry turbulence.
- 14. Continue delivery of the sample until the container is completely filled.
- 15. Secure the cap tightly.
- 16. Assign a sample identification number in accordance with Procedure SW-01.
- 17. Label samples in accordance with Procedure DC-04.
- 18. Place the properly labeled sample container in an appropriate carrying case or cooler. Pack with ice when required as a preservative and handle the sample as described in Procedures DC-05 and DC-06.

Rev: 10 | Rev Date: December 2023

19. Collect one grab sample and take a flow measurement every 20 minutes during the first three hours of the discharge, with the first portion of sample collected 20 minutes after initiation of discharge. (If the discharge ceases before three hours, sampling will end with the end of discharge).

- 20. At the end of sampling, prepare a table including time intervals and flow rate information to determine the volume of sample which will be taken each from each 20-minute sampling interval to make up the flow-proportional composite. A sample procedure and work sheet for determining composite volume are presented in Figure SW-3.
- 20. Remove the appropriate volume of preserved sample from each preservative bottle into an unpreserved bottle of identical type (e.g. amber glass, plastic) to yield the composite sample for analysis. Do not attempt to composite samples collected in VOA vials for volatile organic analysis in the field. This must be done in the laboratory under controlled conditions. Do not mix samples that have been preserved with different preservatives.
- 22. Collect QA samples, as identified in Procedures QC-01 through QC-05, and process in the same manner as other samples with respect to documentation and handling.
- 23. Dismantle the sampler and wipe. Follow Procedure MD-02 for proper decontamination of equipment.

8.18 PROCEDURE SW-09: SAMPLE COLLECTION - FLOWING WATER

The following procedure will be used to collect water samples from streams and canals with a sampling device which allows the transfer of samples into prepared sample containers.

- 1. Prior to sample collection, review the general sampling protocol presented in Procedure SW-03.
- 2. Locate non-permanent sample sites on a parcel map and aerial photograph.
- 3. Travel to the site and mark the sample point in accordance with Procedure SW-01 if the sample site is to be surveyed.
- 4. Begin written and photographic (for first-time visits) documentation as directed in Procedure SW-02.
- 5. Note distances from fixed landmarks such that site may be located again.
- 6. Select a sampling location where stream flow is well-mixed and away from inflow tributaries.
- 7. Measure the water level relative to a permanent gauge if available. Measure the flow (discharge rate) according to Procedure SW-04.
- 8. Collect samples upstream of the area to be walked through. Be aware of the disturbances upstream which may affect the sediment concentrations at the sampling location. Note any disturbances on the Surface Water Quality Field Data Sheet.
- 9. Collect the sample by wading if the estimated product of depth (ft) and velocity (ft/sec) is less than 10.0 and the depth is less than 3.0 feet. Wear a suitable flotation device while wading.
- 10. Use a depth-integrating sampler, if possible. Use the dip sampling procedure, as follows, if: 1) the stream velocity is too high for the sampler to integrate; 2) the stream is less than six inches deep; and 3) large floating and submerged debris are present.
- 11. Rinse the bottle (to be used with the sampling device) at least three times using the water to be sampled.
- 12. Submerge a stainless-steel dipper or other suitable device with minimal surface disturbance. Do not disturb bottom sediments. Record the approximate depth and location of the sample source on the Surface Water Quality Field Data Sheet.
- 13. Allow the device to fill slowly and continuously.
- 14. Retrieve the dipper or device from the surface water with minimal disturbance.
- 15. Remove the cap from the prepared sample container and slightly tilt the mouth of the bottle below the dipper or device edge.
- 16. Empty the dipper or device slowly, allowing the sample stream to flow gently down the side of the container with minimal entry turbulence.
- 17. Continue delivery of the sample until the container is completely filled.
- 18. Secure the cap tightly.
- 19. Assign a sample identification number in accordance with Procedure SW-01.

Rev: 10 | Rev Date: December 2023

- 20. Label the sample container in accordance with Procedure DC-04.
- 21. Place the properly labeled sample container in an appropriate carrying case or cooler. Pack with ice when required as a preservative.
- 22. Dismantle the sampler. Follow Procedure MD-02 for proper decontamination of equipment.
- 23. Handle the sample as described in Procedures DC-05 and DC-06.
- 24. Collect QA samples, as identified in Procedures QC-01 through QC-05, and process in the same manner as other samples with respect to documentation and handling.

9 SEDIMENT SAMPLING

This section presents procedures associated with sediment sampling done in conjunction with water quality sampling.

Rev: 10 | Rev Date: December 2023

9.1 PROCEDURE SS-01: SAMPLE POINT IDENTIFICATION

Sediment can be defined as any matter which settles to the bottom of a liquid, ie; water body. All sediment sampling locations are identified utilizing a three-letter identification acronym followed by a unique number ranging from 0001 and 9999. No dashes and/or spaces are to be used in the sample name. Special identification numbers for QC samples are described in Procedures QC-01 through QC-03.

Names for new sampling points will be assigned and approved by the Sampling Supervisor. The information listed in Procedure SW-02 will accompany requests for new names.

Procedures to be used for naming new sampling points are provided in Procedure DC-02. A sample point identification must be obtained for all new sampling points, whether permanent or not, to assure that if this site is ever sampled again in the future the data from past sampling events can be identified. Prior to the selection of a new sampling point, consideration should be given to the use of an existing sampling point. Existing sampling points are identified in Table DC-02.

The following sections describe the general conventions used in identifying sediment sampling points prior to the implementation of the present system.

Site Identification Acronym

The identification acronym consists of a three-letter code identifying the general location of the sample. For example, the acronym "LCS" identifies a surface sampling point on Lee Creek.

General location acronyms used to date include:

VWS - Surface water sampling point located on the valley side of the Oquirrh Mountains.

LCS - Lee Creek.

RTC - Riter Canal.

BDC - Brighton Drain.

RWC - Right-of-Way Canal.

SZS - Spitz Spring

CSC - C-7 Ditch

CWC - C-7 Ditch (west)

KCS - Kersey Creek

RSC - Ridgeway South Canal

Sample Location Number

A sequence number or character is associated with each sampling point. That number is unique to the sampling point and will not be used in other points.

9.2 PROCEDURE SS-02: SAMPLE POINT DESCRIPTION

Marking and surveying each sample point for the first time, follow this procedure to enable surveying. As directed by the specific Project Work Plan, some points may require permanent markers.

- 1. Drive a pre-painted, orange wooden stake (2x2x24 inches) 12 to 14 inches into the ground. Use a waterproof, indelible ink pen or place a metal label on the stake containing the sample identification number.
- Measure the location of the stake using a compass and range finder or surveying equipment. Record the
 location in coordinates or a compass bearing and distance from a permanent object or from a section
 corner on a USGS map. For non-permanent sampling points, locate the site on a USGS topographic or
 another suitable map.
- 3. When using a compass, avoid interferences from massive metal objects (steel towers, tanks, drums etc.).
- 4. Document the sample point location on the Surface Water Quality Field Data Sheet.
- 5. Use a camera with date and time indicator if possible. Check current date and time to ensure accuracy.
- 6. Shoot a picture of the stake with reference points in the background. Reference points include stationary objects used in locating the point. Shoot a picture of the stake relative to the overall site if site conditions are relevant to the study.
- 7. Shoot a picture of the gauge used in measuring water level, as well as the location at which samples are collected.
- 8. Record the picture numbers and roll number on the Surface Water Quality Field Data Sheet, as well as the direction facing when taken.
- 9. Take other pictures as deemed necessary and record the above information in the Field Log Book.
- 10. Arrange for the installation of a temporary marker or permanent marker at the sampling location, depending on the type of sampling point, as directed by the Project Work Plan.
- 11. Prepare a statement of work for a licensed surveying contractor to determine the location and elevation of the ground surface and the monument marker. The horizontal control will be Kennecott Mine Datum to within + 3 ft (+ 1 meter). The elevation of the permanent monument marker will be surveyed to within + 0.01 foot (+ 0.3 cm) using the National Geodetic Vertical Datum of 1929. Corrected survey data will include loop closure for survey accuracy within these limits.
- 12. The surveyor's report will include a list of coordinates, elevations, and system used. The report must also include a map, and a description and location of all permanent and semipermanent reference points used for horizontal and vertical control. This report will be filed in the Water Quality Data Filing System.

9.3 PROCEDURE SS -03: FIELD EQUIPMENT AND GENERAL PROTOCOL

General Sampling Protocol

- 1. Record pertinent site observations. Include a sketch and photographic documentation for first-time visits to the site (Procedure SS-02). Identify sample location on the Surface Water Quality Field Data Sheet.
- 2. Place sample containers on flat, stable surfaces for receiving samples.
- 3. Plan to collect samples first from those areas suspected of being the least contaminated to minimize the risk of cross contamination.
- 4. Collect sample and securely close containers as quickly as feasible.
- 5. Measure field parameters (pH, temperature, etc.) as required by the Project Work Plan. Measure these parameters at the source rather than in containers when possible. Record the time the sample is collected and the time the field measurements are measured.

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

9.4 PROCEDURE SS-04: SEDIMENT SAMPLE FIELD DATA SHEET

An example Sediment Sample Field Data Sheet is shown in Figure SS-01. Each item is described below:

Sample Location ID #: Identification number for the sediment sampling location (usually acronym plus

sequence number).

Date, Time: Date and time that sample was collected.

Sampling Personnel: Names of sampling personnel on site.

Photograph: File name and direction faced while photograph was taken of the staked

sampling point with a reference object in the background.

Sediment Description: Identify sampling intervals and provide a physical description of the sediment.

The textural description of sediments will be based on the

Unified Soil Classification System: Use standard geologic terminology to classify rock materials. Note the

color, moisture, texture, sorting, roundness/angularity, degree of

cementation/consolidation, fabric, bedding, orientation, depositional environment, formation name, and any evidence of contamination or other characteristics

related to hydrogeologic conditions.

Site Description: A description of the site. The description must have sufficient details such that

the site may be located again. The description will also include vegetative conditions nearby, as well as any features or conditions which may impact the

study.

Site Sketch/Cross Section: A sketch of the site with a map showing major features and landmarks in the

area. Reference an existing site map by number or document. Note north direction. Include a cross section showing horizons on the sediment face of

surface sediment hole or trench.

Signature: The Field Team Leader or the Supervisor, Environmental Sampling will sign the

Sheet.

The Sediment Sample Field Data Sheet (Figure SS-1) will be filed in the project file.

Rev: 10 | Rev Date: December 2023

Example Sediment Sample Field Data Sheet

KENNECOTT UTAH COPPER

	SEDIMENT SAMPLE FIELD DATA SHEET	Sheet of
SAMPLE LOCATION ID #:		_
DATE: TIME:	am/pm	
SAMPLING PERSONNEL:		
WATER QUALITY SAMPLING SAMPLING METHOD: SAMPLE DESCRIPTION:		
PHOTOGRAPH: Roll #; SITE SKETCH/CROSS SECTION)N·	
	711	
Ę		
Existing Site Map Number:SITE DESCRIPTION		
REMARKS		
	SIGNATUR	E

SOP – Groundwater Sampling Rev: 10 | Rev Date: December 2023

9.5 PROCEDURE SS-05: SAMPLE COLLECTION – GENERAL IONS AND METALS

- 1. For samples not collected in stainless steel sleeves, use glass containers with Teflon-lined lids if sample will be submitted for chemical analyses.
- 2. First, collect sediment samples in areas expected to be the least contaminated and up-gradient from any suspected contaminant source. Then, collect samples furthest down-gradient of the suspected source. Finally, collect samples from the area closest to any suspected sources of contamination.
- 3. Avoid cross-contamination during sediment sampling. Sediment samples for laboratory analyses will contact only stainless-steel sleeves, sleeve caps, the instruments used to extrude the sediment, glass sample containers, or sampling devices. Decontaminate these and other sampling equipment between samples and sampling locations according to Procedure 6.
- 4. Extrude the sediment from the sampler and quickly seal the sample containers (filled completely) to minimize exposure of the sample and container to potential airborne contaminants and to minimize volatilization of organic constituents and moisture.

Collection of Sediment Samples

Use the following procedure to collect samples of sediment from stream beds or the bottom of standing water bodies.

- 1. Prior to sample collection, review the general sampling protocol presented above in Procedure SW-03.
- 2. Locate non-permanent sample sites on a parcel map and aerial photograph.
- 3. Travel to the site and mark the sample point in accordance with Procedure SS-02.
- 4. Collect shallow samples using a hand corer. (This device consists of a two-inch diameter vertical PVC tube approximately 24 to 36 inches long. Attached to the upper end is a handle used when applying downward force in collecting the sample. Attached to the lower end of the tube is a tapered nosepiece to ease penetration into the sediment. Inside the nosepiece are teeth or slips to retain the sample inside the tube when retrieving the core.) Force the corer into the sediment using a smooth continuous motion. Twist the core and withdraw with a single smooth motion. Semi-solid sediments near the shore or above the water line may be sampled using polypropylene scoops, trowels or dippers.
- 5. Collect samples from down-stream to up-stream locations to minimize sediment disturbance.
- 6. Collect sediments from deep (large streams or lakes) with a specialized sampler (e.g., Eckman or Ponar dredge). Attach the necessary length of sample line. Measure and mark the distance to the top of the sediment on the sample line. Open sampler jaws until latched. Support the sampler by its lift line. Tie the free end of sampler to fixed support to prevent accidental loss of the sampler. Lower the sampler until the depth mark is reached. Slowly descend the sampler through the last three feet until contact is felt. Allow sample line to slack several inches. Slowly raise dredge.
- 7. Collect sediments from sumps using a very small sampling utensil, e.g., a suction pipette. If the sediment is stratified, sample equal portions of all identifiable layers.
- 8. Collect four samples at each sample location.

Rev: 10 | Rev Date: December 2023

- 9. Describe color, texture, consistency, moisture content, and pH using indicator paper.
- 10. Allow time for settling to occur. Decant the free water. Homogenize the samples in a stainless-steel bowl to composite the sample.
- 11. Transfer the composite sample into an appropriate sample bottle with a stainless-steel laboratory spoon, scoop, or spatula.
- 12. Label samples in accordance with Procedure DC-04.
- 13. Handle the sample as described in Procedures DC-05 and DC-06.
- 14. Collect QC samples, as discussed in Procedures QC-01 to QC-04, and process in the same manner as other samples with respect to documentation and handling.

10 REFERENCES

EPA (1986). RCRA Ground Water Monitoring Technical Enforcement Guidance Document (Final), September 1986.

Geolnsight (2016). Standard Operating Procedure: Sampling Groundwater with a HydraSleeve

Tables

APPROVED SAMPLE LOCATIONS

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
ABC1	W491	WTR	VW	LR	South end Adrian Brown Consultants	OK	Yes			
UPD1		WTR			UPDES PERMIT	NA		Yes		
VWS1	S1	WTR	VW	JR	JORDAN RIVER AT 9000 So.	OK		Yes		
ABC2	W492	WTR	VW	EC	South end Adrian Brown Consultants	OK	Yes			
UPD2		WTR			UPDES PERMIT	OK		Yes		
VWS2	S2	WTR	VW	JR	JORDAN RIVER AT 12300 SOUTH	OK		Yes		
ABC3	W493	WTR	VW	EP	South end Adrian Brown Consultants	OK	Yes			
ABC4	W494	WTR	VW	B1	South end Adrian Brown Consultants	ОК	Yes			
ABC4A	W495	WTR	VW	B1	South end Adrian Brown Consultants	OK	Yes			
UPD4		WTR	NE		UPDES PERMIT	OK				Yes
VWW4	W4	WTR	VW	WJ	1420 WEST 7800 SOUTH	D	Yes			
ABC5	W496	WTR	VW	BS	South end Adrian Brown Consultants	ок	Yes	<i>2</i>		
UPD5		WTR	• • • • • • • • • • • • • • • • • • • •	20	UPDES PERMIT	D		Yes		
VWW5	W5	WTR	VW	BF	9130 SOUTH 4330 WEST	D	Yes	103		
ABC6	W497	WTR	VW	LT	South end Adrian Brown Consultants	ОК	Yes			
VWW6	VV457	WTR	VW	LI	9299 SOUTH 4000 WEST	NA NA	Yes			
ABC7	W498	WTR	VW	EC	South end Adrian Brown Consultants	OK	Yes			
	VV490	WTR	VVV	EC	UPDES PERMIT					
UPD7	14/7		\ 0.47	Р.4		OK	 V	Yes		
VWW7	W7	WTR	VW	B4	3590 WEST 9000 SOUTH	D	Yes			
ABC8	W499	WTR	VW	EP	South end Adrian Brown Consultants	OK	Yes			
UPD8		WTR			UPDES PERMIT	OK		Yes		
VWW8	W8	WTR	VW	EP	9800 SOUTH 4000 WEST - GLENMOORE GOLF	D	Yes			
RM8M		WTR	BC		Ground water well located in barneys canyon		Yes			
UPD9		WTR			UPDES PERMIT	OK				Yes
VWW9	W9	WTR	VW	SJ	10607 SOUTH 2700 WEST	NU	Yes			
UPD10		WTR	VW		UPDES PERMIT	OK				Yes
UPD11		WTR	NE		UPDES PERMIT	OK				Yes
VWW11	W11	WTR	VW	SJ	9860 SOUTH 2700 WEST	NU	Yes			
UPD12		WTR	NE		UPDES PERMIT	OK				Yes
VWW15	W15	WTR	VW	HM	8215 SOUTH 1800 WEST (SLCWCD)	С	Yes			
VWW16	W16	WTR	VW	HM	8215 SOUTH 1800 WEST (SLCWCD)	NU	Yes			
VWW17	W17	WTR	VW	HM	11946 SOUTH 3600 WEST	NU	Yes			
VWW18	W18	WTR	VW	HM	12600 SOUTH 6400 WEST	NU	Yes			
VWW19	W19	WTR	VW	HM	12800 SOUTH 6000 WEST	NU	Yes			
VWW20	W20	WTR	VW	HM	12960 SOUTH 6210 WEST	NU	Yes			
VWS21	S21	WTR	VW	HM	BUTTERFIELD CREEK	OK	Yes	Yes		
VWS21A	S21A	WTR	VW	НМ	BINGHAM MINE PORTAL	С		Yes		
VWS21B	S21B	WTR	VW	НМ	BUTTERFIELD CREEK & BINGHAM PORTAL	С		Yes		
VWS22A	S22A	WTR	VW	EC	LARK TOWN SPRING	OK		Yes		
VWS22B	S22B	WTR	VW	EC	BUTTERFIELD CREEK SPRING	OK		Yes		
VWW22	W22	WTR	VW	НМ	13055 SOUTH 7756 WEST	OK	Yes			
VWS23		WTR	VW		Dumont (Lark)	D		Yes		
VWW23	W23	WTR	VW	EC	12075 SOUTH HIGHWAY 111	D	Yes			
VWW24	W24	WTR	VW	LT	11980 SOUTH 7650 WEST	D	Yes			
VWS25	S25	WTR	VW	SJ	Same as VWW321	OK		Yes		
VWK26	K26	WTR	VW	B1	Below Proler Steel	CB	Yes			
VWW27	W27	WTR	vw	CO	501 WEST STATE HIGHWAY 48	OK	Yes			
VWS29	S29	WTR	VW	EC	55. T.25. 5TETHORNTH 40	NU		Yes		
VWS29 VWS31	329	WTR	VW	BC	NO S31, WAS VWW31	INU		Yes		
VWW31	W31	WTR	VW	BY	8300 W 8850 S (BARNEYS CREEK) COPP IMPR	OK		res		
		VVIIX	VW	זט			Yes			
VWS32	S32	WITD		DC.	8100 W 8800 S COPPERTON IMPROVEMENT DIST	OK	 V	Yes		
VWW32	W32	WTR	VW	BC	DDOVO DEGERVOID OANAL 19150 00	OK	Yes	Yes		
VWS33	S33	WTR	VW	BD	PROVO RESERVOIR CANAL - 16150 SO.	OK		Yes		
VWS34	S34	WTR	VW	BD	UTAH LAKE DISTRICT CANAL	OK		Yes		

1

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWS35	S35	WTR	VW	BD	UTAH AND SALT LAKE CANAL	OK		Yes		
VWS36	S36	WTR	VW		SOUTH JORDAN CANAL	OK		Yes		
VWS37	S37	WTR	VW	SJ	BECKSTEAD DITCH	OK		Yes		
VWS38	S38	WTR	VW	JR	JORDAN RIVER - 10600 SO.	OK		Yes		
VWS39	S39	WTR	VW		Old Trip Blank No.	OK		Yes		
VWS40	S40	WTR	VW	EC	BUTT. CANYON SPRING - OLD SCOUT CAMP	OK		Yes		
VWS41		WTR	VW	EC				Yes		
VWW41	S41	WTR	VW	HM		OK	Yes			
VWW41A	W41A	WTR	VW	EC	WEST LARK - 13200 SOUTH 8300 WEST	D	Yes			
VWW42	W42	WTR	VW	SJ	8312 S. 2700 WEST (TURF FARM ASSOC)	NU	Yes			
VWW43	W43	WTR	VW	RV	13325 SOUTH 3600 WEST	NU	Yes			
VWW44	W44	WTR	VW	WJ	9200 SOUTH 3400 WEST	NU	Yes			
VWS45		WTR	VW	AR	Old C-7 Ditch Sample	NU		Yes		
VWS45A	S45A		VW		ARTHUR ADVERSE WATER	NU		Yes		
VWS45B	S45B		VW		MAGNA ADVERSE WATER	NU		Yes		
VWS45C	S45C		VW		TAILING RETURN (TPR)	OK		Yes		
VWS46	S46	WTR	VW	MC	REFINERY DRAIN	NU		Yes		
VWS47	S47	WTR	VW	MD		D		Yes		
VWS48	S48	WTR	VW	MD		D		Yes		
VWS49	S49	WTR	VW	MD		D		Yes		
VWS50	S50	WTR	VW	MD		D		Yes		
VWS52	S52	WTR	VW	MD		D		Yes		
VWS52A	S52A	WTR	VW	MD		D		Yes		
VWS53		WTR	VW	EC	BUTTERFIELD PORTAL (UPDES010)	OK		Yes		
VWS54	S54	WTR	VW	EV	JORDAN RIVER - 6400 South	OK		Yes		
VWS55	S55	WTR	VW	JR	JORDAN RIVER - 10600 SO.	OK		Yes		
VWS56	S56	WTR	VW	WJ	NORTH BINGHAM CREEK	OK		Yes		
VWS57	S57	WTR	VW	B4	SO. BINGHAM CREEK - 8393 S. 1300 W.	OK		Yes		
VWS58	S58	WTR	VW	B4	Wilkinson Drain	OK		Yes		
VWS59	S59	WTR	VW	CO	CARROLL DRAIN	OK		Yes		
VWK60	K60	WTR	VW	B2	COPPERTON MAKE-UP WATER (Now B2G1193)	OK	Yes			
VWK61	K61	WTR	VW	CO		D	Yes			
VWK62	K62	WTR	VW	BR		D	Yes			
VWK63	K63	WTR	VW	EC		D	Yes			
VWK64	K64	WTR	VW	EC		D	Yes			
VWK65	K65	WTR	VW	MD		D	Yes			
VWK66	K66	WTR	VW	EC		D	Yes			
VWK67	K67	WTR	VW	MD		D	Yes			
VWK67A	K67A	WTR	VW	MD		D	Yes			
VWK67R	K67R	WTR	VW	EC		D	Yes			
VWK68	K68	WTR	VW	EC		D	Yes			
VWK69	K69	WTR	VW	MD		D	Yes			
VWK70	K70	WTR	VW	EC		OK	Yes			
VWK71	K71	WTR	VW	EC		OK	Yes			
VWK72	K72	WTR	VW	EC		OK	Yes			
VWK73	K73	WTR	VW	EC	South end monitor well	OK	Yes			
VWK74	K74	WTR	VW	EC		Р	Yes			
VWK75	K75	WTR	VW	EC		OK	Yes			
VWK76	K76	WTR	VW	EC		Р	Yes			
VWK77	K77	WTR	VW	EC		Р	Yes			
VWK78	K78	WTR	VW	CO		Р	Yes			
VWK79	K79	WTR	VW	CO		AB	Yes			
VWK80	K80	WTR	VW	CO		OK	Yes			
VWK81	K81	WTR	VW	BC		OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWK82	K82	WTR	VW	EC		OK	Yes			
VWK83	K83	WTR	VW	EC		OK	Yes			
VWK84	K84	WTR	VW	B1		OK	Yes			
VWK85	K85	WTR	VW	B1		OK	Yes			
VWK86	K86	WTR	VW	AN		R	Yes			
VWK87	K87	WTR	VW	B2		OK	Yes			
VWK88	K88	WTR	VW	CP	PROLLER STEEL	G	Yes			
VWK89	K89	WTR	VW	EC		P/R	Yes			
VWK90	K90	WTR	VW	CO		Р	Yes			
VWK91	K91	WTR	VW	EC		Р	Yes			
VWK92	K92	WTR	VW	B1		В	Yes			
VWK93	K93	WTR	VW	EC		Р	Yes			
VWK94	K94	WTR	VW	B1		AB	Yes			
VWK95	K95	WTR	VW	co		G	Yes			
VWW95		WTR	VW			OK				
VWK96	K96	WTR	VW	B1		AB	Yes			
VWK97	K97	WTR	VW	CO		В	Yes			
VWK98	K98	WTR	VW	MD		D	Yes			
VWK99	K99	WTR	VW	EP		R,G	Yes			
VWK100	K100	WTR	VW	B1		AB	Yes			
VWK101	K101	WTR	VW	CP		Р	Yes			
VWK102	K102	WTR	VW	CO		G	Yes			
VWK103	K103	WTR	VW	CP		G	Yes			
VWK104	K104	WTR	VW	B1		AB	Yes			
VWK105	K105	WTR	VW	EC		OK	Yes			
VWK106	K106	WTR	VW	BF	Deep Well East of Proler Steel	OK	Yes			
VWW107	W107	WTR	VW	В3	9800 S. 4000 WGLENMOORE GOLF COURSE	NU	Yes			
VWW108	W108	WTR	VW	EP	9800 S. 4000 WGLENMOORE GOLF COURSE	OK	Yes			
VWK109	K109	WTR	VW	BF	COPPERTON MAKEUP WATER replaced with BFG1200	OK	Yes			
VWK110	K110	WTR	VW	CP	COLLECTION WATER TOPIAGES WILL BY C1200	AB	Yes			
VWK111	K111	WTR	VW	AN		C	Yes			
VWK112	K112	WTR	VW	AN		OK	Yes			
VWK113	K113	WTR	VW	B1		AB	Yes			
VWK113	K114	WTR	VW	AN		OK	Yes			
VWK115	K115	WTR	VW	B1		AB	Yes			
VWK116	K116	WTR	VW	B1		AB	Yes			
VWK110	K117	WTR	VW	B1		AB	Yes			
VWK117 VWK117A	K117A	WTR	VW	B1		C	Yes			
VWK117A VWK118	K11/A K118	WTR	VW	B1		ОК	Yes			
VWK119	K119	WTR	VW	B1		AB	Yes			
VWK119 VWK120	K120	WTR	VW	B1		OK	Yes			
		WIR		ы		OK				
VWS121 VWK122	S121 K122	WTR	VW VW	EC		OK OK	Yes	Yes		Yes
VWK123 VWW124	K123 W124	WTR WTR	VW	MD BC	9925 COLITH 7250 WEST	D D	Yes			
VWW124 VWK125	W124 W125	WTR	VW VW	SO	8825 SOUTH 7350 WEST 8650 WEST BUTTERFIELD CANYON	D	Yes			
							Yes			
VWW126	W126	WTR	VW	HM	7756 WEST 13055 SOUTH	D	Yes			
VWW127	W127	WTR	VW	LT	12300 SOUTH 8350 WEST (LARK)	CF	Yes			
VWW128	W128	WTR	VW	B4	9299 SOUTH 4000 WEST	NU	Yes			
VWW129	W129	WTR	VW	SJ	11625 SOUTH 3175 WEST	D	Yes			
VWW130	W130	WTR	VW	HM	7400 WEST HIGHWAY 111	NU	Yes			
VWW131A	W131A	WTR	VW	HM	5140 WEST 12800 SOUTH	D	Yes			
VWW131B	W131B	WTR	VW	HM	5140 WEST 12800 SOUTH	D	Yes			
VWW131C	W131C	WTR	VW	HM	5140 WEST 12800 SOUTH	С	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWW132	W132	WTR	VW	HM	13400 SOUTH 5600 WEST	NU	Yes			
VWW133	W133	WTR	VW	WJ	8940 SOUTH 4167 WEST	OK	Yes			
VWW134	W134	WTR	VW	RV	4311 WEST 12600 SOUTH	OK	Yes			
VWW135	W135	WTR	VW	RV	4091 WEST 12600 SOUTH	OK	Yes			
VWW136	W136	WTR	VW	RV	12765 SOUTH 1400 WEST	OK	Yes			
VWW137	W137	WTR	VW	НМ	4585 WEST 13400 SOUTH	OK	Yes			
VWW138	W138	WTR	VW	WJ	8700 SOUTH 3650 WEST	NU	Yes			
VWW139	W139	WTR	VW	WJ	8390 SOUTH OLD BINGHAM HIGHWAY	NU	Yes			
VWW140	W140	WTR	VW	WJ	8525 SOUTH OLD BINGHAM HIGHWAY	OK	Yes			
VWW141	W141	WTR	VW	RV	12408 SOUTH 3600 WEST	OK	Yes			
VWW142	W142	WTR	VW	RV	12191 SOUTH 3600 WEST	OK	Yes			
VWW143	W143	WTR	VW	RV	12484 SOUTH 3600 WEST	OK	Yes			
VWW144	W144	WTR	VW	RV	12653 SOUTH 3600 WEST	OK	Yes			
VWW145	W145	WTR	VW	RV	4091 WEST 13400 SOUTH	OK	Yes			
VWW146	W146	WTR	VW	BD	14400 SOUTH 3598 WEST	OK	Yes			
VWW147	W147	WTR	VW	WJ	8600 SOUTH 2400 WEST	OK	Yes			
VWW148	W148	WTR	VW	WJ	9000 SOUTH 2550 WEST	OK	Yes			
VWW149	W149	WTR	VW	WJ	9380 SOUTH 2200 WEST	OK	Yes			
VWW150	W150	WTR	VW	RV	13400 SOUTH 3000 WEST	OK	Yes			
VWW151	W151	WTR	VW	WJ	9120 SOUTH REDWOOD ROAD	NU,AB	Yes			
VWW152	W152	WTR	VW	SJ	10826 SOUTH 1300 WEST	D	Yes			
VWW153	W153	WTR	VW	SJ	11558 SOUTH 1700 WEST	D	Yes			
VWW154	W154	WTR	VW	RV	11400 SOUTH 1327 WEST	OK	Yes			
VWW155	W155	WTR	VW	RV	12600 SOUTH 1700 WEST	G	Yes			
VWW156	W156	WTR	VW	RV	13592 SOUTH 1300 WEST	ОК	Yes			
VWW157	W157	WTR	VW	BD	14129 SOUTH 1700 WEST	OK	Yes			
VWW158	W158	WTR	VW	RV	14590 SOUTH 1690 WEST	NU	Yes			
VWW159	W159	WTR	VW	KN	5300 SOUTH 3650 WEST	D		Yes		
VWW160	W160	WTR	VW	KN	6200 SOUTH 3200 WEST	CF	Yes			
VWW161	W161	WTR	VW	KN	6115 SOUTH 1300 WEST	CF	Yes			
VWW162	W162	WTR	VW	SJ	10153 SOUTH 1000 WEST	D	Yes			
VWW163	W163	WTR	VW	SJ	10357 SOUTH 1000 WEST	D	Yes			
VWW164	W164	WTR	VW	RV	13650 SOUTH 1200 WEST	ОК	Yes			
VWW165	W165	WTR	VW	EV	14270 SOUTH 700 WEST	OK	Yes			
VWS166	S166	WTR	VW	JR	JORDAN RIVER - 14600 SOUTH	OK		Yes		
VWW167	W167	WTR	VW	B3	MULCH PLANT AT9850 SOUTH 5300 WEST	OK	Yes			
VWW170	W170	WTR	VW	НМ	4358 WEST 13400 SOUTH	NU	Yes			
VWW171	W171	WTR	VW	HM	4258 WEST 13400 SOUTH	OK	Yes			
VWW171	W172	WTR	VW	RV	13000 SOUTH 3380 WEST (OAKDALE EGG FARM)	OK	Yes			
VWW172	W173	WTR	VW	RV	4258 WEST 13400 SOUTH	OK	Yes			
VWW174	W174	WTR	VW	BD	13850 SOUTH 4000 WEST	DA	Yes			
VWW175	W175	WTR	VW	BD	3301 WEST 13800 SOUTH	OK	Yes			
VWW175 VWW176	W175	WTR	VW	RV	12347 SOUTH 1300 WEST	OK	Yes			
VWK177	VV 17 O	WIIX	VW	IXV	SEE VWW177	OK	Yes			
VWW177	W177	WTR	VW	B4	8065 SOUTH 1300 WEST	NU	Yes			
VWW177 VWW178	W177 W178	WTR	VW	WJ	8446 SOUTH 1300 WEST	OK				
VWW178 VWW179	W 178 W 179	WTR	VW	JR	8700 SOUTH 1300 WEST - FUR BREEDERS	OK OK	Yes Yes			
VWW179 VWW180	W179 W180	WTR	VW		8700 SOUTH 700 WEST - FUR BREEDERS 8700 SOUTH 700 WEST - FUR BREEDERS	OK OK				
VWW180 VWW181		WTR		JR EV	10200 SOUTH 700 WEST - FUR BREEDERS	OK D	Yes			
	W181		VW				Yes			
VWW182	W182	WTR	VW	WJ	10200 SOUTH 455 WEST	NU	Yes			
VWW183	W183	WTR	VW	RV	14401 SOUTH 4000 WEST	OK	Yes			
VWW184	W184	WTR	VW	RV	12600 SOUTH 2577 WEST	OK	Yes			
VWW185	W185	WTR	VW	HM	12400 SOUTH 6400 WEST	OK	Yes			
VWW186	W186	WTR	VW	HM	1166 W. MAIN, HERRIMAN	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWW187	W187	WTR	VW	B4	9100 SOUTH 3590 WEST	OK	Yes			
VWW188	W188	WTR	VW	НМ	12640 SOUTH 3975 WEST	NA	Yes			
VWW189	W189	WTR	VW	BF	INTERSTATE BRICK9780 SOUTH 5200 WEST	OK	Yes			
VWP190A	P190A	WTR	VW	BS	valley monitoring well	OK	Yes			
VWP190B	P190B	WTR	VW	BS	valley monitoring well	OK	Yes			
VWP191A	P191A	WTR	VW	B2	valley monitoring well	OK	Yes			
VWP191B	P191B	WTR	VW	B2	valley monitoring well	OK	Yes			
VWP192A	P192A	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP192B	P192B	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP193A	P193A	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP193B	P193B	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP194A	P194A	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP194B	P194B	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP195	P195	WTR	VW	EP	REPLACED BY P210	AB	Yes			
VWP196		WTR	VW	B2	valley monitoring well	OK	Yes			
VWP196A	P196A	WTR	VW	B2	valley monitoring well	OK	Yes			
VWP196B	P196B	WTR	VW	B2	valley monitoring well	G	Yes			
VWP197A	P197A	WTR	VW	BF	valley monitoring well	OK	Yes			
VWP197B	P197B	WTR	VW	BF	valley monitoring well	OK	Yes			
VWP198	P198	WTR	VW	EP .	valley monitoring well	D	Yes			
VWP199	P199	WTR	VW	EP	valley monitoring well	G	Yes			
VWS200	S200	WTR	VW	LR	valley monitoring well	ОК		Yes		
VWK201	K201	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP202A	P202A	WTR	VW	BS	valley monitoring well	OK	Yes			
VWP202B	P202B	WTR	VW	BS	valley monitoring well	OK	Yes			
VWP202C	P202C	WTR	VW	BS	valley monitoring well	OK	Yes			
VWK203	K203	WTR	VW	BR	valley monitoring well	AB	Yes			
VWK204	K204	WTR	vw	BR	valley monitoring well	D	Yes			
VWK204 VWK205	K204 K205	WTR	VW	EC	valley monitoring well	D	Yes			
VWK205 VWK206	K205	WTR	VW	BR	valley monitoring well	D	Yes			
VWR200 VWP207A	P207A	WTR	VW	EP		D	Yes			
VWP207A VWP207B	P207A P207B	WTR	VW	EP	valley monitoring well	D	Yes			
VWP207B VWP208A	P207B P208A	WTR	VW	EC	valley monitoring well	OK				
VWP208A VWP208B	P208B	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP208B VWP209A	P200B	WTR	VW	B2	valley monitoring well	G	Yes Yes			
	DOOOD				valley monitoring well					
VWP209B VWP210B	P209B	WTR WTR	VW VW	B2	valley monitoring well	OK	Yes			
VWP210B VWP211	P210B	WTR		EP LT	valley monitoring well	AB OK	Yes			
	P211		VW		valley monitoring well		Yes			
VWP211A	P211A	WTR	VW	LT	valley monitoring well	OK	Yes			
VWP211B	P211B	WTR	VW	LT . =	valley monitoring well	OK	Yes			
VWP212A	P212A	WTR	VW	LT	valley monitoring well	OK	Yes			
VWP212B	P212B	WTR	VW	LT	valley monitoring well	OK	Yes			
VWP213		WTR	VW	B1	valley monitoring well	OK	Yes			
VWP213A	P213A	WTR	VW	B1	valley monitoring well	DRY	Yes			
VWP213B	P213B	WTR	VW	B1	valley monitoring well	D	Yes			
VWP213C	P213C	WTR	VW	B1	valley monitoring well	D	Yes			
VWP214A	P214A	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP214B	P214B	WTR	VW	EC	valley monitoring well	D	Yes			
VWP215	P215	WTR	VW	EP	valley monitoring well	D	Yes			
VWP216	P216	WTR	VW	EC	valley monitoring well	AB	Yes			
VWP217		WTR	VW	EC	valley monitoring well	OK	Yes			
VWP218	P218	WTR	VW	EC	valley monitoring well	D	Yes			
VWP219	P219	WTR	VW	EC	valley monitoring well	AB	Yes			
VWP220	P220	WTR	VW	EC	valley monitoring well	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWP221	P221	WTR	VW	EC	valley monitoring well	D	Yes			
VWP222	P222	WTR	VW	EC	valley monitoring well	D	Yes			
VWP223	P223	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP224	P224	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP225	P225	WTR	VW	EC	valley monitoring well	ОК	Yes			
VWP226		WTR	VW	BR	valley monitoring well	AB	Yes			
VWP227	P227	WTR	VW	BR	valley monitoring well	AB	Yes			
VWP228	P228	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP229		WTR	VW	EC	valley monitoring well	OK	Yes			
VWP231	P231	WTR	VW	LW	valley monitoring well	OK	Yes			
VWP233	P233	WTR	VW	EC	valley monitoring well	D	Yes			
VWP234	P234	WTR	VW	EC	valley monitoring well	G	Yes	2		
VWP235	P235	WTR	VW	MD	valley monitoring well	D	Yes			
VWS236	S236	WTR	VW	LR	LEACH FLUID	OK		Yes		
VWS237	S237	WTR	VW	BM	PIT WATER	OK		Yes		
VWS238	S238	WTR	VW	B2	evap ponds inlet same as S354	C		Yes		
VWP239	P239	WTR	VW	EC	REPLACEMENT NEAR OLD K67R	OK	Yes			
VWP240A	P240A	WTR	VW	EP	REPLACEMENT NEAR OLD P198A	OK	Yes			
VWP240B	P240B	WTR	VW	EP	REPLACEMENT NEAR OLD P198B	OK	Yes			
VWP241A	P241A	WTR	VW	BS	REPLACEMENT NEAR OLD P202A	OK	Yes			
VWP241B	P241B	WTR	VW	BS	REPLACEMENT NEAR OLD P202B	OK	Yes			
VWP241C	P241C	WTR	VW	BS	REPLACEMENT NEAR OLD P202C	OK	Yes			
VWP241C VWP242	P241C	WTR	VW	SR	valley monitoring well	OK	Yes			
VWP242 VWP243	P242	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP244A	P244A	WTR	VW	EC		OK	Yes			
VWP244A VWP244B	P244A P244B	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP244B VWP244C	P244B P244C	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP244C VWP245		WTR		EC	valley monitoring well	OK OK				
VWP245 VWP246	P245 P246	WTR	VW VW	EC	valley monitoring well	DRY	Yes Yes			
VWP246 VWP247A	P240 P247A	WTR	VW	SJ	valley monitoring well	AB	Yes			
VWP247A VWP247B	P247A P247B	WTR			valley monitoring well	OK				
		WTR	VW VW	SJ EC	valley monitoring well	OK	Yes			
VWP248A	P248A				valley monitoring well		Yes			
VWP248B	P248B	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP248C	P248C	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP249A	P249A	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP249B	P249B	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP250A	P250A	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP250B	P250B	WTR	VW	MJ	valley monitoring well	OK	Yes			
VWP251	P251	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP252A	P252A	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP252B	P252B	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP252C	P252C	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP253A	P253A	WTR	VW	SJ	valley monitoring well	OK	Yes			
VWP253B	P253B	WTR	VW	SJ	valley monitoring well	OK	Yes			
VWP254A	P254A	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP254B	P254B	WTR	VW	EP	valley monitoring well	OK	Yes			
NEB2557		WTR	NE		Brovo Gate	OK	Yes			
VWP255A	P255A	WTR	VW	НМ	valley monitoring well	OK	Yes			
VWP255B	P255B	WTR	VW	HM	valley monitoring well	OK	Yes			
VWP256	P256	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP257	P257	WTR	VW	HM	valley monitoring well	OK	Yes			
VWP258A	P258A	WTR	VW	SJ	valley monitoring well	OK	Yes			
VWP258B	P258B	WTR	VW	SJ	valley monitoring well	OK	Yes			
VWP259	P259	WTR	VW	SJ	valley monitoring well	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWP260	P260	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP261	P261	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP262	P262	WTR	VW	SJ	valley monitoring well	ОК	Yes			
VWP263	P263	WTR	VW	EP	valley monitoring well	OK	Yes			
VWP264	P264	WTR	VW	EC	valley monitoring well	ОК	Yes			
VWP265	P265	WTR	VW	HM	valley monitoring well	ОК	Yes			
VWP266	P266	WTR	VW	HM	valley monitoring well	OK	Yes			
VWP267A	P267A	WTR	VW	HM	valley monitoring well	DRY	Yes			
VWP267B	P267B	WTR	VW	HM	valley monitoring well	OK	Yes			
VWP268	P268	WTR	VW	LT	valley monitoring well	ОК	Yes			
VWP269	P269	WTR	VW	LT	valley monitoring well	OK	Yes			
VWP270	P270	WTR	VW	so	valley monitoring well	Р	Yes			
VWP270A	P270A	WTR	VW	HM	valley monitoring well	С	Yes			
VWP271	P271	WTR	VW	LU	valley monitoring well	OK	Yes			
VWP272	P272	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP273	P273	WTR	VW	BS	valley monitoring well	ОК	Yes			
VWP274	P274	WTR	VW	EC	valley monitoring well	OK	Yes			
VWP275	P275	WTR	VW	CO	valley monitoring well	OK	Yes			
VWP276	P276	WTR	VW	WJ	valley monitoring well	OK	Yes			
VWP277	P277	WTR	VW	B2	valley monitoring well	OK	Yes			
VWP278A		WTR	VW		valley monitoring well	OK	Yes			
VWP278B	P278B	WTR	VW	ВС	valley monitoring well	OK	Yes			
VWP279	P279	WTR	VW	EC	valley monitoring well	OK	Yes			
BCG280	BC280	WTR	VW	BC	BARNEY CANYON PRODUCTION WELL	OK	Yes			
BCG281	BC281	WTR	VW	BC	OLD BC148	OK	Yes			
BCG282	BC282	WTR	VW	BC	Barneys canyon monitoring well	OK	Yes			
BCG283	BC283	WTR	VW	BC	Barneys canyon monitoring well	OK	Yes			
BCG284	BC284	WTR	VW	BC	Barneys canyon monitoring well	OK	Yes			
BCG285	BC285	WTR	VW	BC	Barneys canyon monitoring well	OK	Yes			
BRG286	VWBR286	WTR	VW	BR	REPOSITORY WELL - OLD BR-1	OK	Yes			
BRG287	VWBR287	WTR	VW	BR	REPOSITORY WELL - OLD BR-2	OK	Yes			
BRG288	VWBR288	WTR	VW	BR	NEI GONGIN WEEL GES SIVE	OK	Yes			
BRG289	VWBR289	WTR	VW	BR		OK	Yes			
BRG290	VWBR290	WTR	VW	BR		OK	Yes			
BRG291	V V D I 1200	WTR	VW	BR		OK	Yes			
BRG291A	BRG291	WTR	VW	BR		OK	Yes			
BRP292	BRG292	WTR	vw	BR	BLUEWATER NORTH REPOSITORY SUMP	OK		Yes		Yes
ECG293	EC293	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG294	EC294	WTR	vw	EC	EASTSIDE COLLECTION	OK	Yes			
ECG295B	EC295B	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG296	EC296	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG297	EC297	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG298A	EC298A	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG298B	EC298B	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG299	ES299	WTR	vw	EC	EASTSIDE COLLECTION	OK	Yes			
VWW300	W300	WTR	VW	WJ	10353 SOUTH 1300 WEST	OK	Yes			
VWW300 VWW301	W300 W301	WTR	VW	WJ	9945 SOUTH 1300 WEST	OK	Yes			
VWW301 VWW302	W301 W302	WTR	VW	WJ	9786 SOUTH 1300 WEST	OK OK	Yes			
VWW302 VWW303	W302 W303	WTR	VW	M1	9381 SOUTH 1300 WEST	D D	Yes			
VWW303 VWW304	W303 W304	WTR	VW	SJ	10315 SOUTH 1540 WEST	OK	Yes Yes			
VWW304 VWW305	W304 W305	WTR	VW	SJ SJ	1795 WEST 9400 SOUTH	OK OK	Yes Yes			
			VW							
VWW306	W306A	WTR		SJ	10025 SOUTH 1300 WEST	OK	Yes			
VWW307	W307	WTR	VW	SJ	10806 SOUTH 2700 WEST	OK	Yes			
VWW308	W308	WTR	VW	EP	10150 SOUTH 4975 WEST	NU	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWW309	W309	WTR	VW	RV	4475 WEST 11800 SOUTH	OK	Yes			
VWS310	S310		VW		3842 WEST 11800 SOUTH	OK		Yes		
VWW310	W310	WTR	VW	RV	3842 WEST 11800 SOUTH	OK	Yes			
VWW311	W311	WTR	VW	RV	3883 WEST 11800 SOUTH	OK	Yes			
VWW312	W312	WTR	VW	EP	11168 SOUTH 3800 WEST	OK	Yes			
VWS313	S313	WTR	VW	SJ	JORDON RIVER - 4800 SOUTH	ОК		Yes		
VWS314	S314	WTR	VW	KN	NORTH JORDON CANAL - 5800 S. 1300 W.	OK		Yes		
VWS315	S315	WTR	VW	JP	BUTTERFIELD CREEK	OK		Yes		
VWS316	S316	WTR	VW	ВС	CRYSTAL SPRINGS	OK		Yes		
VWS317	S317	WTR	VW	EC	DRAINAGE SO. MINE DUMPS	OK		Yes		
VWS318	S318	WTR	VW	BC	BARNEY'S SPRING	OK		Yes		
VWS319	S319	WTR	VW	HC	MAPLE SPRING	OK		Yes		
VWS320	S320	WTR	VW	RV	BUTTERFIELD CREEK	OK		Yes		
VWS321	S321	WTR	VW	SJ	MIDAS CREEK- 11500 S.1300 W.	OK		Yes		
VWW322	W322	WTR	VW	НМ	1105 WEST MAIN ST., HERRIMAN	OK	Yes			
VWW323	W323	WTR	VW	НМ	5626 WEST 14200 SOUTH	OK	Yes			
VWS324	S324	WTR	VW	НМ	ROSE CREEK - 6400 W. 14000 S.	ОК		Yes		
VWW325	W325	WTR	VW	НМ	12948 S. 4400 W RIVERTON CITY	ОК	Yes			
VWW326	W326	WTR	VW	RV	13400 S. 3800 W RIVERTON CITY	OK	Yes			
VWW327	W327	WTR	VW	RV	13600 S. 3600 W RIVERTON CITY	ОК	Yes			
VWW328	W328	WTR	VW	RV	13400 S. 2290 W RIVERTON CITY	OK	Yes			
VWW329	W329	WTR	VW	BD	14847 SOUTH CAMP WILLIAMS ROAD	OK	Yes			
VWS330	S330	WTR	VW	TV	JORDAN RIVER - 9400 S. 1200 W.	OK		Yes		
VWW331	W331	WTR	VW	RV	12256 SOUTH 4000 WEST	OK	Yes			
VWW332	W332	WTR	VW	CO	7400 SOUTH STATE HIGHWAY 110	OK	Yes			
VWW333	W333	WTR	VW	WV	5892 SOUTH HIGHWAY 111	OK	Yes			
VWW334	W334	WTR	VW	WJ	7551 SOUTH 5490 WEST	OK	Yes			
VWW335	W335	WTR	VW	WJ	7374 SOUTH 5490 WEST	OK	Yes			
VWW336	W336	WTR	VW	WJ	7800 SOUTH 5250 WEST	G	Yes			
VWW337	W337	WTR	VW	SJ	3564 WEST 11010 SOUTH	ОК	Yes			
VWW337	W337	WTR	VW	SJ	11000 SOUTH 3500 WEST - EAGLE RANCH	NU	Yes			
VWW339	W339	WTR	VW	HM	12009 SOUTH 4000 WEST	OK	Yes			
VWW339 VWW340	W340	WTR	VW	RV	634 WEST 14600 SOUTH - UTAH ROSES	OK	Yes			
VWW340 VWW341	W341	WTR	VW	EV	50 EAST 5050 SOUTH - MURRAY CITY	OK	Yes			
VWW341 VWW342	W341 W342	WTR	VW	EV	30 EAST 5150 SOUTH - MIDRRAY FAIRGROUNDS	OK	Yes			
VWS342	S343	WTR	VW	WJ	1300 WEST 7353 SOUTH	OK	Yes			
VWS343 VWS344	S343 S344	WTR	VW	WJ	NORTH JORDAN CANAL 7560 S. 1200 W.	OK OK		Yes		
VW3344 VWW345	W345	WTR	VW	EV	10400 SOUTH 300 WEST	NU	Yes	Yes		
VWW345 VWW346	W346	WTR	VW	EV	PINE HOLLOW TREE FARM-7500 S. 720 E.	OK	Yes			
VWW346 VWW347	W347	WTR	VW	WJ	5060 SOUTH 1250 WEST	OK OK	Yes			
				WJ						
VWW348	W348	WTR	VW		2906 WEST 7000 SOUTH	OK	Yes			
VWK349	K349	WTR	VW	HC	KENNECOTT ENVIRONMENTAL RANCH	OK C	Yes			
VWS350	S350	WTR	VW	ED	EVAP PONDS #3, #4, #5			Yes		
VWS351	S351	WTR	VW	EP	4000 W. POND	C		Yes		
VWS352	S352	WTR	VW	EP	SOUTH EVAP PONDS	C		Yes		
VWS353	S353	WTR	VW	CP	SMALL RESEROVIR	OK		Yes		
VWS354	S354	WTR	VW	AN	TREATED MINE STREAM	С		Yes		
VWS355	S355	WTR	VW	EC	NOSE & MINE COMBO STREAM	С		Yes		
VWS356	S356	WTR	VW	EP	80 ACRE CLAY LINED POND	C		Yes		
VWS357	S357	WTR	VW	TV	JORDAN RIVER EFF.	OK		Yes		
VWS358	S358	WTR	VW	СО	CEMETARY POND	С		Yes		
VWS359	S359	WTR	VW	??	HERCLUES EAGLE ROCK	OK		Yes		
VWW360	W360	WTR	VW	WJ	5388 WEST 7800 SOUTH	OK	Yes			
VWW361	W361	WTR	VW	WJ	5600 WEST 9000 SOUTH - W. JORDAN CITY	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWW362	W362	WTR	VW	SJ	1340 WEST 11030 SOUTH	NU	Yes			
VWW363	W363	WTR	VW	WJ	5595 WEST 9351 SOUTH - W. JORDAN CITY	OK	Yes			
VWW364	W364	WTR	VW	EP	3892 WEST 11800 SOUTH	OK	Yes			
VWW365	W365	WTR	VW	EP	3864 WEST 11800 SOUTH	OK	Yes			
VWW366	W366	WTR	VW	RV	3807 WEST 11800 SOUTH	OK	Yes			
VWW367	W367	WTR	VW	RV	11723 SOUTH 3800 WEST	OK	Yes			
VWW368	W368	WTR	VW	RV	3668 WEST 11800 SOUTH	OK	Yes			
VWW369	W369	WTR	VW	RV	11766 SOUTH 3600 WEST	OK	Yes			
VWW370	W370	WTR	VW	RV	11676 SOUTH 3600 WEST	OK	Yes			
VWW371	W371	WTR	VW	SJ	11630 SOUTH 3600 WEST	OK	Yes			
VWW372	W372	WTR	VW	HM	11887 SOUTH 4000 WEST	OK	Yes			
VWW373	W373	WTR	VW	НМ	12090 SOUTH 3600 WEST	ОК	Yes	2		
VWW374	W374	WTR	VW	HM	12211 SOUTH 4000 WEST	OK	Yes			
VWW375	W375	WTR	VW	HM	12210 SOUTH 4000 WEST	OK	Yes			
VWW376	W376	WTR	VW	HM	12256 SOUTH 4000 WEST	OK	Yes			
VWW377	W377	WTR	VW	HM	12260 SOUTH 4000 WEST	OK	Yes			
VWW378	W377	WTR	VW	HM	12299 SOUTH 4000 WEST	OK	Yes			
VWW379	W378 W379	WTR	VW	HM	12311 SOUTH 4000 WEST	OK	Yes			
VWW379 VWW380	W379 W380	WTR	VW	HM	12395 SOUTH 4000 WEST	OK	Yes			
VWW381	W380 W381	WTR	VW	B4	8200 SOUTH 2150 WEST - W. JORDAN CITY	OK	Yes			
VWW382	W382	WTR	VW	HM	12012 SOUTH 3600 WEST	OK	Yes			
VWW383	W383	WTR	VW	HM	12222 SOUTH 3600 WEST	OK	Yes			
VWW384	W384	WTR	VW	HM	12400 SOUTH 3600 WEST	NU	Yes			
VWW385	W385	WTR	VW	HM	12464 SOUTH 3600 WEST	OK	Yes			
VWW386	W386	WTR	VW	HM	12554 SOUTH 3600 WEST	OK	Yes			
VWW387	W387	WTR	VW	WJ	6000 WEST 9350 SOUTH - W. JORDAN CITY	OK	Yes			
VWW388	W388	WTR	VW	RV	11977 SOUTH 3600 WEST	OK	Yes			
VWW389	W389	WTR	VW	HM	12502 SOUTH 3600 WEST	OK	Yes			
VWW390	W390	WTR	VW	HM	12518 SOUTH 3600 WEST	OK	Yes			
VWW391	W391	WTR	VW	RV	12241 SOUTH 3600 WEST	OK	Yes			
VWW392	W392	WTR	VW	HM	11980 SOUTH 3600 WEST	OK	Yes			
VWW393	W393	WTR	VW	RV	12191 SOUTH 3600 WEST	OK	Yes			
VWW394	W394	WTR	VW	HM	12262 SOUTH 3600 WEST	OK	Yes			
VWW395	W395	WTR	VW	RV	12281 SOUTH 3600 WEST	OK	Yes			
VWW396	W396	WTR	VW	HM	12536 SOUTH 3600 WEST	OK	Yes			
VWW397	W397	WTR	VW	RV	12750 SO. 2550 W RIVERTON CITY	OK	Yes			
VWW398	W398	WTR	VW	RV	13325 SO. 3600 W RIVERTON CITY	OK	Yes			
VWW399	W399	WTR	VW	MJ	7322 SOUTH 5490 WEST	OK	Yes			
VWS400	S400	WTR	VW		BINGHAM TUNNEL CULINARY WATER	С		Yes		
VWK401	K401	WTR	VW		KMC - OLD RANCH	OK	Yes			
VWW402	W402	WTR	VW	HM	13600 SOUTH 6000 WEST - (SLCWCD)	OK	Yes			
VWW403	W403	WTR	VW	HM	13400 SOUTH 6000 WEST - (SLCWCD)	OK	Yes			
VWK404		WTR	VW		SEE VWW404	OK				
VWW404	W404	WTR	VW	HM	13055 SOUTH 7756 WEST	OK	Yes			
VWK405		WTR	VW		SEE VWW405	OK				
VWW405	W405	WTR	VW	HM	7198 WEST 13090 SOUTH	OK	Yes			
VWW406	W406	WTR	VW		13200 SOUTH 7200 WEST (DANSIE)	OK	Yes			
VWW407	W407	WTR	VW	НМ	12800 SOUTH 7900 WEST (DANSIE)	OK	Yes			
VWW408	W408	WTR	VW	НМ	1166 WEST MAIN STREET (DANSIE)	OK	Yes			
VWW409	W409	WTR	VW	НМ	13500 SOUTH 7200 WEST (DANSIE)	OK	Yes			
VWW410	W410	WTR	VW	НМ	12875 SOUTH 6620 WEST (DANSIE)	OK	Yes			
VWW411	W411	WTR	VW	HM	13025 SOUTH 6610 WEST (DANSIE)	OK	Yes			
VWW412	W412	WTR	VW	НМ	13710 SOUTH 7750 WEST (DANSIE)	OK	Yes			
VWK413	W413	WTR	VW	ВС	MODERNIZATION WELL #1 Middle	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
VWK414	W414	WTR	VW	ВС	MODERNIZATION WELL #2 East	OK	Yes			
VWW415	W415	WTR	VW	RV	2893 WEST 11800 SOUTH	OK	Yes			
VWW416	W416	WTR	VW	RV	12064 SOUTH 2240 WEST	OK	Yes			
VWW417	W417	WTR	VW	SJ	11563 SOUTH 2570 WEST	OK	Yes			
VWW418	W418	WTR	VW	SJ	2917 WEST 10460 SOUTH	ОК	Yes			
VWW419	W419	WTR	VW	SJ	3192 WEST 10400 SOUTH	ОК	Yes			
VWW420	W420	WTR	VW	WJ	5950 WEST 8750 SOUTH - W. JORDAN CITY	OK	Yes			
VWK421	K421	WTR	VW	BC	MODERNIZATION WELL #3 West	ОК	Yes			
NEL448	Well 11	WTR	NE	LS	Sec 21 Well #11	CERT	Yes			
NET449D	NETL449D	WTR	NE	TL	Tailings Water	OK	Yes			
TLT449A	DH911065C	WTR	NE	TL	Tailings Water	OK				Yes
TLT449B	DH911065B	WTR	NE	TL	Tailings Water	OK				Yes
TLT449C	DH911065A	WTR	NE	TL	Tailings Water	OK				Yes
TLT449E	NETL449P	WTR	NE	TL	Tailings Water	OK				Yes
RTC450	RTCN450	WTR	VW	MG	RITTER CANAL AT 8000 WEST	ОК		Yes		
RTC451		WTR	VW	MG	RITTER CANAL	ОК		Yes		
CLC452	CLCN452	WTR	VW	TL	CLARIFICATION CANAL NEAR 001 OUTFALL	OK		Yes		Yes
CSC453	CSCH453	WTR	VW	LS		ОК		Yes		
CSC454	CSCN454	WTR	VW	TL		ОК		Yes		
CSC455	CSCN455	WTR	VW	MO		ок		Yes		
CSC456		WTR	VW	MO		ОК		Yes		
CSC457	CSCN457	WTR	VW	MO	WEST C-7 NORTH OF I-80	OK		Yes		
KCS458	KCSW458	WTR	VW	LS	KERSEY CREEK AT 7800 WEST NORTH OF 201	OK		Yes		
KCS459	KCSW459	WTR	VW	LS	KERSEY CREEK	OK		Yes		
KCS460	KCSW460	WTR	VW	LS	KERSEY CREEK	OK		Yes		
LCS461	LCSW461	WTR	VW	LS	LEE CREEK	OK		Yes		
LCS462	LCSW462	WTR	VW	LS	LEE CREEK	OK		Yes		
RSC463	RXCN463	WTR	VW	LS	WEST OF 5600 W. CANAL CROSSING LANDFILL	OK		Yes		
LCS464	LCSW464	WTR	VW	MO	Lee Creek	OK		Yes		
BDC465	BDCN465	WTR	VW	RC	EAST OF 7200 WEST AT BRIGHTON DRAIN CROS	OK		Yes		
SZS466	SZSP466	WTR	VW	WT	SPITZ SPRINGS SOUTHEAST OF #4 P.S.	OK		Yes		
RWC467	RWCN467	WTR	VW	NO	WEST SIDE OF RADIO STAT. ACCESS ~8900 W.	OK		Yes		
LCS468	LCSW468	WTR	VW	NO	Lee creek	OK		Yes		
LCS469	LCSW469	WTR	VW	GS	LEE CREEK	OK		Yes		
ADS470	ADSP470	WTR	VW	TL	ADAMSON SPRING EAST OF #1 P.S. ROAD	OK		Yes		Yes
CWS471	CWSW471	WTR	VW	TL	C-7 WEST NORTH EAST OF GYPSTACK	OK		Yes		
USC472	USCN472	WTR	VW	MG	UTAH/SALT LAKE CANAL S.E. 201 8100 W.	OK		Yes		
CSC473	CSCN473	WTR	VW	LS	TWO WITH SAME NUMBER 473	OK		Yes		
BDC474	BDCN474		VW		EAST END BRIGHTON DRAIN 7200 WEST CROSSI	OK		Yes		
BDC474Z		WTR	VW	LS	OLD BIOWEST BDCN474. JAN95 PUT NEL474	OK		Yes		
NEL476	Well 8	WTR	NE		Well #8	AB	Yes			
NEL477	Well 9	WTR	NE	LS	WELL #9	OK	Yes			
NEM478	Well 10	WTR	NE	TL	WELL #10	OK	Yes			
NEM479	Well 12	WTR	NE	TL	WELL #12	OK	Yes			
NEG481	GF1	WTR	NE	WT	GARFIELD WELL	OK	Yes			
NEG482	GF2	WTR	NE	WT	GARFIELD WELL	OK	Yes			
NEG483	GF3	WTR	NE	WT	GARFIELD WELL	OK	Yes			
NEG484	GF4	WTR	NE NE	WT	GARFIELD WELL	OK	Yes			
NEG485	GF5	WTR	NE NE	WT	GARFIELD WELL	AB	Yes			
NEG486	GF6	WTR	NE NE	WT	GARFIELD WELL GARFIELD WELL	AB	Yes			
NEG486 NEG487	GF7	WTR	NE NE	WT	GARFIELD WELL GARFIELD WELL	AB	Yes			
NEG487	GF6A	WTR	NE NE	WT	GARFIELD WELL GARFIELD WELL	AB	Yes			
NEG488 NEG489	GF5(OLD)	WTR	NE NE	WT	GARFIELD WELL GARFIELD WELL	AB C	Yes			
NEG489 NEG490	, ,	WTR	NE NE	WT	GARFIELD WELL GARFIELD WELL	C				
NEG490	GF3(OLD)	WIR	INE.	VV I	GARFIELD WELL	C	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NEL534B	CH14B	WTR	NE	LS	North End east of tailings impoundment	OK	Yes			
NEL536A	CH16A	WTR	NE	LS	North End east of tailings impoundment	OK	Yes			
NEL536B	CH16B	WTR	NE	LS	North End east of tailings impoundment	OK	Yes			
NEL536C	CH16C	WTR	NE	LS	North End east of tailings impoundment	OK	Yes			
NET537	CHVRP4	WTR	NE	СН	CHEVRON MONITORING WELL	AB	Yes			
NEL538	MKLNDFA	WTR	NE	LS	MACKAY LANDFILL	OK	Yes			
NEL539	MKLNDFB	WTR	NE	LS	MACKAY LANDFILL	OK	Yes			
NEL540	MKLNDFC	WTR	NE	LS	MACKAY LANDFILL	OK	Yes			
NEL541	Α	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL542	В	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL543	С	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL544	D	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL545	E	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL546	F	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL547	G	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL548	Н	WTR	NE	LS	COUNTY LANDFILL	AB	Yes			
NEL549	1	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL550	J	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL551	K	WTR	NE	LS	COUNTY LANDFILL	ОК	Yes			
NEL552	L	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL553	M	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL554	N	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL555	0	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL556	P	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEL557	Q	WTR	NE	LS	COUNTY LANDFILL	OK	Yes			
NEM558	MGOLFC	WTR	NE	MG	MAGNA GOLF COURSE	OK	Yes			
NEM559		WTR	NE	MG	1111 (3111 1 3 3 2 1 3 3 3 1 1 3 2 1 3 3 3 1 3 3 3 3	OK	Yes			
NEM560		WTR	NE	MG		OK	Yes			
NES567	Sec17E	WTR	NE	SL	SECTION 17-E	OK	Yes			
NES568	Sec17W	WTR	NE	SL	SECTION 17-W	OK		Yes		
NEL569	SEC16	WTR	NE	LS	SECTION 16	OK	Yes			
NEM570	MGB1	WTR	NE	MG	SECTION 10	OK	Yes			
NEM571	MGB2	WTR	NE	MG		OK	Yes			
NEM572	MGB3	WTR	NE	MG		OK	Yes			
NEM573	MGB4	WTR	NE	MG		OK	Yes			
NEM574	MGH1	WTR	NE	MG		OK	Yes			
NEM575	MGH2	WTR	NE NE	MG		OK	Yes			
NEM576	MGH3	WTR	NE NE	MG		OK	Yes			
NEM577	MGH4	WTR	NE	MG		OK	Yes			
	MGH4 MGH5	WTR	NE NE	MG		OK				
NEM578							Yes			
NEM579	MGH6	WTR	NE	MG		OK	Yes			
NEM580	MGH7	WTR	NE	MG		OK	Yes			
NEM581	MGH8	WTR	NE	MG		OK	Yes			
NET582	MORT1	WTR	NE	MO	mortan salt	OK	Yes			
NET583	OTH1	WTR	NE	NO	ortho plant under tails	Abandon	Yes			
NET584	OTH2	WTR	NE	NO	ortho plant under tails	Abandon	Yes			
NET585	ОТН3	WTR	NE	NO	ortho plant under tails	Abandon	Yes			
NET586		WTR	NE	NO			Yes			
NET587	OTH5	WTR	NE	NO	ortho plant under tails	Abandon	Yes			
NET588	OTH6	WTR	NE	NO	ortho plant under tails	Abandon	Yes			
NET589	OTH7	WTR	NE	NO	ortho plant under tails	Abandon	Yes			
NET591	OTH9	WTR	NE	LS	ortho plant under tails	Abandon	Yes			
NET592	OTH10	WTR	NE	MG	ortho plant under tails	Abandon	Yes			
NET593	OTH11	WTR	NE	MG	ortho plant under tails	Abandon	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NET594	OTH12	WTR	NE	MG	ortho plant under tails	Abandon	Yes			
NET595	OTH13	WTR	NE	MG	ortho plant under tails	Abandon	Yes			
NET596	OTH14	WTR	NE	RC	ortho plant under tails	Abandon	Yes			
NET597	OTH15	WTR	NE	NO	ortho plant under tails	Abandon	Yes			
NEM601A	NEMG601A	WTR	NE	MG	North End (south of Rocks café)	OK	Yes			
NEM601B	NEMG601B	WTR	NE	MG	North End (south of Rocks café)	OK	Yes			
NED602A	NEDB602A	WTR	NE	TL	North end diving doard	OK	Yes			
NED602B	NEDB602B	WTR	NE	TL	North end diving doard	OK	Yes			
NEM603A	NEMG603A	WTR	NE	MG	North End near Dan Lewis' house	Abandon	Yes			
NEM603B	NEMG603B	WTR	NE	MG	North End near Dan Lewis' house	Abandon	Yes			
NEM603C	NEMG603C	WTR	NE	MG	North End near Dan Lewis' house	Abandon	Yes			
NED604A	NEDB604A	WTR	NE	TL	North end diving doard	OK	Yes			
NED604B	NEDB604B	WTR	NE	TL	North end diving doard	OK	Yes			
NED605A	NEDB605A	WTR	NE	TL	North end diving doard	AB	Yes			
NED605B	NEDB605B	WTR	NE	TL	North end diving doard	AB	Yes			
NER606A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER606B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER607A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER607B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER608A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER608B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER609A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER609B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER610A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER610B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NEW611A		WTR	NE NE	WT	North end Tailings admin	AB	Yes			
NEW611B		WTR	NE	WT	North end Tailings admin	AB	Yes			
NEW612A		WTR	NE	WT	North end Tailings admin	OK	Yes			
NEW612B		WTR	NE NE	WT		OK	Yes			
NEW613A		WTR	NE NE	WT	North end Tailings admin North end Tailings admin	OK	Yes			
		WTR		WT		OK				
NEW613B			NE NE	WT	North end Tailings admin	OK	Yes			
NEW614A		WTR			North end waste water	OK OK	Yes			
NEW614B		WTR	NE	WT WT	North end waste water	OK	Yes			
NEW615A		WTR	NE		North end waste water		Yes			
NEW615B		WTR	NE	WT	North end waste water	OK	Yes			
NEW616A		WTR	NE	WT	North end waste water	OK	Yes			
NEW616B		WTR	NE	WT	North end waste water	OK	Yes			
NEW617A		WTR	NE	WT	North end waste water	OK	Yes			
NEW617B		WTR	NE	WT	North end waste water	OK	Yes			
NES618A		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES618B		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES619A		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES619B		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES620A		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES620B		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES621A		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES621B		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES622A		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES622B		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES623A		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES623B		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES624A		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES624B		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NEL625A	NET625A	WTR	NE	LS	North end near magna water	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NEL625B	NET625B	WTR	NE	LS	North end near magna water	OK	Yes			
NET626A		WTR	NE	RC	North end tailings monitor well	OK	Yes			
NET626B		WTR	NE	RC	North end tailings monitor well	OK	Yes			
NET627A		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET627B		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET628A		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET628B		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET629A		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET629B		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET630A		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET630B		WTR	NE	MO	North end tailings monitor well	OK	Yes			
NET630C		WTR	NE	MO	North end tailings monitor well	ОК	Yes			
NER631A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER631B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER632A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER632B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER633A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER633B		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NEA634A		WTR	NE	AR	North End Arthur	OK	Yes			
NEA635A		WTR	NE	AR	North End Arthur	OK	Yes			
NEA635B		WTR	NE	AR	North End Arthur	OK	Yes			
NEA636A		WTR	NE	AR	North End Arthur	OK	Yes			
NEM637A		WTR	NE	MC	North end east of central lab	OK	Yes			
NEM638A	NET638A	WTR	NE	MG	North End monitor well near Mcdonalds	AB	Yes			
NEM638B	NET638B	WTR	NE	MG	North End monitor well near Mcdonalds	AB	Yes			
NEW639A	NETOCOB	WTR	NE	WT	North end waste water (dead mans cave)	OK	Yes			
NET640A		WTR	NE	CH	Tailings impoundment monitor well	AB	Yes			
NET640B		WTR	NE	CH	Tailings impoundment monitor well	AB	Yes			
NET641A		WTR	NE	CH	Tailings impoundment monitor well	AB	Yes			
NET641B		WTR	NE	CH	Tailings impoundment monitor well	AB	Yes			
NET642A		WTR	NE	CH	Tailings impoundment monitor well	AB	Yes			
NET642B		WTR	NE	CH	Tailings impoundment monitor well	AB	Yes			
NET643A		WTR	NE NE	MO	Tailings impoundment monitor well	AB	Yes			
NET643B		WTR	NE NE	MO	Tailings impoundment monitor well	AB	Yes			
NET644A		WTR	NE NE	MO	Tailings impoundment monitor well	AB	Yes			
NET644B		WTR	NE	MO		AB	Yes			
NET645A		WTR	NE NE	MO	Tailings impoundment monitor well	OK	Yes			
		WTR	NE NE	MO	Tailings impoundment monitor well	OK	Yes			
NET645B NET645C		WTR	NE NE		Tailings impoundment monitor well	OK OK				
		WTR	NE NE	MO MO	Tailings impoundment monitor well	OK	Yes Yes			
NET646A					Tailings impoundment monitor well					
NET646B		WTR	NE	MO	Tailings impoundment monitor well	OK	Yes			
NET647A		WTR	NE	MO	Tailings impoundment monitor well	AB	Yes			
NET647B		WTR	NE	MO	Tailings impoundment monitor well	AB	Yes			
NET648A		WTR	NE	MO	Tailings impoundment monitor well	AB	Yes			
NET648B		WTR	NE	MO	Tailings impoundment monitor well	AB	Yes			
NET649A		WTR	NE	MO	Tailings impoundment monitor well	AB	Yes			
NET649B		WTR	NE	MO	Tailings impoundment monitor well	AB	Yes			
NEM650A		WTR	NE	MC	North End monitor well near diving doard	OK	Yes			
NEM651A		WTR	NE	MC	North End monitor well near diving doard	OK	Yes			
NEM652A		WTR	NE	MC	North End monitor well near diving doard	OK	Yes			
NEM653A		WTR	NE	MC	North end east of central lab	OK	Yes			
NEA654A		WTR	NE	AR	North end east of central lab	OK	Yes			
NER655A		WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NES656A		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NES705B	SW-7	WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES706	SW-8	WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES707A	AP-4	WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES707B	AP-5	WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NER708	SW-8	WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER709	SW-8	WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER710A	SW-8	WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER710B	SW-8	WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NER711	SW-8	WTR	NE	RF	REFINERY MONITORING WELL	OK	Yes			
NES712		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES713		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES714		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES715A		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES715B		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES716		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES718		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES719		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES720		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES721		WTR	NE	SM	SMELTER MONITORING WELL	AB	Yes			
NES722		WTR	NE	SM	SMELTER MONITORING WELL	ОК	Yes			
NER723		WTR	NE	RF	Refinery MONITORING WELL	OK	Yes			
NER724		WTR	NE	RF	Refinery MONITORING WELL	ОК	Yes			
NES725		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES726A		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
NES726B		WTR	NE	SM	SMELTER MONITORING WELL	ОК	Yes			
SMP727		WTR	NE	SM	SMELTER INTERIM PROCESS WATER POND	OK				Yes
NES728		WTR	NE	SM	SMELTER PRODUCTION WELL	OK	Yes		Yes	
NES729		WTR	NE	SM	SMELTER MONITORING WELL	OK	Yes			
SMP730	Seep		NE	SM		OK				Yes
SMP731	Pump		NE	SM		OK		Yes		Yes
SMP732	West		NE	SM	WEST PROCESS POND (WEST CELL SUMP)	OK		Yes		Yes
SMP733	East		NE	SM	WEST PROCESS POND (EAST CELL SUMP)	OK		Yes		Yes
NEL815	V	WTR	NE		Salt lake county well	OK	Yes			
NEL816	W	WTR	NE	LS	Salt lake county well	OK	Yes			
NEL817	X	WTR	NE	LS	Salt lake county well	OK	Yes			
NEL818	Υ	WTR	NE	LS	Salt lake county well	OK	Yes			
NEL821	R	WTR	NE	LS	Salt lake county well	OK	Yes			
NEL822	S	WTR	NE	LS	Salt lake county well	OK	Yes			
NEL823	Т	WTR	NE	LS	Salt lake county well	OK	Yes			
NEL824	U	WTR	NE	LS	Salt lake county well	OK	Yes			
NEL825	BW-5A	WTR	NE	LS	,	OK	Yes			
NEL826	BW-5B	WTR	NE	LS		OK	Yes			
NEL827	BW-5C	WTR	NE	LS		OK	Yes			
NEW828	BW-6A	WTR	NE	WT		OK	Yes			
NEW829	BW-6B	WTR	NE	WT		OK	Yes			
NEW830	BW-7A	WTR	NE	WT		OK	Yes			
NEW831	BW-7B	WTR	NE	WT		OK	Yes			
NET832	BW-8A	WTR	NE NE	MO		AB	Yes			
NET833	BW-8B	WTR	NE	MO		AB	Yes			
NET834	BW-8C	WTR	NE NE	MO		AB	Yes			
NEL835	BW-4A	WTR	NE NE	LS		OK	Yes			
NEL836	BW-4B	WTR	NE NE	LS		OK	Yes			
NEL837	BW-4C	WTR	NE NE	LS		OK	Yes			
NET838	BW-2A	WTR	NE NE	MO		OK	Yes			
INT 1090	DVV-ZA	WIL	INC	IVIO		UN	165			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NET839	BW-2B	WTR	NE	MO		OK	Yes			
NET840	BW-2C	WTR	NE	MO		OK	Yes			
NET841	BW-3A	WTR	NE	MO		OK	Yes			
NET842	BW-3B	WTR	NE	MO		OK	Yes			
NET843	BW-1A	WTR	NE	RC		OK	Yes			
NET844	BW-1B	WTR	NE	RC		OK	Yes			
NET845	BW-1C	WTR	NE	RC		OK	Yes			
NET846	BW-9A	WTR	NE	NO		OK	Yes			
NET847	BW-9B	WTR	NE	NO		OK	Yes			
BCG848	BCG474	WTR	VW	BC	BARNEY CANYON MONITORING WELL	OK	Yes			
BCG849	BCG475	WTR	VW	BC	BARNEY CANYON MONITORING WELL	OK	Yes			
BCG850		WTR	VW	BC	BARNEY CANYON MONITORING WELL	OK	Yes			
SRP850	SMRES	WTR	VW	SR	SMALL RESERVOIR	OK				Yes
BCG851A		WTR	VW	BC	BARNEY CANYON MONITORING WELL	OK	Yes			
BCG851B		WTR	VW	BC	BARNEY CANYON MONITORING WELL	OK	Yes			
SRP851	SMRESLLDS	WTR	VW	SR	SMALL RESERVOIR-leak detection sump	OK				Yes
BCG852		WTR	VW	ВС	BARNEY CANYON MONITORING WELL	ОК	Yes			
SRP852	SMRESPRS	WTR	VW	SR	SMALL RESERVOIR-leak detection sump	ОК				Yes
TLT860	NETL860	WTR	NE	TL	TAILINGS WATER	ОК				Yes
TLT861	NETL861	WTR	NE	TL	TAILINGS WATER	ОК				Yes
TLT862	NETL862	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT863	NETL863	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT864	NET864	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT865A	TLT865A	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT865B	TLT865B	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT865C	TLT865C	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT866	TLT866	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT867	TLT867	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT868	TLT868	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT869	TLT869	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT870	TLT870	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT871	TLT871	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT872	TLT872	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT873	TLT873	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT874	TLT874	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT875	TLT875	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT876	TLT876	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT877	TLT877	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT878	TLT878	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT879	TLT879	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT880	TLT880	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT881	TLT881	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT882	TLT882	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT883	TLT883	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT884	TLT884	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT885	TLT885	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT886	TLT886	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT887	TLT887	WTR	NE NE	TL	TAILINGS WATER	OK				Yes
TLT888	TLT888	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT889	TLT889	WTR	NE NE	TL	TAILINGS WATER TAILINGS WATER	OK				Yes
TLT890	TLT890	WTR	NE NE	TL	TAILINGS WATER TAILINGS WATER	OK				Yes
LRP891	LRP0891	WTR	VW	LR	ZONE 1-LARGE RESERVOIR (SUMP NO. 1)	OK OK				
LRP891 LRP892		WTR	VW	LR LR	ZONE 1-LARGE RESERVOIR (SUMP NO. 1) ZONE 1-LARGE RESERVOIR (SUMP NO. 2)	OK OK				Yes Yes
	LRP0892				· · · · · · · · · · · · · · · · · · ·					
LRP893	LRP0893	WTR	VW	LR	ZONE 1-LARGE RESERVOIR (SUMP NO. 3)	OK				Yes

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
LRP894	LRP0894	WTR	VW	LR	ZONE 1-LARGE RESERVOIR (SUMP NO. 4)	OK				Yes
LRP895	LRP0895	WTR	VW	LR	ZONE 1-LARGE RESERVOIR (SUMP NO. 5)	OK				Yes
LRP896	LRP0896	WTR	VW	LR	ZONE 1-LARGE RESERVOIR	OK				Yes
NEM897	NEM897	WTR	NE	MC	Magna area	OK	Yes			
NEM898	NEM898	WTR	NE	MC	Magna area	ОК	Yes			
NEM899	NEM899	WTR	NE	MC	Magna area	OK	Yes			
ECG900	ES900	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG901	ES901	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG902	EC902	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG903	EC903	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG904	EC904	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG905	EC905	WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG906		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG907		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG908		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG909		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
LRG910		WTR	VW	LR	LARGE RESERVOIR	OK	Yes			
LRG911		WTR	VW	LR	LARGE RESERVOIR	OK	Yes			
LRG912		WTR	VW	LR	LARGE RESERVOIR	OK	Yes			
LRG914		WTR	VW	LR	LARGE RESERVOIR	OK	Yes			
ECG915		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG916		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG917		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
COG918		WTR	VW	CO	COPPERTON CITY	OK	Yes			
BRG919		WTR	VW	BR	BLUEWATER REPOSITORY	OK	Yes			
BRG920		WTR	VW	BR	BLUEWATER REPOSITORY	OK	Yes			
BRG921		WTR	VW	BR	BLUEWATER REPOSITORY	OK	Yes			
ECG922		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG923		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG924		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG925		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG926		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG928		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
LTG929A		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG929A		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG930B		WTR	VW		LARK TAILINGS	OK	Yes			
ECG931		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG932		WTR	VW	EC	EASTSIDE COLLECTION EASTSIDE COLLECTION	OK	Yes			
ECG932 ECG933		WTR	VW	EC	EASTSIDE COLLECTION EASTSIDE COLLECTION	OK	Yes			
ECG933		WTR	VW	EC	EASTSIDE COLLECTION EASTSIDE COLLECTION	OK	Yes			
ECG935		WTR	VW	EC	EASTSIDE COLLECTION EASTSIDE COLLECTION	OK	Yes			
ECG936		WTR	VW	EC	EASTSIDE COLLECTION EASTSIDE COLLECTION	OK	Yes			
ECG937		WTR	VW	EC	EASTSIDE COLLECTION EASTSIDE COLLECTION	OK	Yes			
				EC		OK				
ECG938		WTR WTR	VW VW	EC	EASTSIDE COLLECTION	OK OK	Yes			
ECG939					EASTSIDE COLLECTION		Yes			
ECG940		WTR	VW	EC SR	EASTSIDE COLLECTION	OK	Yes			
SRG945		WTR	VW		SMALL RESERVOIR	OK	Yes			
SRG946		WTR	VW	SR	SMALL RESEROVIR	OK	Yes			
COG947		WTR	VW	CO	COPPERTON CITY	OK	Yes			
CPG950	DIGGE	WTR	VW	CP	CEMETERY POND	OK	Yes			
B1G951	BIG951	WTR	VW	B1	BINGHAM CREEK SEGMENT #1	OK	Yes			
ECG952		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
COZ971			VW	CO	DRYFORK	OK				
COZ972			VW	CO	DRYFORK	OK				

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
COZ973			VW	CO	GW UPGRADIENT OF PROPOSED CUMPS	OK				
COZ974			VW	CO	DRYFORK	OK				
COZ975			VW	CO	DRYFORK	OK				
COZ976			VW	CO	DRYFORK	OK				
COZ977			VW	CO	DRYFORK	OK				
COZ978			VW	CO	DRYFORK	OK				
COZ979			VW	CO	DRYFORK	OK				
COZ980			VW	CO	DRYFORK	OK				
COZ981			VW	CO	DRYFORK	OK				
COZ982			VW	CO	DRYFORK	OK				
COZ983			VW	CO	DRYFORK	OK				
COZ984			VW	CO	DRYFORK	OK				
COZ985			VW	CO	MELCO DUMP INFLUENCE	OK				
COZ986			VW	CO	MELCO DUMP INFLUENCE	OK				
COZ987			VW	CO	REGIONAL DRYFORK WATER LEVEL	OK				
COG988			VW	CO	LOWER DRYFORK	OK				
COG989			VW	CO	LOWER DRYFORK	OK				
COG990A			VW	CO	LOWER DRYFORK	OK				
COG990B			VW	CO	LOWER DRYFORK	OK				
COG990C			VW	CO	LOWER DRYFORK	OK				
COG991A			VW	CO	LOWER DRYFORK	OK				
COG991B			VW	CO	LOWER DRYFORK	OK				
COG991B			VW	CO	RANGE FRONT MONITORING	OK				
COG992B			VW	CO	RANGE FRONT MONITORING	OK				
COG993A			VW	CO	UPGRADIENT DRYFORK PUMPS	OK				
COG993A COG993B			VW	CO	UPGRADIENT DRYFORK PUMPS	OK				
COZ993B			VW	CO	REGIONAL DRYFORK WATER LEVEL	OK				
CO2994 COG995A			VW	CO	LOWER DRYFORK MONITORING) OK				
COG995A COG995B			VW	CO	LOWER DRYFORK MONITORING LOWER DRYFORK MONITORING	OK OK	Yes			
ECG996A		WTR	VW	CO	BINGHAM CREEK/DRYFORK MONITORING	OK	Yes Yes			
ECG996A ECG996B		WTR	VW		BINGHAM CREEK/DRYFORK MONITORING	OK OK				
COG997A		WTR	VW	СО	LOWER DRYFORK MONITORING	OK OK	Yes Yes			
COG997A COG997B		WTR	VW	co	LOWER DRYFORK MONITORING LOWER DRYFORK MONITORING	OK OK	Yes			
COG997B COG998A		WTR	VW	CO	LOWER DRYFORK MONITORING LOWER DRYFORK MONITORING	OK OK				
		WTR	VW	CO	LOWER DRYFORK MONITORING LOWER DRYFORK MONITORING	OK OK	Yes			
COG998B							Yes			
BRG999	05//4	WTR	VW	BR	BLUEWATER REPOSITORY	OK	Yes			
CFG1001	CF#1		VW		CARR FORK	OK	Yes			
CFG1002	CF#2		VW		CARR FORK	OK	Yes			
CFG1003	CF#3		VW		CARR FORK	OK	Yes			
CFG1004	CF#4		VW		CARR FORK	OK	Yes			
CFS1005	BIG SPG		VW		CARR FORK	OK		Yes		
CFS1006	AD TNL	WOD	VW	D14	CARR FORK	OK A O.T.D. (Yes		
BMD1009	Pb & Cu	WSD	VW	BM	Freeman CLNRY TNK AFTER CHLOR	ACTIV			Yes	
BMD1010	Pb & Cu	WSD	VW	BM	MINE 6290 OFFICE, JANITORS MOP SINK	Gone			Yes	
BMD1011	Pb & Cu	WSD	VW	BM	MINE VISITOR CNTR, MENS ROOM BASIN	Gone			Yes	
BMD1012	Pb & Cu	WSD	VW	BM	MINE 6290 OFFICE, MENS ROOM BASIN	Gone			Yes	
BMD1013	Pb & Cu	WSD	VW	BM	MINE 6190 CHANGE HOUSE WASHROOM	ACTIV			Yes	
BMD1014	Pb & Cu	WSD	VW	BM	MINE 6190 TRUCK SHOP FOREMENS RESTRM	Gone			Yes	
BMD1015	Pb & Cu	WSD	VW	BM	MINE 6190 COPPERFIELD Tire shop SINK	ACTIV			Yes	
BMD1016	Pb & Cu	WSD	VW	BM	MINE 6190 BULLGANG RESTROOM BASIN	Gone			Yes	
BMD1017	Pb & Cu	WSD	VW	BM	MINE 6190 REDI ROOM MENS RSTRM BASIN	ACTIV			Yes	
BMD1018	Pb & Cu	WSD	VW	BM	MINE 6190 REDI ROOM WOMN RSTRM BASIN	ACTIV			Yes	
BMD1019	Pb & Cu	WSD	VW	BM	MINE 6190 OFFICE BLD LUNCH ROOM BASIN	ACTIV			Yes	
BMD1020	Pb & Cu	WSD	VW	BM	MINE OFFICE BLD LADIES RSTROOM BASIN	ACTIV			Yes	

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
BMD1021	Pb & Cu	WSD	VW	BM	MINE CODE 80 MARKHAM SHOP SINK	ACTIV			Yes	
BMD1022	Pb & Cu	WSD	VW	BM	MINE SAFETY OFFICE JANITORS MOP SINK	Gone			Yes	
BMD1023	Pb & Cu	WSD	VW	BM	MINE DRYFORK SHOP FOREMEN RSTRM BASIN	Gone			Yes	
BMD1024	Pb & Cu	WSD	VW	BM	MINE DRYFORK SHOP ELT FRMR RSTRM BASN	Gone			Yes	
BMD1025	Pb & Cu	WSD	VW	BM	MINE DRYFORK WELDING SHOP WEST SINK	Gone			Yes	
BMD1026	Pb & Cu	WSD	VW	BM	MINE DRYFORK ELCT OFF RST ARRA BASIN	Gone			Yes	
BMD1027	Pb & Cu	WSD	VW	BM	MINE DRYFORK LINEMAN TRAILER BASIN	Gone			Yes	
BMD1028	Pb & Cu	WSD	VW	BM	MINE DRYFORK DOZER LUNCH ROOM BASIN	Gone			Yes	
BMD1029	Pb & Cu	WSD	VW	BM	MINE DRYFORK CAR LUNCH ROOM BASIN	Gone			Yes	
ECD1030	Pb & Cu	WSD	VW	EC	MINE SAWS CONTROL ROOM MOP SINK	INACT			Yes	
ECD1031	Pb & Cu	WSD	VW	EC	MINE SAWS FOREMAN WASHROOM BASIN	INACT			Yes	
ECD1032	Pb & Cu	WSD	VW	EC	MINE SAWS JANITORS MOP SINK	INACT			Yes	
ECD1033	Pb & Cu	WSD	VW	EC	MINE CAR WHACKER RESTROOM WASH BASIN	INACT			Yes	
ECD1034	Pb & Cu	WSD	VW	EC	MINE COPPERTON TOWER RESTROOM BASIN	Gone			Yes	
ECD1035	Pb & Cu	WSD	VW	EC	BARNEY TUNNEL CULINARY TNK AFTER CHLO	Gone			Yes	
BMD1036	Pb & Cu	WSD	VW	BM	MINE SAFETY OFFICE RESTROOM BASIN	Gone			Yes	
BMD1037	Pb & Cu	WSD	VW	BM	6190 admin.CNFRNCE RM KITCHEN SINK	ACTIV			Yes	
BMD1038	Pb & Cu	WSD	VW	BM	6190 Admin WOMENS RESTROOM BASIN	ACTIV			Yes	
BMD1039				BM	6190 Admin mens Rest Room	ACTIV			Yes	
BMD1040				BM	6190 Admin Kitchen sink	ACTIV			Yes	
PCD1041	Pb & Cu	WSD	NE	UPP	Power plant 3rd floor RR wash basin	ACTIV			Yes	
PCD1045	Pb & Cu	WSD	NE	UPP	Power plant 5th floor RR wash basin	ACTIV			Yes	
SMD1045	Pb & Cu	WSD	NE	SM	SMELTER ENVRNMNTL MONITORING CENTER	ACTIV			Yes	
SMD1046	Pb & Cu	WSD	NE	SM	SMLTR #8 ACID REPAIR BLDG MOP SINK	ACTIV			Yes	
SMD1047	Pb & Cu	WSD	NE	SM	SMLTR CHANGE HOUSE DOWNSTRS MOP SINK	ACTIV			Yes	
SMD1048	Pb & Cu	WSD	NE	SM	SMLTR CNTRL WRHSE OUTSIDE TAP DOCK	ACTIV			Yes	
SMD1049	Pb & Cu	WSD	NE	SM	SMLTR MECHANIC SHOP WASH BASIN	ACTIV			Yes	
RFD1051	Pb & Cu	WSD	NE	RF	REFN ADMIN BLDG JANITORS RM MOP SINK	ACTIV			Yes	
RFD1052	Pb & Cu	WSD	NE	RF	REFN MAINT SHOP FOREMAN RESTRM BASIN	ACTIV			Yes	
RFD1053	Pb & Cu	WSD	NE	RF	REFN WAREHOUSE WASH BASIN	ACTIV			Yes	
RFD1054	Pb & Cu	WSD	NE	RF	REFN MTC lunchroom sink	ACTIV			Yes	
RFD1055	Pb & Cu	WSD	NE	RF	REFN BOILER PLT UPSTAIRS RESTRM SINK	ACTIV			Yes	
LTD1056	Pb & Cu	WSD	SE	LT	IS&T mens rest room sink	ACTIV			Yes	
LTD1057	Pb & Cu	WSD	SE	LT	Lark security office kicthen	ACTIV			Yes	
LTD1057	Pb & Cu	WSD	SE	LT	Lark security onlie kontent Lark security outside womans rest room	ACTIV			Yes	
LTD1059	Pb & Cu	WSD	SE	LT	Crusher re-locate office womans RR sink LARK	ACTIV			Yes	
LTD1059	Pb & Cu	WSD	SE	LT	Lark contractor trailer kicthen sink	ACTIV			Yes	
PCD1061	Pb & Cu	WSD	NE NE	PC	BNVL GRIND BLDG CONTROL ROOM RESTROOM	Gone			Yes	
PCD1062	Pb & Cu	WSD	NE	PC	BNVL DUMP BLDG FURNACE ROOM MOP SINK	Gone			Yes	
ARD1063	Pb & Cu	WSD	NE	AR	ARTHR CARPENTERS SHOP SHOWER	Gone			Yes	
ARD1063 ARD1064	Pb & Cu	WSD	NE NE	AR	ARTHR CARPENTERS SHOP SHOWER ARTHR ADMN BLDG FURNACE ROOM MOP SINK	Gone			Yes	
WTD1065	Pb & Cu	WSD	NE NE	WT	GARFLD SECURITY RESTROOM WASH BASIN	ACTIV			Yes	
ARD1066	Pb & Cu	WSD	NE	AR	ARTHR ADMN DOWNSTR WOMEN WASHRM BASIN	Gone			Yes	
PCD1067	Pb & Cu	WSD	NE NE	PC	BNVL DUMPER BLDG CONTROL WASHROOM	Gone			Yes	
SMD1068	Pb & Cu Pb & Cu	WSD	NE NE	SM	SMLT #8 ACID FIELD REPAIR RSTRM BASIN	ACTIV				
SMD1068 SMD1069	Pb & Cu Pb & Cu	WSD	NE NE	SM	SMLT #6 ACID FIELD REPAIR RSTRIM BASIN SMLT SAFETY OFFICE EXAM ROOM BASIN	ACTIV			Yes Yes	
SMD1069 SMD1070	Pb & Cu Pb & Cu	WSD	NE NE	SM	SMLT SAFETY OFFICE EXAM ROOM BASIN SMLT ENVR OFFICE RESTROOM WASH BASIN	ACTIV			Yes	
SMD1070 SMD1071	Pb & Cu Pb & Cu	WSD		SM						
MCD1071		WSD	NE NE	MC	REFN ADMN BLDG MEN RESTROOM BASIN MAGNA PIPE SHOP LUNCHROOM SINK	ACTIV			Yes	
	Pb & Cu	WSD	NE NE		ARTHR CENTRAL SHOP RESTROOM WSH BASIN	Gone			Yes	
ARD1074	Pb & Cu			AR		Gone			Yes	
SMD1075	Pb & Cu	WSD	NE	SM	SMLTR ENGINEERING KITCHEN SINK	ACTIV			Yes	
LSD1078	Pb & Cu	WSD	NE	LS	SEC21 PUMP HOUSE COMBINED AFTER CHLOR	ACTIV			Yes	
BYD1080	Pb & Cu	WSD	VW	BY	CPPRTN CONC CHNG HOUSE JAINITOR SINK	ACTIV			Yes	
BYD1081	Pb & Cu	WSD	VW	BY	CPPRTN CONC PLANNING GROUP KITCHEN TAP	ACTIV			Yes	

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
BYD1082	Pb & Cu	WSD	VW	BY	CPPRTN CONC GRIND MILLWRGHT REST ROOM	ACTIV			Yes	
BYD1083	Pb & Cu	WSD	VW	BY	CPPRTN CONC GRIND OPERATION KTCHN TAP	ACTIV			Yes	
BYD1084	Pb & Cu	WSD	VW	BY	CPPRTN CONC MOLY PLT SYSTEM REST ROOM TAP	ACTIV			Yes	
BYD1085	Pb & Cu	WSD	VW	BY	CPPRTN CONC GRIND ELECTRICL KTCHN TAP	ACTIV			Yes	
BYD1086	Pb & Cu	WSD	VW	BY	CPPRTN CONC MET LAB KITCHEN SINK	ACTIV			Yes	
BYD1087	Pb & Cu	WSD	VW	BY	CPPRTN CONC MOLY OPERATION KTCHN SINK	ACTIV			Yes	
BYD1089	Pb & Cu	WSD	VW	BY	CPPRTN CONC RECORD CENTER RSTRM SINK	ACTIV			Yes	
BYD1090		WSD	VW	BY	CPPRTN CONC CULINARY TANK AFTER CHLOR	ACTIV			Yes	
ECG1092	BW#2	WTR	VW	EC	BARRIER WELL PW#2 IN BINGHAM CREEK	ABAND	Yes			
ECG1093	BW#3	WTR	VW	EC	BARRIER WELL PW#3 IN BINGHAM CREEK	ABAND	Yes			
RFD1094	Pb & Cu	WTR	NE	RF	Refinery PM building womans RR sink	ACTIV			Yes	
SMD1095	Pb & Cu	WTR	NE		Smelter admin. 2nd floor day pay kicten	ACTIV			Yes	
SMD1096	Pb & Cu	WTR	NE		Smelter EDX mens RR sink	ACTIV			Yes	
SMD1097	Pb & Cu	WTR	NE		Smelter flash furnace 3rd floor RR sink	Activ			Yes	
SMD1098	Pb & Cu	WTR	NE		Smelter filter plant maintenance Bldg. womans RR sink				Yes	
ECG1100A		WTR	VW		BINGHAM CANYON MOUTH	OK				
ECG1100B		WTR	VW		BINGHAM CANYON MOUTH	OK				
MDG1101		WTR	VW		BINGHAM CREEK/DRYFORK MONITORING	OK				
ECG1102		WTR	VW		BINGHAM CREEK ALLUVIAL	ОК				
ECG1103		WTR	VW		BINGHAM CREEK ALLUVIAL	OK				
ECG1104		WTR	VW		BINGHAM CREEK ALLUVIAL	ОК				
ECG1105A		WTR	VW		BINGHAM CREEK ALLUVIAL	ОК				
ECG1105B		WTR	VW		BINGHAM CREEK BEDROCK	OK				
ECG1106A		WTR	VW		BINGHAM CREEK BEDROCK	OK				
ECG1106B		WTR	VW		BINGHAM CREEK BEDROCK	OK				
COG1107A		WTR	VW	CO	LOWER DRYFORK MONITORING	OK				
COG1107B		WTR	VW	CO	LOWER DRYFORK MONITORING	OK				
ECG1108A		WTR	VW		BINGHAM CREEK/DRYFORK MONITORING	OK				
ECG1108B		WTR	VW		BINGHAM CREEK/DRYFORK MONITORING	OK				
COG1109A		WTR	VW	CO	LOWER DRYFORK MONITORING	OK				
COG1109B		WTR	VW	CO	LOWER DRYFORK MONITORING	OK				
ECG1110A		WTR	VW		BINGHAM CREEK BEDROCK	OK				
ECG1110B		WTR	VW		BINGHAM CREEK BEDROCK	OK				
MDZ1111		WTR	VW		EASTSIDE DUMP GROUND WATER LEVEL	OK				
COG1112A		WTR	VW	CO	COPPERTON ALLUVIAL	OK				
COG1112B		WTR	VW	CO	COPPERTON ALLUVIAL	OK				
ECG1113A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1113B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1113C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1114A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1114B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1115A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1115B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1115C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1115D		WTR	vw	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1115E		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1116A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1116B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1116C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1117A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1117B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1117C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1118A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1118B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
			• • • • • • • • • • • • • • • • • • • •			٠.٠				

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
ECG1118C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
BSG1119A		WTR	VW	BS	BASTIAN SINK	СВ	Yes			
BSG1119B		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1119C		WTR	VW	BS	BASTIAN SINK	OK	Yes			
B1G1120A		WTR	VW	B1	BINGHAM CREEK SEGMENT #1	OK	Yes			
B1G1120B		WTR	VW	B1	BINGHAM CREEK SEGMENT #1	OK	Yes			
B1G1120C		WTR	VW	B1	BINGHAM CREEK SEGMENT #1	OK	Yes			
ECG1121A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1121B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1121C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
HMG1122A		WTR	VW	HM	HERRIMAN	OK	Yes			
HMG1122B		WTR	VW	НМ	HERRIMAN	OK	Yes			
HMG1122C		WTR	VW	НМ	HERRIMAN	OK	Yes			
HMG1123A		WTR	VW	НМ	HERRIMAN	OK	Yes			
HMG1123B		WTR	VW	НМ	HERRIMAN	OK	Yes			
HMG1123C		WTR	VW	НМ	HERRIMAN	OK	Yes			
ECG1124A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1124B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1124C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
BSG1125A		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1125B		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1125C		WTR	VW	BS	BASTIAN SINK	OK	Yes			
HMG1126A		WTR	VW	HM	HERRIMAN	OK	Yes			
HMG1126B		WTR	VW	НМ	HERRIMAN	OK	Yes			
HMG1126C		WTR	VW	НМ	HERRIMAN	OK	Yes			
LTG1127A		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1127B		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1127C		WTR	VW	LT	LARK TAILINGS	OK	Yes			
ECG1128A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1128B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1128C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
LTG1129A		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1129B		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1129C		WTR	VW	LT	LARK TAILINGS	OK	Yes			
BSG1130A		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1130B		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1130C		WTR	VW	BS	BASTIAN SINK	OK	Yes			
ECG1131A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1131B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1131C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
BSG1132A		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1132B		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1132C		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1132C BSG1133A		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1133A BSG1133B		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1133C		WTR	VW	BS	BASTIAN SINK	OK	Yes			
HMG1134A		WTR	VW	HM	HERRIMAN	OK	Yes			
						OK OK				
HMG1134B		WTR	VW	HM	HERRIMAN		Yes			
HMG1134C		WTR	VW	HM	HERRIMAN PACTIAN CINIC	OK	Yes			
BSG1135A		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1135B		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1135C		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BFG1136A		WTR	VW	BS	BASTIAN FLATS	OK	Yes			
BFG1136B		WTR	VW	BS	BASTIAN FLATS	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
BFG1136C		WTR	VW	BS	BASTIAN FLATS	OK	Yes			
BSG1137A		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1137B		WTR	VW	BS	BASTIAN SINK	OK	Yes			
BSG1137C		WTR	VW	BS	BASTIAN SINK	OK	Yes			
LTG1138A		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1138B		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1138C		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1138D		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1138E		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1138F		WTR	VW	LT	LARK TAILINGS	AB	Yes			
LTG1139		WTR	VW	LT	Clean water Well/LARK TAILINGS	OK	Yes			
LTG1140A		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1140B		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1140C		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1140D		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1141A		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1141B		WTR	VW	LT	LARK TAILINGS	OK	Yes			
LTG1141C		WTR	VW	LT	LARK TAILINGS	OK	Yes			
ECG1142A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1142B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1142C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1143A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1143B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1143C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1144A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1144B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1144C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1145A		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1145B		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1145C		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
ECG1146		WTR	VW	EC	EASTSIDE COLLECTION	OK	Yes			
LTG1147		WTR	VW	LT	LARK TAILINGS	OK	Yes			
BSG1148A		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1148B		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1148C		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BCG1149A		WTR	VW	ВС	Busilan sink area (south area ground vialer)	OK	Yes			
BCG1149B		WTR	VW			OK	Yes			
BCG1149C		WTR	VW			OK	Yes			
BCG1150A		WTR	VW			OK	Yes			
BCG1150B		WTR	VW			OK	Yes			
BCG1150D BCG1150C		WTR	VW			OK	Yes			
COG1151A		WTR	VW	со	south area ground water plume	OK	Yes			
COG1151A		WTR	VW	CO	south area ground water plume	OK	Yes			
COG1151B		WTR	VW	CO		OK	Yes			
COG1151C		WTR	VW	CO	south area ground water plume	OK	Yes			
COG1151D COG1152A		WTR	VW	co	south area ground water plume	OK	Yes			
COG1152A COG1152B		WTR	VW	co	south area ground water plume	OK	Yes			
				co	south area ground water plume	OK				
COG1152C		WTR	VW		south area ground water plume		Yes			
BSG1153A		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1153B		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1153C		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
WJG1154A		WTR	VW	WJ	West Jordan ground water	OK	Yes			
WJG1154B		WTR	VW	WJ	West Jordan ground water	OK	Yes			
WJG1154C		WTR	VW	WJ	West Jordan ground water	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
BFG1155A		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1155B		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1155C		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1155D		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1155E		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1155F		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1156A		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1156B		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1156C		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1156D		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1156E		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1156F		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
B2G1157A		WTR	VW		Bingham creek (south ground water	OK	Yes			
B2G1157B		WTR	VW		Bingham creek (south ground water	OK	Yes			
B2G1157C		WTR	VW		Bingham creek (south ground water	OK	Yes			
BCG1158A		WTR	VW		· · · · · ·	OK	Yes			
BCG1158B		WTR	VW			OK	Yes			
BCG1158C		WTR	VW			OK	Yes			
BCG1159		WTR	VW			OK	Yes			
HMG1163A		WTR	VW	НМ	Herriman area ground water	OK	Yes			
HMG1163B		WTR	VW	НМ	Herriman area ground water	OK	Yes			
HMG1163C		WTR	VW	НМ	Herriman area ground water	OK	Yes			
RVG1164A		WTR	VW	RV	Herriman area ground water	AB	Yes			
RVG1164B		WTR	VW	RV	Herriman area ground water	AB	Yes			
RVG1164C		WTR	VW	RV	Herriman area ground water	OK	Yes			
EPG1165A		WTR	VW	EP	Day break area	OK	Yes			
EPG1165B		WTR	VW	EP	Day break area	OK	Yes			
EPG1165C		WTR	VW	EP	Day break area	OK	Yes			
EPG1166		WTR	VW	EP	Day break area	OK	Yes			
LTG1167A		WTR	VW	LT	Day break area	OK	Yes			
LTG1167B		WTR	VW	LT	Day break area	OK	Yes			
LTG1167C		WTR	VW	LT	Day break area	OK	Yes			
BFG1168A		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1168B		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1168C		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
WJG1169A		WTR	VW	WJ	West Jordan ground water	OK	Yes			
WJG1169A WJG1169B		WTR	VW	WJ	West Jordan ground water	OK	Yes			
WJG1169C		WTR	VW	WJ	West Jordan ground water	OK	Yes			
WJG1103C WJG1170A		WTR	VW	WJ	West Jordan ground water	AB	Yes			
WJG1170A WJG1170B		WTR	VW	WJ	West Jordan ground water	AB	Yes			
WJG1170C		WTR	VW	WJ	West Jordan ground water	AB	Yes			
WJG1170C WJG1171A		WTR	VW	WJ	•	OK	Yes			
WJG1171B		WTR	VW	WJ	West Jordan ground water	OK	Yes			
WJG1171B WJG1171C		WTR		WJ	West Jordan ground water	OK				
COG1172		WTR	VW VW	CO	West Jordan ground water		Yes			
					Upper Dry Fork (PICNIC FLATS)	ok	Yes			
COG1173A		WTR	VW	CO	Upper Dry Fork	ok	Yes			
COG1173B		WTR	VW	CO	Upper Dry Fork	ok	Yes			
COG1173C		WTR	VW	CO	Upper Dry Fork	ok	Yes			
COG1174A		WTR	VW	CO	Upper Dry Fork	ok	Yes			
COG1174B		WTR	VW	co	Upper Dry Fork	ok	Yes			
COG1174C		WTR	VW	CO	Upper Dry Fork	ok	Yes			
COG1175A		WTR	VW	CO	south area ground water plume	OK	Yes			
COG1175B		WTR	VW	CO	south area ground water plume	OK	Yes			
COG1175C		WTR	VW	CO	south area ground water plume	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
B2G1176A		WTR	VW	B2	Bingham creek (south ground water	OK	Yes			
B2G1176B		WTR	VW	B2	Bingham creek (south ground water	OK	Yes			
B2G1176C		WTR	VW	B2	Bingham creek (south ground water	OK	Yes			
BSG1177B		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1177C		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
COG1178A		WTR	VW	СО	, , ,	OK	Yes			
COG1178B		WTR	VW	CO		OK	Yes			
COG1178C		WTR	VW	CO		OK	Yes			
BSG1179A		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1179B		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1179C		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1180A		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes	2		
BSG1180B		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1180C		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
ECX1181		WTR	***	БС	Basilan sink area (south area ground Water)	O.K	Yes			
ECG1182A		WTR	VW	EC	Eastside collection monitoring	OK	Yes			
ECG1182B		WTR	VW	EC	Eastside collection monitoring	OK	Yes			
ECG1183A		WTR	VW	EC	Eastside collection monitoring	OK	Yes			
ECG1183B		WTR	VW	EC	Eastside collection monitoring	OK	Yes			
ECG1183B		WTR	VW	EC	g .	OK	Yes			
ECG1185		WTR	VW	EC	Eastside collection monitoring Copperton Channel Extraction Well	OK	Yes			
ECG1186		WTR	VW	EC	• •	OK	Yes			
		WTR		EC	Eastside collection monitoring	OK				
ECG1187 ECG1188		WTR	VW VW	EC	East Side Collection	OK	Yes Yes			
					East Side Collection					
ECG1189		WTR	VW	EC	East Side Collection	OK	Yes			
ECG1190		WTR	VW	EC	East Side Collection	OK	Yes			
LTG1191		WTR	VW	EC	Lark Tailings Area	OK	Yes			
ECG1192	14.00	WTR	VW	EC	Dry Fork Extraction Well	OK	Yes			
B2G1193	K 60	WTR	VW	B2	New well for well 60	OK	Yes			
B2G1194A		WTR	VW		Bingham creek (south ground water	OK	Yes			
B2G1194B		WTR	VW		Bingham creek (south ground water	OK	Yes			
B2G1195A		WTR	VW		Bingham creek (south ground water	OK	Yes			
B2G1195B		WTR	VW		Bingham creek (south ground water	OK	Yes			
BSG1196A		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1196B		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
BSG1196C		WTR	VW	BS	Bastian sink area (south area ground Water)	OK	Yes			
B3G1197A		WTR	VW		Bingham creek (south ground water	OK	Yes			
B3G1197B		WTR	VW		Bingham creek (south ground water	OK	Yes			
B3G1197C		WTR	VW		Bingham creek (south ground water	OK	Yes			
BFG1198A		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1198B		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
BFG1198C		WTR	VW	BF	Bingham flat south of old hwy	OK	Yes			
ECG1199B		WTR	WV	EC	Sonic Drilled Monitoring	OK	Yes			
ECG1199A		WTR	VW	EC	Sonic drilled monitoring well	OK	Yes			
ECG1199C		WTR	VW	EC	Sonic Drilled Well	OK	Yes			
ECG1199D		WTR	VW	EC	Sonic drilled well	OK	Yes			
ECG1199E		WTR	VW	EC	Sonic drilled well	OK	Yes			
ECG1199F		WTR	VW	EC	Sonic drilled well	OK	Yes			
ECG1199G		WTR	VW	EC	Sonic drilled well	OK	Yes			
BFG1200	K109	WTR	VW		Bingham flat south of old hwy	OK	Yes			
BSG1201		WTR	VW		Bastian sink area (south area ground Water)	OK	Yes			
ECG1203		WTR	VW			OK	Yes			
COG1204A		WTR	VW		south area ground water plume	OK	Yes			
COG1204B		WTR	VW		south area ground water plume	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NET1300	NET1300	WTR	NE	СН	TAILINGS WATER	AB	Yes			
NET1300B	NET1300	WTR	NE	СН	TAILINGS WATER	AB	Yes			
NET1300C	NET1300	WTR	NE	СН	TAILINGS WATER	AB	Yes			
CHT1301	CHT1301	WTR	NE	СН	TAILINGS WATER	OK	Yes			Yes
CHT1302	CHT1302	WTR	NE	СН	TAILINGS WATER	OK	Yes			Yes
CHT1303	CHT1303	WTR	NE	СН	TAILINGS WATER	OK	Yes			Yes
TLT1304	TLT891	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT1305	TLT892	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT1306	TLT893	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT1307	TLT894	WTR	NE	TL	TAILINGS WATER	OK				Yes
TLT1308	TLT895	WTR	NE	TL	TAILINGS WATER	OK				Yes
NEL1309	MNN	WTR	NE	LS	TAILINGS WATER	OK	Yes			
NEL1310	MNS	WTR	NE	LS	TAILINGS WATER	OK	Yes			
NET1311	off morton	WTR	NE	MO	1 MILE W OF 7200 W ON ACCESS ROAD	OK	Yes			
NEL1312	Well 15	WTR	NE	LS	ALIAS NEL474-NORTH END LANDFILL	OK	Yes			
NEL1313	Well 14	WTR	NE	LS	ALIAS NEL475-NORTH END LANDFILL M	OK	Yes			
LRP1314		WTR	VW	LR	ZONE II-LARGE RESERVOIR (SUMP NO. 1)	NEW				Yes
LRP1315		WTR	VW	LR	ZONE II-LARGE RESERVOIR (SUMP NO. 2)	NEW				Yes
LRP1316		WTR	VW	LR	ZONE II-LARGE RESERVOIR (SUMP NO. 3)	NEW				Yes
LRP1317		WTR	VW	LR	ZONE II-LARGE RESERVOIR (SUMP NO. 4)	NEW				Yes
LRP1318		WTR	VW	LR	ZONE II-LARGE RESERVOIR (SUMP NO. 5)	NEW				Yes
LRP1319		WTR	VW	LR	ZONE II-LARGE RESERVOIR	NEW				Yes
LRP1320		WTR	VW	LR	DESILTING BASIN #1-CHAMBER 1 (W POND)	NEW				Yes
LRP1321		WTR	VW	LR	DESILTING BASIN #2-CHAMBER 2 (N POND)	NEW				Yes
LRP1322		WTR	VW	LR	DESILTING BASIN #3-CHAMBER 3 (S POND)	NEW				Yes
NOG1323		WTR	NE	NO	WETLANDS PROJECT SOUTH WELL	OK	Yes			
NOG1324		WTR	NE	NO	WETLANDS PROJECT CENTRAL WELL	OK	Yes			
NOG1325	b1219aca1	WTR	NE	NO	WETLANDS PROJECT	OK	Yes			
NOS1326	DIZIOGGI	WTR	NE	NO	WETLANDS PROJECT NORTH POINT CONSOLIDA	OK		Yes		
NOS1327		WTR	NE	NO	WETLANDS PROJECT BLACKHAWK POND	OK		Yes		
NOS1328		WTR	NE	NO	WETLANDS PROJECT GOGGINS DRAIN	OK		Yes		
ECS1329		WTR	VW	EC	BINGHAM CREEK, 1ST EMERGENCE OF WATER	OK		Yes		
ECS1330		WTR	VW	EC	AMSTERDAM TUNNEL	OK		Yes		
ECS1331		WTR	VW	EC	FREEMAN DUMP COLLECTION BOX	OK		Yes		
ECS1331		WTR	VW	EC	LION HEAD GULCH COLLECTION BOX	OK		Yes		
ECS1333		WTR	VW	EC	MARKHAM TUNNEL	OK		Yes		
ECS1333		WTR	VW	EC	SMELTER GULCH COLLECTION BOX	OK		Yes		
ECS1334 ECS1335		WTR	VW	EC	TIEWAUKEE COLLECTION BOX	OK		Yes		
ECS1335		WTR	VW	EC	AMSTERDAM TUNNEL BOX	OK		Yes		
SMP1337		WTR	NE NE	SM	SMELTER EAST PROCESS POND	OK				Yes
BFS1338		WTR	VW	BF	PROVO RESERVOIR CANAL-9000 S BING HWY	OK		Yes		165
EPS1339		WTR	VW	EP	PROVO RESERVOIR CANAL-10400 S 3800 W	OK		Yes		
HMS1340		WTR	VW	HM	PROVO RESERVOIR CANAL-10400 S 3800 W	OK				
								Yes		
BDS1341 WJS1342		WTR WTR	VW VW	BD	PROVO RESERVOIR CANAL 10000 S 3200 W	OK OK		Yes		
				WJ	UTAH LAKE DIST CANAL 40400 S 3400 W			Yes		
SJS1343		WTR	VW	SJ	UTAH LAKE DIST CANAL 12000 S	OK		Yes		
RVS1344		WTR	VW	RV	UTAH LAKE DIST CANAL 44000 S	OK		Yes		
BDS1345		WTR	VW	BD	UTAH LAKE DIST CANAL-14980 S 2200 W	OK		Yes		
WJS1346		WTR	VW	WJ	UTAH & SALT LAKE CANAL-9000 S 2050 W	OK		Yes		
SJS1347		WTR	VW	SJ	UTAH & SALT LAKE CANAL-10400 S 1300 W	OK		Yes		
RVS1348		WTR	VW	RV	UTAH & SALT LAKE CANAL-12600 S	OK		Yes		
BDS1349		WTR	VW	BD	UTAH & SALT LAKE CANAL-14645 S CAMP W	OK		Yes		
WJS1350		WTR	VW	WJ	SOUTH JORDAN CANAL-9000 S 1800 W	OK		Yes		
SJS1351		WTR	VW	SJ	SOUTH JORDAN CANAL-10420 S 1200 W	OK		Yes		

Manual	Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
MINISTRESS MINISTRESS WITE	RVS1352		WTR	VW	RV	SOUTH JORDAN CANAL-12600 S	OK		Yes		
BMS 1586	BDS1353		WTR	VW	BD	SOUTH JORDAN CANAL-14660 S 1690 W	OK		Yes		
BASS WTR TV CF CARR CRUE FEES MR SHAFT OK Ves Ves Ves Ves No.	BYS1354	BCSPC	WTR	VW	BY	BARNEY'S CANYON PIT WTR TO COPPERTON	OK		Yes		
NOS1356 WTR NE NO BIPCENTRAL (VETLANDS PROLECT) OK Yes 'Ves '	BMS1355		WTR	VW	ВМ	CARR FORK EXHAUST SHAFT	OK	Yes	Yes		
NOS-1108	BMS1356		WTR	TV	CF	CARR FORK FRESH AIR SHAFT	OK	Yes	Yes		
WIS 1390	NOS1357		WTR	NE	NO	BHP CENTRAL (WETLANDS PROJECT)	OK	Yes	Yes		
WIST WIR NE	NOS1358		WTR	NE	NO	BHP EAST (WETLANDS PROJECT)	OK	Yes	Yes		
WTS 1385 WTR	WTS1359		WTR	NE	WT	CORRIGATED PIPE DISCHARGING TO SM RTN CL	OK	Yes	Yes		
WITH NE	WTS1360		WTR	NE	WT	HDPE PIPE DISCHARGTING TO CANAL	OK	Yes	Yes		
NES1936	WTS1361		WTR	NE	WT	CORREGATED PIPE DISCHARGING TO CANAL	OK	Yes	Yes		
NES1365 WTR NE SM PRAVAR OZ PLANT	WTS1362		WTR	NE	WT	DISCHARGE THROUGH DIKE	OK	Yes	Yes		
NES1365 WTR NE SM PRAVAR OZ PLANT	NES1363		WTR	NE	SM	PRAXAIR O2 PLANT	OK	Yes			
NEST 366	NES1364		WTR	NE	SM	PRAXAIR 0X PLANT	OK	Yes			
MATESIAN WIR NE	NES1365		WTR	NE	SM	PRAXAIR O2 PLANT	OK	Yes			
NEM1388 ATESNAY WIR NE	NES1366		WTR	NE	SM	PRAXAIR O2 PLANT	OK	Yes			
MSD1399 SEC 21 ADT WTR NE	NEM1367	ARTESIAN 1	WTR	NE	MG	ARTESIAN WELL - SECTION 21	OK	Yes		Yes	
WTS1370 WTR	NEM1368	ARTESIAN 2	WTR	NE	MG	ARTESIAN WELL - SECTION 21	OK	Yes		Yes	
WTS 1371 WTR	MGD1369	SEC 21 ADT	WTR	NE	MG	PART OF ARETESIAN WELL SYSTEM - SEC 21	OK			Yes	
SLS1372 WTR	WTS1370		WTR	NE	WT	CORRIGATED PIPE DISC TO SM RETURN CANAL	OK		Yes		
WTS1373	WTS1371		WTR	NE	WT	CORRIGATED PIPE DISC TO SM RETURN CANAL	OK		Yes		
WTS 1744 WTR	SLS1372		WTR	NE	SL	SPRING DISH AFTER PASSING THRU CULVERT	OK		Yes		
WTS 1744 WTR	WTS1373		WTR	NE	WT	SPRING AT BASE OF OUTLET WORKS	OK		Yes		
TLS1375											
NESI37F											
SL51377 WTR						PRAXAIR O2 PLANT		Yes			
SL51378 WTR NE SM WEST POND - HAZLETON PUMP OK Yes NET SL51379 WTR NE SM WEST POND - FENCE POST OK Yes NET SL51379 WTR NE Ground water well (tallings area OK Yes NET SL51379 WTR NE Ground water well (tallings area OK Yes NET SL513814 WTR NE Ground water well (tallings area OK Yes NET SL513815 WTR NE Ground water well (tallings area OK Yes NET SL513815 WTR NE Ground water well (tallings area OK Yes NET SL513815 WTR NE STOWN water well (tallings area OK Yes NET SL513820 WTR NE LS Ground water well (tallings area OK Yes NET SL513820 WTR NE LS Ground water well (tallings area OK Yes NET SL513834 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE Ground water well (tallings area OK Yes NET SL513835 WTR NE SM JAP SPRINGS NO 1 OK Yes NET SL513835 WTR NE SM JAP SPRINGS NO 1 OK Yes Yes NET SL513835 WTR NE SM JAP SPRINGS NO 1 OK Yes NET SL513835 WTR NE SM JAP SP									Yes		
SL1379 WTR NE											
NET1380A WTR NE ground water well (talings area OK Yes NET1380B WTR NE ground water well (talings area OK Yes NET13814 WTR NE ground water well (talings area OK Yes NET13818 WTR NE ground water well (talings area OK Yes NET13818 WTR NE LS ground water well (talings area OK Yes NET1382B WTR NE LS ground water well (talings area OK Yes NET1382B WTR NE LS ground water well (talings area OK Yes NET1382B WTR NE LS ground water well (talings area OK Yes NET1383B WTR NE Ground water well (talings area OK Yes NET1383B WTR NE Ground water well (talings area OK Yes NET1383B WTR NE Ground water well (talings area OK Yes NET1383B WTR NE Ground water well (talings area OK Yes NET1384B WTR NE Ground water well (talings area OK Yes NET1384B WTR NE Ground water well (talings area OK Yes NET1385B WTR NE Ground water well (talings area OK Yes NET1385B WTR NE Ground water well (talings area OK Yes NET1385B WTR NE Ground water well (talings area OK Yes NET1385B WTR NE Ground water well (talings area OK Yes NET1385B WTR NE Ground water well (talings area OK Yes NET1385B WTR NE Ground water well (talings area OK Yes NET1385B WTR NE Ground water well malings area OK Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes											
NET1380B WTR NE ground water well (tailings area OK Yes NET1381A WTR NE ground water well (tailings area OK Yes NET1381B WTR NE ground water well (tailings area OK Yes NET1381B WTR NE LS ground water well (tailings area OK Yes NET1382A WTR NE LS ground water well (tailings area OK Yes NET1382A WTR NE LS ground water well (tailings area OK Yes NET1383A WTR NE LS ground water well (tailings area OK Yes NET1383A WTR NE ground water well (tailings area OK Yes NET1383A WTR NE ground water well (tailings area OK Yes NET1384A WTR NE ground water well (tailings area OK Yes NET1384A WTR NE ground water well (tailings area OK Yes NET1384B WTR NE ground water well (tailings area OK Yes NET1384B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE Ground water well tailings area OK Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes NET1385B WTR NE SM SMELTER STROM DRAINAGE OK Yes NET1393B WTR NE SM SMELTER STROM DRAINAGE OK Yes NET1393B WTR NE SM SMELTER STROM DRAINAGE OK Yes								Yes			
NET1381A WTR NE ground water well (tailings area OK Yes NET1381B WTR NE ground water well (tailings area OK Yes NEL1382A WTR NE LS ground water well (tailings area OK Yes NEL1382B WTR NE LS ground water well (tailings area OK Yes NEL1382C WTR NE LS ground water well (tailings area OK Yes NET1383B WTR NE LS ground water well (tailings area OK Yes NET1384A WTR NE ground water well (tailings area OK Yes NET1385A WTR NE ground water well (tailings area OK Yes NET1386A WTR NE ground water well (tailings area											
NET1381B											
NEL1382A WTR NE											
NEL1382B WTR NE ground water well (tailings area OK Yes NEL1382C WTR NE LS ground water well (tailings area OK Yes NET1383A WTR NE ground water well (tailings area OK Yes NET1384B WTR NE ground water well (tailings area OK Yes NET1384B WTR NE ground water well (tailings area OK Yes NET1385A WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes	NEL1382A		WTR	NE	LS		OK	Yes			
NEL1382C WTR NE LS ground water well (tailings area OK Yes NET1383A WTR NE ground water well (tailings area OK Yes NET1383B WTR NE ground water well (tailings area OK Yes NET1384A WTR NE ground water well (tailings area OK Yes NET1384B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water wel											
NET1383A WTR NE ground water well (tailings area OK Yes NET1383B WTR NE ground water well (tailings area OK Yes NET1384B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE MG Ground water wel					LS						
NET1383B WTR NE ground water well (tailings area OK Yes NET1384A WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE MG Ground water well (tailings area OK Yes NEM1387 WTR NE SM <											
NET1384A WTR NE ground water well (tailings area OK Yes NET1384B WTR NE ground water well (tailings area OK Yes NET1385A WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE MG Ground water well (tailings area OK Yes NET1386B WTR NE SM											
NET1384B WTR NE ground water well (tailings area OK Yes NET1385A WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NEM1387 WTR NE ground water well (tailings area OK Yes NEM1387 WTR NE MG Ground water well (tailings area OK Yes SM51388 WTR NE SM KESSLER CREEK NORTH OK Yes SM51389 WTR NE SM JAP SPRINGS NO.1 OK Yes SM51391 WTR NE SM											
NET1385A WTR NE ground water well (tailings area OK Yes NET1385B WTR NE ground water well (tailings area OK Yes NET1386A WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NEM1387 WTR NE MG Ground water well (tailings area OK Yes NEM1387 WTR NE MG Ground water well (tailings area OK Yes SMS1388 WTR NE SM SMELTER STROM DRAINAGE OK Yes SMS1390 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1391 WTR <td></td>											
NET1385B WTR NE ground water well (tailings area OK Yes NET1386A WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NEM1387 WTR NE MG Ground water well magna golf OK Yes SMS1388 WTR NE SM KESSLER CREEK NORTH OK Yes SMS1389 WTR NE SM SMELTER STROM DRAINAGE OK Yes SMS1390 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes NET1393A WTR NE SM JAP SPRINGS NO. 3 OK <td></td>											
NET1386A WTR NE ground water well (tailings area OK Yes NET1386B WTR NE ground water well (tailings area OK Yes NEM1387 WTR NE MG Ground water well magna golf OK Yes SM51388 WTR NE SM KESSLER CREEK NORTH OK Yes SM51389 WTR NE SM SMELTER STROM DRAINAGE OK Yes SMS1390 WTR NE SM JAP SPRINGS NO. 1 OK Yes SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes NET1393A WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE							OK				
NET1386B WTR NE ground water well (tailings area OK Yes NEM1387 WTR NE MG Ground water well magna golf OK Yes SMS1388 WTR NE SM KESSLER CREEK NORTH OK Yes SMS1389 WTR NE SM SMELTER STROM DRAINAGE OK Yes SMS1390 WTR NE SM JAP SPRINGS NO. 1 OK Yes SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1392 WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE											
NEM1387 WTR NE MG Ground water well magna golf OK Yes SMS1388 WTR NE SM KESSLER CREEK NORTH OK Yes SMS1389 WTR NE SM SMELTER STROM DRAINAGE OK Yes SMS1390 WTR NE SM JAP SPRINGS NO. 1 OK Yes SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1392 WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE											
SMS1388 WTR NE SM KESSLER CREEK NORTH OK Yes SMS1389 WTR NE SM SMELTER STROM DRAINAGE OK Yes SMS1390 WTR NE SM JAP SPRINGS NO. 1 OK Yes SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1392 WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New proces					MG						
SMS1389 WTR NE SM SMELTER STROM DRAINAGE OK Yes SMS1390 WTR NE SM JAP SPRINGS NO. 1 OK Yes SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1392 WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New process lab kitchen sink OK Yes									Yes		
SMS1390 WTR NE SM JAP SPRINGS NO. 1 OK Yes SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1392 WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New process lab kitchen sink OK Yes											
SMS1391 WTR NE SM JAP SPRINGS NO. 2 OK Yes SMS1392 WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New process lab kitchen sink OK Yes											
SMS1392 WTR NE SM JAP SPRINGS NO. 3 OK Yes NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New process lab kitchen sink OK Yes											
NET1393A WTR NE ground water well (tailings area OK Yes NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New process lab kitchen sink OK Yes											
NET1393B WTR NE ground water well (tailings area OK Yes ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New process lab kitchen sink OK Yes											
ARD1394 WTR NE New process lab drinking fountian OK Yes ARD1395 WTR NE New process lab kitchen sink OK Yes											
ARD1395 WTR NE New process lab kitchen sink OK Yes											
					SM	•					Yes

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
SMP1397		WTR	NE	SM	WEST PROCESS POND - EAST CELL	OK				Yes
SMP1398		WTR	NE	SM	EAST PRCOESS POND - NORTH CELL	OK				Yes
SMP1399		WTR	NE	SM	EAST PROCESS POND - SOUTH CELL	OK				Yes
SMP1400		WTR	NE	SM	EAST PROCESS POND - NORTH CELL SUMP	OK				Yes
SMP1401		WTR	NE	SM	EAST PROCESS POND - SOUTH CELL SUMP	OK				Yes
SMP1402		WTR	NE	SM	EAST PROCESS POND SUMP	OK				Yes
SMP1403		WTR	NE	SM	GRANULATION COOLING TOWER-LEAK DET. SUMP	OK				Yes
SMP1404		WTR	NE	SM	ACID PLANT COOLING TWR - LEAK DET. SUMP	OK				Yes
SMP1405		WTR	NE	SM	POWERHOUSE COOLING WATER BASIN	OK				Yes
SMP1406		WTR	NE	SM	ACID PLANT PUMPHOUSE-LEAK DETECTION SUMP	OK				Yes
SMP1407		WTR	NE	SM	POWERHOUSE PUMPHOUSE LEAK DETECTION SUMP	OK				Yes
SMP1408		WTR	NE	SM	GRANULATION PUMPHOUSE LEAK DETECT SUMP	ОК		2		Yes
SMP1409		WTR	NE	SM	WATER JACKET PUMPHOUSE LEAK DETECT SUMP	OK				Yes
SMP1410		WTR	NE	SM	VEHICLE WASH LEAK DETECTION SUMP	OK				Yes
SMP1411		WTR	NE	SM	VEHICLE REPAIR SHOP LEAK DETECTION SUMP	ОК				Yes
CFS1412		WTR	TV	CF	TROUT POND (BIG SPRINGS)	OK		Yes		
CFS1413		WTR	TV	CF	CARR FORK DRAINAGE (PROPERTY LINE)	OK		Yes		
NOG1414	b1219aca3	WTR	NE	NO	WETLANDS PROJECT	OK	Yes			
NOG1414 NOG1415	b1219aca3	WTR	NE	NO	WETLANDS PROJECT WETLANDS PROJECT	OK	Yes			
	DIZIBACAZ	WTR				OK				
MCP1416			NE	MC	Magna process water reservoir #3 ps infl					Yes
BNP1417		WTR	NE	BN	BONNEVILLE PROCESS WATER RESERVOIR	OK				Yes
BNP1418		WTR	NE	BN	LAST CHANCE DITCH PUMP STATION - BONNEVI	OK				Yes
BNS1419		WTR	NE	BN	FINAL CATCH POND - BONNEVILLE (LV)	OK		Yes		
PCP1420		WTR	NE	PC	POWER PLANT COOLING TOWER NO. 1	OK				Yes
PCP1421		WTR	NE	PC	POWER PLANT COOLING TOWER NO. 2	OK				Yes
PCP1422		WTR	NE	PC	POWER PLANT COOLING TOWER NO. 3	OK				Yes
PCP1423		WTR	NE	PC	POWER PLANT COOLING TOWER NO. 4	OK				Yes
PCP1424		WTR	NE	PC	POWER PLANT SERVICE STATION COOLING TWR	OK				Yes
MDP1425		WTR	VW	MD	MIDAS POND-LEACH WATER COLLECTION POND	OK				Yes
TLS1426	1	WTR	NE	TL	TPS #1 - TAILINGS POND SEEP	OK		Yes		
TLS1427	2	WTR	NE	TL	TPS #2 - TAILINGS POND SEEP	DRY		yes		
TLS1428	3	WTR	NE	TL	TPS #3 - TAILINGS POND SEEP	DRY		yes		
TLS1429	4	WTR	NE	TL	TPS #4 - TAILINGS POND SEEP	DRY		yes		
TLS1430	5	WTR	NE	TL	TPS #5 - TAILINGS POND SEEP	DRY		yes		
TLS1431	6	WTR	NE	TL	TPS #6 - TAILINGS POND SEEP	OK		Yes		
TLS1432	7	WTR	NE	TL	TPS #7 - TAILINGS POND SEEP	DRY		yes		
TLS1433	8	WTR	NE	TL	TPS #8 - TAILINGS POND SEEP	Burried		yes		
TLS1434	9	WTR	NE	TL	TPS #9 - TAILINGS POND SEEP	Burried		yes		
TLS1435	10	WTR	NE	TL	TPS #10 - TAILINGS POND SEEP			yes		
TLP1436		WTR	NE	TL	TOE COLLECTION DITCH NEAR 007 OUTFALL	OK				Yes
SMP1437		WTR	NE	SM	HYDROMET PLANT-LIME STORAGE AREA SUMP	OK				Yes
SMP1438		WTR	NE	SM	HYDROMET PLANT-LIME AREA SUMP	OK				Yes
SMP1439		WTR	NE	SM	HYDROMET PLANT-COPPER PRECIP. AREA SUMP	OK				Yes
SMP1440		WTR	NE	SM	HYDROMET PLANT-NAHS STORAGE AREA SUMP	OK				Yes
SMP1441		WTR	NE	SM	HYDROMET PLANT-ACID LEACH AREA SUMP	OK				Yes
SMP1442		WTR	NE	SM	HYDRO PL-BISMUTH PRECIP FILTER AREA SUMP	OK				Yes
SMP1443		WTR	NE	SM	HYDRO PLT-BISUMTH PRECIP THICKENER SUMP	OK				Yes
SMP1444		WTR	NE	SM	HYDROMET PLT-CU PRECIP FILTER AREA SUMP	OK				Yes
SMP1445		WTR	NE	SM	HYDROMET PLT-AS/CD PRECIP THICKENER SUMP	OK				Yes
SMP1446		WTR	NE	SM	HYDRO PLT-IRON PRECIP REACTOR AREA SUMP	OK				Yes
SMP1447		WTR	NE	SM	HYDRO PLT-REFINERY BLEEDS STORAGE SUMP	OK				Yes
SMP1448		WTR	NE	SM	HYDROMET PLANT-LIME SLAKING AREA SUMP	OK				Yes
01454440		WTR	NE	SM	HYDROMET PLANT-LIME UNLOADING AREA SUMP	OK				Yes
SMP1449				· · · · ·	TITE TO METTER ATTENDED ONE ON THE TREATMENT OF THE					103

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
SMP1451		WTR	NE	SM	HYDRO PLT-SULFURIC ACID TRK UNLOAD SUMP	OK				Yes
SMP1453		WTR	NE	SM	HYDRO PLT-SODIUM BISULFATE TRUCK UNLOAD	OK				Yes
SMP1454		WTR	NE	SM	ANODE CASTING AREA-ANODE COOLING WATER	OK				Yes
SMP1455		WTR	NE	SM	NEW ACID PLANT-FSG AREA SUMP	OK				Yes
SMP1456		WTR	NE	SM	NEW ACID PLANT-FCG AREA SUMP	OK				Yes
SMP1457		WTR	NE	SM	NEW ACID PLANT-STRONG ACID AREA SUMP	OK				Yes
SMP1458		WTR	NE	SM	NEW ACID PLANT-ESP AREA SUMP	OK				Yes
PCP1459		WTR	NE	PC	POWER PLANT MAKEUP WATER STORAGE	OK				Yes
NEL1460		WTR	NE	LS	OLD ABANDONED WELL THAT WAS DUG UP	AB	Yes			
SMP1461		WTR	NE	SM	GRANULATION CLARIFIER	OK				Yes
SMP1462		WTR	NE	SM	GRANULATION TANKS	OK				Yes
SMP1463		WTR	NE	SM	GRANULATION COOLING TOWER BASIN	OK				Yes
SMP1464		WTR	NE	SM	SLAG COOLING AREA (DRAINAGE TROUGH)	OK				Yes
SMP1465		WTR	NE	SM	POWERHOUSE COOLING BASIN-NONCONTACT SYS	OK				Yes
SMP1466		WTR	NE	SM	FRESH WATER RESERVOIRS (TWO WEST CELLS)	OK				Yes
SMP1467		WTR	NE	SM	SMELTER FIRE WATER POND	OK				Yes
NEL1468		WTR	NE	TL	3" Well Abandoned (landfill)	ABAND				
TLP1469		WTR	NE	TL	Tailings toe drain	OK				Yes
NES1470		WTR	NE	SM	Old provo shoreline	OK	Yes			
NER1471		WTR	NE	RF	Old provo shoreline	OK	Yes			
NES1472A		WTR	NE	SM	SW corner of kessler cyn.	OK	Yes			
NES1472B		WTR	NE	SM	SW corner of kessler cyn.	OK	Yes			
SMP1473		WTR	NE	SM	East process pump collection	OK				Yes
BKG1474A		WTR	NE	BK	West side of black rk.cyn.	OK	Yes			
BKG1474B		WTR	NE	BK	West side of black rk.cyn.	OK	Yes			
BKG1474C		WTR	NE	BK	West side of black rk.cyn.	OK	Yes			
NES1475A		WTR	NE	SM	kessler cyn. so. of landfill	OK	Yes			
NES1475B		WTR	NE	SM	kessler cyn. so. of landfill	OK	Yes			
BRP1476		WTR	VW	BR	Bluewater south rep. collection	OK				Yes
SMS1477		WTR	NE	SM	Smelter Slag Seep	OK		Yes		
NEA1478		WTR	NE	AR	South of Arthur Central Shops	OK	Yes			
NEA1479		WTR	NE	AR	Coult of Arthur Central Onops	Oit	103			
MCP1480	Fly Ash	EPA	NE	MC	FLY ASH DISPOSAL	OK				Yes
MCP1480A	Fly Ash	EPA	NE	MC	FLY ASH DISPOSAL -SOLIDS	OK				Yes
MCP1480S	Fly Ash	EPA	NE	MC	FLY ASH DISPOSAL -SOLIDS	OK				Yes
MCP1480T	Fly Ash	EPA	NE	MC	FLY ASH DISPOSAL -SOLIDS	OK				Yes
SMP1481	Slag Tails	EPA	NE NE	MC	SLAG TAILINGS	OK				Yes
SMP1481A	Slag Tails	EPA	NE	MC	SLAG TAILINGS -SOLIDS	OK				Yes
SMP1481S	Slag Tails	EPA	NE	MC	SLAG TAILINGS -SOLIDS	OK				Yes
SMP1481T	Slag Tails	EPA	NE	MC	SLAG TAILINGS -SOLIDS	OK				Yes
SMP1482	Olag Tallo	EPA	NE	MC	SMELTER HYDROMET TAILS	OK				Yes
SMP1482A		EPA	NE	MC	SMELTER HYDROMET TAILS-SOLIDS	OK				Yes
SMP1482S		EPA	NE	MC	SMELTER HYDROMET TAILS-SOLIDS	OK				Yes
SMP1482T		EPA	NE	MC	SMELTER HYDROMET TAILS-SOLIDS	OK				Yes
BCP1483		EPA	NE NE	MC	COPPERTAON TAILINGS	OK				Yes
BCP1483A		EPA	NE	MC	COPPERTAON TAILINGS COPPERTAON TAILINGS-SOLIDS	OK				Yes
BCP1483S		EPA	NE NE	MC	COPPERTAON TAILINGS-SOLIDS COPPERTAON TAILINGS-SOLIDS	OK				Yes
BCP1483T		EPA	NE NE	MC	COPPERTAON TAILINGS-SOLIDS COPPERTAON TAILINGS-SOLIDS	OK OK				Yes
MCP1484		EPA	NE NE	MC	MAGNA TAILINGS MAGNA TAILINGS	OK OK				
		EPA EPA	NE NE	MC		OK OK				Yes
MCP1484A					MAGNA TAILINGS SOLIDS					Yes
MCP1484S		EPA	NE	MC	MAGNA TAILINGS SOLIDS	OK				Yes
MCP1484T		EPA	NE	MC	MAGNA TAILINGS-SOLIDS	OK				Yes
TLP1485		EPA	NE	MC	EAST CYCLONE UNDERFLOW	OK				Yes
TLP1485A		EPA	NE	MC	EAST CYCLONE UNDERFLOW -SOLIDS	OK				Yes

Site ID	Alias Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
TLP1485S	EPA	NE	MC	EAST CYCLONE UNDERFLOW -SOLIDS	OK				Yes
TLP1485T	EPA	NE	MC	EAST CYCLONE UNDERFLOW -SOLIDS	OK				Yes
TLP1486	EPA	NE	MC	EAST CYCLONE OVERFLOW	OK				Yes
TLP1486A	EPA	NE	MC	EAST CYCLONE OVERFLOW-SOLIDS	OK				Yes
TLP1486S	EPA	NE	MC	EAST CYCLONE OVERFLOW-SOLIDS	OK				Yes
TLP1486T	EPA	NE	MC	EAST CYCLONE OVERFLOW-SOLIDS	OK				Yes
TLP1487	EPA	NE	MC	WEST CYCLONE UNDERFLOW	OK				Yes
TLP1487A	EPA	NE	MC	WEST CYCLONE UNDERFLOW -SOLIDS	OK				Yes
TLP1487S	EPA	NE	MC	WEST CYCLONE UNDERFLOW -SOLIDS	OK				Yes
TLP1487T	EPA	NE	MC	WEST CYCLONE UNDERFLOW -SOLIDS	OK				Yes
TLP1488	EPA	NE	MC	WEST CYCLONE OVERFLOW	OK				Yes
TLP1488A	EPA	NE	MC	WEST CYCLONE OVERFLOW -SOLIDS	OK				Yes
TLP1488S	EPA	NE	MC	WEST CYCLONE OVERFLOW -SOLIDS	OK				Yes
TLP1488T	EPA	NE	MC	WEST CYCLONE OVERFLOW -SOLIDS	OK				Yes
SMP1489	WTR	NE	SM	Acid plant cooling tower	OK				Yes
NET1490	WTR	NE	TL	West of Arthur Stepback Repository	OK	Yes			
NET1491	WTR	NE	TL	West of Arthur Stepback Repository	OK	Yes			
NET1492	WTR	NE	TL	West of Arthur Stepback Repository	OK	Yes			
NEW1495A	EPA	NE	WT	Between sludge pond A & 120ac. pond	OK	Yes			
NEW1495B	EPA	NE	WT	Between sludge pond A & 120ac. pond	OK	Yes			
NEW1495C	EPA	NE	WT	Between sludge pond A & 120ac. pond	OK	Yes			
NEW1496A	EPA	NE	WT	Between sludge pond A & 120ac. pond	OK	Yes			
NEW1496B	EPA	NE	WT	Between sludge pond A & 120ac. pond	OK	Yes			
NEW1496C	EPA	NE	WT	Between sludge pond A & 120ac. pond	OK	Yes			
NES1497A	EPA	NE	SM	Between slag lagoon & 120ac. pond	OK	Yes			
NES1497B	EPA	NE	SM	Between slag lagoon & 120ac. pond	OK	Yes			
NES1498	EPA	NE	SM	Between slag lagoon & 120ac. pond	OK	Yes			
NES1499	EPA	NE	SM	Between slag lagoon & 120ac. pond	OK	Yes			
HMG1500	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1501	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1502	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1503	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1504	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1505	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1506	WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG1507	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1508	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1509	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1511	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1512	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1514	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1527	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
RVG1528	WTR	VW	RV	WELL INVENTORY	OK	Yes			
RVG1532	WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
HMG1535	WTR	vw	НМ	SJ WELL INVENTORY	OK	Yes			
RVG1536	WTR	vw	RV	SJ WELL INVENTORY	OK	Yes			
RVG1537	WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
JRG1539	WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
HMG1540	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1546	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
	WTR	VW	НМ		OK	Yes			
		VW	RV		OK	Yes			
HMG1535 RVG1536 RVG1537 JRG1539 HMG1540	WTR WTR WTR WTR WTR WTR	VW VW VW VW VW VW	HM RV RV JR HM HM HM	SJ WELL INVENTORY	OK OK OK OK OK OK OK	Yes		 	

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
RVG1553		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1555		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
BSG1560		WTR	VW	BS	SJ WELL INVENTORY	OK	Yes			
RVG1569		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
EVG1570		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
RVG1572		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1573		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1576		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1582		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
WJG1587		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
RVG1588		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1591		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1592		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1597		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1601		WTR	VW	RV	SJ WELL INVENTORY	ОК	Yes			
RVG1602		WTR	VW	RV	SJ WELL INVENTORY	ОК	Yes			
RVG1609		WTR	VW	RV	SJ WELL INVENTORY	ОК	Yes			
RVG1616		WTR	VW	RV	SJ WELL INVENTORY	ОК	Yes			
RVG1620		WTR	VW	RV	SJ WELL INVENTORY	ОК	Yes			
RVG1621		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1622		WTR	VW	RV	SJ WELL INVENTORY	ОК	Yes			
HMG1623		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1632		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
RVG1635		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
SJG1637		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1642		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
HMG1643		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
SJG1644		WTR	VW	SJ	SJ WELL INVENTORY	ОК	Yes			
SJG1645		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1648		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1649		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1654		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1655		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1662		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1663		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1666		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1668		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1669		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1670		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
RVG1677		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
SJG1679		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1684		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1687		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1688		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
EPG1689		WTR	VW	EP	SJ WELL INVENTORY	OK	Yes			
SJG1691		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1694		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1698		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1699		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1700		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1700		WTR	VW	SJ	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes			
SJG1708 SJG1717		WTR	VW	SJ	SJ WELL INVENTORY SJ WELL INVENTORY	OK	Yes			
SJG1717 SJG1718		WTR	VW	SJ	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes			
SJG1719		WTR	VW	SJ	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes			
3331119		WIL	VVV	33	30 WELL INVENTORT	UK	168			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
RVG1726		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
HMG1729		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG1730		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
WJG1733		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1736		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1740		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1744		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
SJG1748		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
WJG1753		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
SJG1765		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
SJG1768		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
JRG1773		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
WJG1775		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
JRG1777		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
JRG1781		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
WJG1782		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1788		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
JRG1790		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
WJG1793		WTR	VW	WJ	SJ WELL INVENTORY	ОК	Yes			
WJG1798		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1802		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
B4G1803		WTR	VW	B4	SJ WELL INVENTORY	OK	Yes			
SJG1808		WTR	VW	SJ	SJ WELL INVENTORY	OK	Yes			
WJG1811		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
JRG1815		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
WJG1828		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1833		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1840		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
JRG1843		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
WJG1851		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1853		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
HMG1856		WTR			Herriman irrigation well	OK	yes			
WJG1866		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1952		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1957		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1961		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
JRG1963		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
WJG1968		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1969		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
JRG1974		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
WJG1976		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1977		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
WJG1979		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
JRG1985		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
RVG1986		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
BDG1989		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG1992		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
RVG1994		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1996		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
RVG1997		WTR	VW	RV	SJ WELL INVENTORY	OK	Yes			
BDG1998		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
WJG1999		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
BDG2000		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
WJG2000		WTR	VW	WJ	OU TYLLE HAVEIALOICE	OK	Yes			
***************************************		AA 117	v v v	V V J		ON	100			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
BDG2001		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
JRG2002		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
BDG2005		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2006		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2009		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2016		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2017		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2018		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2019		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
WJG2020		WTR	VW	WJ	SJ WELL INVENTORY	OK	Yes			
BDG2025		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2026		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2027		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2028		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2029		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
HMG2032		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
BDG2034		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2035		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2036		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2038		WTR	VW	НМ		OK	Yes			
HMG2038		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2039		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2040		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2041		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2042		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2043		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2044		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2046		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2047		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2051		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2052		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2053		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2055		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2056		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2057		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2058		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2061		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2062		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2063		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2064		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2065		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2066		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2067		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2068		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2070		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2071		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2072		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2072		WTR	VW	HM	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes			
HMG2074		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2074		WTR	VW	HM	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes			
HMG2077		WTR	VW	HM	SJ WELL INVENTORY SJ WELL INVENTORY	OK	Yes			
HMG2078						OK				
		WTR	VW VW	HM HM	S J WELL INVENTORY	OK OK	Yes			
HMG2079		WTR			S J WELL INVENTORY		Yes			
HMG2080		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
HMG2081	-	WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2082		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2083		WTR	VW	20	SJ WELL INVENTORY	OK	Yes			
HMG2084		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2085		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2086		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2087		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2088		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2090		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2093		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2094		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2095		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2097		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2098		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2099		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2100		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2101		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2103		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2105		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2106		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2107		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2108		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2109		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2110		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2111		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2112		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2113		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2114		WTR	VW	НМ	SJ WELL INVENTORY	ОК	Yes			
HMG2115		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2116		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2117		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2118		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2119		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2120		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2122		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2123		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2124		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2127		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2129		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2130		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2131		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2133		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2135		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2136		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2137		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2138		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
SOG2139		WTR	VW	so	SJ WELL INVENTORY	OK	Yes			
HMG2140		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
HMG2141		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2141		WTR	VW	HM	SJ WELL INVENTORY	OK OK	Yes			
HMG2143		WTR	VW	HM	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes			
HMG2144		WTR	VW	HM	SJ WELL INVENTORY	OK OK				
HMG2145			VW	HM	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes			
		WTR WTR	VW	HM HM		OK OK	Yes Yes			
HMG2147		WIK	V VV	HM	SJ WELL INVENTORY	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
HMG2148		WTR	VW	НМ	SJ WELL INVENTORY	ОК	Yes			
HMG2149		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
BDG2151		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2157		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2160		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2162		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2164		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
JRG2168		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
BDG2170		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
JRG2171		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
BDG2172		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2175		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2177		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
JRG2178		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
BDG2180		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
JRG2182		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
BDG2183		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
JRG2198		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
JRG2199		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
EVG2205		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2211		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2213		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
BDG2214		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
BDG2215		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
EVG2216		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
BDG2218		WTR	VW	BD	SJ WELL INVENTORY	OK	Yes			
EVG2222		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2225		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
JRG2227		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
HMG2230		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
EVG2231		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
JRG2232		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
EVG2233		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2234		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2239		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2241		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2242		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2248		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
JRG2253		WTR	VW	JR	SJ WELL INVENTORY	OK	Yes			
EVG2257		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2259		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2276		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
EVG2284		WTR	VW	EV	SJ WELL INVENTORY	OK	Yes			
HMG2301		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2302		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2303		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
HMG2304 HMG2307		WTR WTR	VW VW	HM HM	SJ WELL INVENTORY SJ WELL INVENTORY	OK OK	Yes Yes			
HMG2307 HMG2309		WTR		HM HM		OK OK				
			VW		SJ WELL INVENTORY	OK OK	Yes			
HMG2310		WTR	VW VW	HM	SJ WELL INVENTORY		Yes			
HMG2311		WTR		HM	SJ WELL INVENTORY	OK	Yes			
HMG2313		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
SOG2314		WTR	VW	SO	SJ WELL INVENTORY	OK	Yes			
SOG2315		WTR	VW	SO	SJ WELL INVENTORY	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
OG2317		WTR	VW	so	SJ WELL INVENTORY	OK	Yes			
OG2318		WTR	VW	so	SJ WELL INVENTORY	OK	Yes			
OG2319		WTR	VW	so	SJ WELL INVENTORY	OK	Yes			
MG2320		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
OG2321		WTR	VW	so	SJ WELL INVENTORY	OK	Yes			
OG2322		WTR	VW	so	SJ WELL INVENTORY	OK	Yes			
MG2323		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
MG2326		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
MG2327		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
MG2328		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
MG2329		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
MG2330		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
MG2330 MG2331		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
MG2331 MG2332		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2333		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2335		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2336		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2337		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
MG2339		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2340		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
MG2341		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
MG2344		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2345		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2346		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2348		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2349		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
/IG2350		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
/IG2353		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
/IG2355		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
/IG2356		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
1G2359		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
MG2360		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
MG2361		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
//G2362		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
1G2362 1G2363		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
				HM		OK				
1G2364		WTR	VW		SJ WELL INVENTORY		Yes			
/IG2367		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
1G2370		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
1G2371		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
1G2372		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
MG2373		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
G2385		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
G2387		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
G2388		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
G2391		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
G2395		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
IG2401		WTR	VW	HM	SJ WELL INVENTORY	OK	Yes			
G2403		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
IG2412		WTR	VW	НМ	SJ WELL INVENTORY	OK	Yes			
T2452	Relief wel	WTR			Dewatering well near east cyclone pad	OK	Yes			Yes
S2514		EPA	NE	TL	Mud Flat in Tooele County	OK	Yes	Yes		
S2515		EPA	NE	TV	Fishing Creek in Tooele County at Termin	OK	Yes	Yes		
S2516		EPA	NE	TV	Six Mile Creek in Tooele County at Termi	OK	Yes	Yes		
S2510		EPA	NE	BE	Bear River in Box Elder Co. near Terminu	OK	Yes	Yes		

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
BES2518		EPA	NE	BE	Weber River in Box Elder Co. @ Terminus	OK	Yes	Yes		
DVS2519		EPA	NE	DV	Pond east of Farmington Bay, North bank	OK	Yes	Yes		
DVS2520		EPA	NE	DV	Oil Drain near refinery in Davis Co.	OK	Yes	Yes		
DVS2521		EPA	NE	DV	Jordan River @ Redwood Rd.	OK	Yes	Yes		
LSC2522		EPA	NE	LS	Lee Creek @ 13th South.	OK	Yes	Yes		
TVS2524		EPA	NE	TV	Timple springs pond inlet	ОК	Yes	Yes		
TVS2525		EPA	NE	TV	Timpie springs pond on the west side	OK	Yes	Yes		
TVS2526		EPA	NE	TV	Timpie Springs, small pool north of pond	OK	Yes	Yes		
TVS2527		EPA	NE	TV	Drainage, north of Timpie Spring pond	OK	Yes	Yes		
TVS2528		EPA	NE	TV	Timple Springs, Northeast bank of pond	OK	Yes	Yes		
TVS2529		EPA	NE	TV	Mill Pond in Tooele County South of I-80	OK	Yes	Yes		
USC2530		EPA	NE	US	Utah Salt Lake canal at 3500 south	OK	Yes	Yes		
SLP2531		EPA	NE NE	SL	Main line to smelter from s17 ps, fm val	OK	Yes			Yes
				SM	• •	OK OK				
SMP2532		EPA	NE		Hazelton pump discharge at return canal		Yes			Yes
MCP2533		EPA	NE	MC	#1 pumpstat. discharge at magna reservoi	OK				Yes
MCP2534		EPA	NE	MC	#4 pump station. discharge at magna reservoi	OK .				Yes
BYP2535A		EPA	NE	BY	tailings collection box NP6?	removed				Yes
MCP2536		EPA	NE	MC	Copp tails at drop box, above Arthur	OK				Yes
MCP2536A		tails	NE		Copperton tails at splitter box	OK				yes
BYP2537		EPA	NE	BY	31.5" mine H2O discharge @ copp tail dis	OK				Yes
BYP2538		EPA	NE	BY	WDPS discharge @ copp. NP5	OK				Yes
NOS2539		EPA	NE	NO	South A pond on mitigation site	OK		Yes		
NOS2540		EPA	NE	NO	South B pond on mitigation site	OK		Yes		
NOS2541		EPA	NE	NO	West A pond on mitigation site	OK		Yes		
NOS2542		EPA	NE	NO	West B pond on mitigation site	OK		Yes		
CFG2543		EPA	TV	CF	Carr Fork Production Shaft	OK	Yes			
WTP2544	WWTPefflue	EPA	NE	WT	Waste Water Treatment Plant effluent	OK				Yes
NER2545A		EPA	NE	RF	South of Refinrey East of EP pond	OK	Yes			
NER2545B		EPA	NE	RF	South of Refinrey East of EP pond	OK	Yes			
NER2546A		EPA	NE	RF	Refinry, South of PM building	OK	Yes			
NER2546B		EPA	NE	RF	Refinry, South of PM building	OK	Yes			
NER2546C		EPA	NE	RF	Refinry, South of PM building	OK	Yes			
NER2547		EPA	NE	RF	Refinery, West of PM building	OK	Yes			
NER2548		EPA	NE	RF	Refinry, Garfield Townsite	OK	Yes			
NER2549A		EPA	NE	RF	North of refinery near highway 201	OK	Yes			
NER2549B		EPA	NE	RF	North of refinery near highway 201	OK	Yes			
CFS2550	Adamsontun	WTR	TV	CF	Adamson Tunnel Portal, Pine Canyon	OK		Yes		
RVG2551	Riverton C	WTR	RV	VW	Rivert city well at 13760 so. 3250 we. h	OK	Yes		Yes	
WTS2552	smel ret c	WTR	NE NE	WT	Smelter Return Canal @ Hwy 202	OK	Yes	Yes		
NER2553	Sillerier	WTR	NE NE	RF		OK	Yes	165		
		WTR			Fromer Garfield townsite south end					
NER2554A			NE	RF RF	Fromer Garfield townsite south end	OK	Yes			
NER2554B	Class amond	WTR	NE		Fromer Garfield townsite south end	OK	Yes			·
SMP2555	Slag crush	14/77	NE	SM	Drainage on north east corner of slag cr	OK	Yes			Yes
NES2556	slag crush	WTR	NE	SM	WELL on north east corner of slag cr	OK	Yes			
TLP2558	W C-7 ditc	WTR	NE	TL	West C-7 ditch northeast of #4 pumpstati	OK				Yes
NOS2559	We Cul C-7	WTR	NE	NO	West Culvert (C-7 ditch) Northeast I-80	OK		Yes		
ADS2560	Adamson No	WTR	NE	AD	Adamson Spring North Sump (Gland seal H2O)	OK		Yes		
ADS2561	Adamson So	WTR	NE	AD	Adamson Spring South Sump	OK		Yes		
ECP2562	Cutoff Wal	WTR	VW	EC	Bingham Cutoff Wall	OK				Yes
NOS2563	Wetlands M	WTR	NE	NO	South West Pond-South Outlet	OK		Yes		
NOS2564	Wetlands M	WTR	NE	NO	South West Pond-West Outlet	OK		Yes		
NOS2565				NO	Fort Board Code	OK		Yes		
11032303	Wetlands M	WTR	NE	NO	East Pond-Outlet	UK		165		
NOS2566	Wetlands M Wetlands M	WTR WTR	NE NE	NO NO	North West Pond-West Outlet	OK		Yes		

MOSESSIA Wellers IN WITH N.C. N.C.	Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
New NOS2568	Wetlands M	WTR	NE	NO	South Goggin-Outlet			Yes			
NEWS2570 WITE NEW NEW NEW NEW NEW NEW NEW NEW NEW NE	NEW2569A		WTR	NE	WT	North of Kessler Springs	OK	Yes			
NAMESON WIRE NE WIRE WIRE WIRE WIRE WIRE Michael Keasler Syrrags OK Yes	NEW2569B		WTR	NE	WT	North of Kessler Springs	OK	Yes			
BAGGET Norm Norm	NEW2569C		WTR	NE	WT	North of Kessler Springs	OK	Yes			
Post	NEW2570		WTR	NE	WT	North of Kessler Springs	OK	Yes			
SPEZZIF SE	BMG2571	North Ore	WTR	VW	BM	Mine-North Ore Shoot	OK	Yes			
NESS276	ECP2572			EC		RO concentrate	OK				Yes
TLZ2776	BYP2573			SE	BY		OK		Yes		Yes
TLZ278	NES2574		WTR	NE	SM	REPLACEMENT FOR WELL NES620A	OK	Yes			
PCGG2578 WTR PC PC West of Demonwhise Cale OK Ves WTS WEST WTS NE WT West of Demonwhise Cale OK Ves WTS	TLT2575A		WTR	NE	TL	South east corner of the Tailing Impound	OK	Yes			
WTSS2778 WTR NE WT Meenable Springs OK Yes	TLT2575B		WTR	NE	TL	South east corner of the Tailing Impound	OK	Yes			
WTS2579	PCG2576		WTR	PC	PC	West of Bonneville Gate	OK	Yes			
WTS2590 WTR NE WT side channed identarge to could a GOB	WTS2577		WTR	NE	WT	Kessler Springs	OK		Yes		
WTSS280 No. Name approage WTR NE side charmed discharge into ameliter nature canal near pressure OK Yes TVS2582 WTR CF TV Factory Creek Sping S OK	WTS2578		WTR	NE	WT	wetlands drain to outfall 008					
CFC-0586 Bingham W WTR	WTS2579		WTR	NE	WT	side channel discharge to outfall 008					
TXX5582 WTR CF TV Featory Creek Sping N OK Yes BNP2584 WTR NE 5 Postry Creek Sping N OK Yes BNP2585 WTR NE 1 Bonney/life Inchance poind gone Yes PCP2586 WTR NE 1 Obtained Inchance poind gone Yes NEX2589 WTR NE 1 Obtained Input Security OK Yes NEX2589 WTR NE 1 Strate pring (larance coling lower OK Yes NEX2590 WTR NE 1 Strate pring (larance will (grab sample) OK Yes	WTS2580	No name spring	WTR	NE		side channel discharge into smelter return canal near praxair	OK		YES		
NSSSSS WTR	CFG2581	Bingham W	WTR	TV	CF	Bingham West Dip Tun	OK	Yes			
BNP2894 WTR	TVS2582		WTR	CF	TV	Factory Creek Spng S	OK				Yes
BNP2858 WTR NE	TVS2583		WTR	CF	TV	Factory Creek Spng N	OK				Yes
PCP2886	BNP2584		WTR	NE		Bonneville first chance pump ststion	gone				Yes
Magna fotation plant	BNP2585		WTR	NE		Bonneville last chance pond	gone				Yes
NES2580 WTR NE	PCP2586		WTR	NE		old power house cooling tower	gone				Yes
NES2589 WTR NE MEGASON OK Yes NES2590 WTR NE Spltz spring (base of dead mans cave) OK Yes <td></td> <td></td> <td>WTR</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			WTR				_				
WTS2991 WTR NE Spitz spring (lase of dead mans cave) OK yes	NES2589		WTR	NE				Yes			
WTS2991 WTR NE Spitz spring (lase of dead mans cave) OK yes	NES2590		WTR	NE		smelter parking lot arsnic well (grab sample)	ОК	Yes			
WTS25922 WTR NE Jones spring (east of SR 202) OK yes Yes Yes Yes Yes Yes Yes Yes Yes <th< td=""><td></td><td></td><td>WTR</td><td></td><td></td><td>, ,</td><td>OK</td><td></td><td></td><td></td><td></td></th<>			WTR			, ,	OK				
TLP2593A EPA NE New pond west point discharge OK Yes TLP2593T EPA NE New pond west point discharge OK Yes NER2594 WTR NE RF North of sewage plant 300 yards OK Yes NER2596 WTR NE OK North of sewage plant 300 yards OK Yes NER2596 WTR NE OK North of sewage plant 300 yards OK Yes NET2596 WTR NE Tallings pond dewatering well TLT449C replacement OK Yes			WTR	NE			OK				
TLP2583S EPA NE New pond west point discharge OK Yes TLP2593T EPA NE NEW pond west point discharge OK Yes NER2594 WTR NE RF North of sewage plant 300 yards OK Yes NER2596 WTR NE NE Taliangs pond dewatering well TLT449C replacement OK Yes ECP2599 WTR VW Taliangs pond dewatering well TLT449C replacement OK Pes -	TLP2593A		EPA				OK				Yes
TLP2593T							OK				
NER2594 WTR NE RF North of sewage plant 300 yards OK Yes	TLP2593T		EPA	NE		New pond west point discharge	OK				Yes
NER2595 WTR NE OK Noth of sewage plant 300 yards ok yes NET2596 WTR NE NE Tailings pond dewalering weil TLT49C replacement OK CP2599 WTR VW VW 12828 So. 4400 W. (A. Johnson) OK Yes EMD2601 WTR VW EC Queens Cut-off Wall OK Yes ECP2603 WTR VW EC Disen Cut-off Wall OK Yes ECP2605 WTR VW EC Butterfield 1 Cut-off Wall OK Yes ECP2606 WTR VW EC Subtraction Wall OK Yes ECP2607 WTR VW EC South Saints Rest Cut-off Wall OK Yes ECP2614 WTR VW EC South Saints Rest Cut-off Wall OK </td <td></td> <td></td> <td>WTR</td> <td></td> <td>RF</td> <td></td> <td>OK</td> <td>Yes</td> <td></td> <td></td> <td></td>			WTR		RF		OK	Yes			
NET2969 WTR NE											
ECP2599 WTR VW combined acid wells pipeline OK Yes HMG2600 WTR WW 12828 So. 440 W. (A. Johnson) OK Yes ECP2601 WTR WW EC Quence Cut-off Wall OK Yes ECP2603 WTR WW EC Olsen Cut-off Wall OK Yes ECP2605 WTR WW EC Butterfield 1 Cut-off Wall OK Yes ECP2606 WTR WW EC Castro Flume OK Yes ECP2612 WTR WW EC Castro Flume OK Yes ECP2614 WTR WW EC Saints Rest Cut-off Wall OK Yes ECP2616 WTR WT EC Copper Flume east side collection </td <td>NET2596</td> <td></td> <td>WTR</td> <td>NE</td> <td></td> <td></td> <td>OK</td> <td></td> <td></td> <td></td> <td></td>	NET2596		WTR	NE			OK				
HMG2600 WTR	ECP2599		WTR	VW			OK				Yes
ECP2603 WTR VW EC Olsen Cut-off Wall OK Yes ECP2605 WTR VW EC Butterfield 1 Cut-off Wall OK Yes ECP2606 WTR VW EC Castro Flume OK Yes ECP2612 WTR VW EC South Saints Rest Cut-off Wall OK Yes ECP2614 WTR VW EC Saints Rest Cut-off Wall OK Yes ECP2616 WTR VW EC Copper Flume east side collection OK Yes ECP2618A WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC North Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Co	HMG2600		WTR	VW			OK			Yes	
ECP2603 WTR VW EC Olsen Cut-off Wall OK Yes ECP2605 WTR VW EC Butterfield 1 Cut-off Wall OK Yes ECP2606 WTR VW EC Castro Flume OK Yes ECP2612 WTR VW EC South Saints Rest Cut-off Wall OK Yes ECP2614 WTR VW EC Saints Rest Cut-off Wall OK Yes ECP2616 WTR VW EC Copper Flume east side collection OK Yes ECP2618A WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC North Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Co	ECP2601		WTR	VW	EC		OK				Yes
ECP2606 WTR VW EC Castro Flume OK Yes ECP2612 WTR VW EC South Saints Rest Cut-off Wall OK Yes ECP2614 WTR VW EC Saints Rest Cut-off Wall OK Yes ECP2618 WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC <	ECP2603		WTR	VW		Olsen Cut-off Wall	OK				Yes
ECP2612 WTR VW EC South Saints Rest Cut-off Wall OK Yes ECP2614 WTR VW EC Saints Rest Cut-off Wall OK Yes ECP2616 WTR VW EC Yosemite Cut-off Wall OK Yes ECP2618A WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC North Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2627A WTR WTR W EC Lost Creek Flume east side collection OK Yes ECP2629B WTR </td <td>ECP2605</td> <td></td> <td>WTR</td> <td>VW</td> <td>EC</td> <td>Butterfield 1 Cut-off Wall</td> <td>OK</td> <td></td> <td></td> <td></td> <td>Yes</td>	ECP2605		WTR	VW	EC	Butterfield 1 Cut-off Wall	OK				Yes
ECP2614 WTR VW EC Saints Rest Cut-off Wall OK Yes ECP2616 WTR VW EC Yosemite Cut-off Wall OK Yes ECP2618A WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC North Copper Flume east side collection OK Yes ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC M	ECP2606		WTR	VW	EC	Castro Flume	OK				Yes
ECP2616 WTR VW EC Yosemite Cut-off Wall OK Yes ECP2618A WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627B WTR VW EC Keystone Flume east side collection OK Yes ECP2629B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW	ECP2612		WTR	VW	EC	South Saints Rest Cut-off Wall	OK				Yes
ECP2618A WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC North Copper Flume east side collection OK Yes ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW	ECP2614		WTR	VW	EC	Saints Rest Cut-off Wall	OK				Yes
ECP2618A WTR VW EC Copper Flume east side collection OK Yes ECP2618B WTR VW EC Copper Flume east side collection OK Yes ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC North Copper Flume east side collection OK Yes ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW	ECP2616		WTR	VW	EC	Yosemite Cut-off Wall	OK				Yes
ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC North Copper Flume east side collection OK Yes ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2639B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes	ECP2618A		WTR	VW	EC	Copper Flume east side collection	OK				Yes
ECP2624A WTR VW EC North Copper Flume east side collection OK Yes ECP2624B WTR VW EC North Copper Flume east side collection OK Yes ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2639B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes				VW			OK				
ECP2624B WTR VW EC North Copper Flume east side collection OK Yes ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2639B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes			WTR	vw	EC		OK				
ECP2627A WTR VW EC Lost Creek Flume east side collection OK Yes ECP2627B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2629B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes				VW			OK				
ECP2627B WTR VW EC Lost Creek Flume east side collection OK Yes ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2629B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes											
ECP2629A WTR VW EC Keystone Flume east side collection OK Yes ECP2629B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes											
ECP2629B WTR VW EC Keystone Flume east side collection OK Yes ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes							OK				
ECP2631 WTR VW EC Mascott Tunnel OK Yes LWP2632 WTR VW LW Bingham Tunnel OK Yes ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes						•					
LWP2632 WTR VW LW Bingham Tunnel OK Yes ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes						•					
ECP2648A WTR VW EC North Keystone Flume east side collection OK Yes											
						3					
						•	OK				

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
ECP2651		WTR	VW	EC	Crapo Flume	gone				Yes
ECP2651A		WTR			Crapo east side collection	OK				Yes
ECP2651B		WTR			Crapo east side collection	OK				Yes
ECP2654A		WTR	VW	EC	South Conger 1&2 Flume east side collection	OK				Yes
ECP2654B		WTR	VW	EC	South Conger 1&2 Flume east side collection	OK				Yes
ECP2662A		WTR	VW	EC	Conger 1&2 Flume east side collection	OK				Yes
ECP2662B		WTR	VW	EC	Conger 1&2 Flume east side collection	OK				Yes
ECP2663		WTR			Old Bingham Tunnel at portal surface	OK				Yes
ECP2664		WTR	VW	EC	Old Bingham Tunnel collection box	OK				Yes
ECP2668		WTR	VW	EC	Midas 2 Flume	OK				Yes
ECP2670		WTR	VW	EC	Midas 1 Flume	OK				Yes
ECP2674		WTR	VW	EC	Bluewater 3 Flume	OK				Yes
MDP2679		WTR	VW	MD	Bluewater 1 Flume @ dump toe	OK				Yes
ECP2682		WTR	VW	EC	Bluewater 1/2 Collection Box	OK				Yes
ECP2689		WTR	VW	EC	Dry Fork Tunnel	OK				Yes
COP2701		WTR	VW		Midvalley well	OK	Yes			
ECP2709		WTR	VW	EC	Bluewater 2 Flume	OK				Yes
ECP2710		WTR	VW	EC	5490 Tunnel	ОК				Yes
BMP2711		WTR				ОК				Yes
BMP2712		WTR	VW	EC	Utah Metals Tunnel Pit	ОК				Yes
TVP2713		WTR	TV	ВМ	Utah Metals Tunnel Middle Cny.	ОК				Yes
LWP2714		WTR	VW	LW	Lark Tunnel	OK	Yes			Yes
ECS2715		WTR	VW	EC	Butterfield 1 Seep	OK		Yes		
ECS2716		WTR	VW	EC	Upper Keystone Seep	gone		Yes		
LWS2717		WTR	VW	LW	Lower Keystone Seep	OK		Yes		
ECS2718		WTR	VW	EC	Crapo Seep	gone		Yes		
ECP2719		WTR	***	20	RO plant east rack Permeate	OK			Yes	
BSG2723		WTR	VW	BS	Trans Jordan Landfill	OK	Yes			
B2G2724		WTR	VW	B2	Trans Jordan Landfill	OK	Yes			
BCS2730		WTR	VW	BC	Barneys Tunnel	OK		Yes		
BCS2731		WTR	VW	BC	Alluvial inflow to Barneys Pit	OK		Yes		
BCS2732		WTR	VW	BC	seep composites entering Barneys Cr	OK		Yes		
BCS2733		WTR	***	БО	Barneys canyon pit lake	OK		Yes		
BCS2734		WTR			East barneys pit lake	OK		Yes		
BCP2738		WTR			24" line from pit	OK				Yes
BCP2739		WTR			Copperton reservoir Sampled inside the concentrator	OK				Yes
ECP2740		WTR			Pit pumping	OK				Yes
BCP2741		WTR			Moly clairifyer	OK				Yes
BCP2743		WTR			Copperton clarifyer overflow	OK				Yes
ECP2745		WTR			RO Plant con rack #4 (east new one)	OK				Yes
BCP2750		WTR			Copperton clarifyer underflow	OK				Yes
BCP2751		WTR			Copperton Conc. No. side copper thickner	OK				Yes
BCP2751 BCP2752		WTR			Copperton Conc. Zone 1 retention pond	OK				Yes
BCP2753		WTR				OK				Yes
BCP2754		WIR			Copperton Conc. Zone 2 retention reservoir Copperton Conc. Zone 3 retentoin reservoir	OK				Yes
BCP2755		WTR				OK				Yes
BCP2756		WTR			Copperton Conc. Zone 4 retention pond Copperton Conc. Thickner overflow pump ststion	OK				Yes
BCP2750 BCP2757		WTR				OK				Yes
		WTR			Copperton Conc. West flotation sump	OK OK				Yes
BCP2758		WTR			Copperton Conc. East flotation sump	OK OK				
BCP2759					Copperton Conc. Grind basement main sump					Yes
BCP2760		WTR			Copperton Conc. Moly sump 350 PP 57	OK				Yes
BCP2761		WTR			Copperton Conc. Moly sump 2350 PP 165	OK				Yes
BCP2762		WTR			Copperton Conc. Moly sump 350 PP 46	OK	 V			Yes
NES2763		WTR			Slag pond S.W. slag pile well	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NES2764		WTR			Slag pond S.W. slag pile well	OK	Yes			
NES2765		WTR			Slag pond S.W. slag pile well	OK	Yes			
NES2766		WTR			Slag pond S.W. slag pile well	OK	Yes			
NES2767		WTR			Slag pond S.W. slag pile well	OK	Yes			
NES2768		WTR			Slag pond S.W. slag pile well	OK	Yes			
SLS2769		WTR			Slag pond Hansen spring	OK	Yes			
SLS2770		WTR			Slag pond combined spring waterflow	OK	Yes			
ECP2771		WTR			R.O. plant west rack concentrate #3	OK	Yes			
ECP2772		WTR			R.O. plant west rack permeate #3	OK	Yes			
BSG2777A		WTR			Bastian sink well	OK	Yes			
BSG2777B		WTR			Bastian sink well	OK	Yes			
BSG2778A		WTR			Bastian sink well	ОК	Yes			
BSG2778B		WTR			Bastian sink well	OK	Yes			
BSG2779A		WTR			Bastian sink well	OK	Yes			
BSG2779B		WTR			Bastian sink well	OK	Yes			
BSG2779C		WTR			Bastian sink well	OK	Yes			
EPG2780A		WTR			Day break property	ОК	Yes			
EPG2780B		WTR			Day break property	OK	Yes			
EPG2781A		WTR			Day break property	OK	Yes			
EPG2781B		WTR			Day break property	OK	Yes			
BSG2782A		WTR			Bastian sink well	OK	Yes			
BSG2782B		WTR			Bastian sink well	OK	Yes			
BSG2782C		WTR			Bastian sink well	OK	Yes			
BSG2783A		WTR			Bastian sink well	OK	Yes			
BSG2783B		WTR			Bastian sink well	OK	Yes			
BSG2783C		WTR			Bastian sink well	OK	Yes			
BSG2784		WTR			Bastian sink well	OK	Yes			
EPG2785A		WTR			Day break property	OK	Yes			
EPG2785B		WTR			Day break property	OK	Yes			
ECS2786		WTR			East side collection seep	OK	Yes			
ECG2787		WTR			Bingham canyon well base of dump	OK	Yes			
BCG2788A		WTR			Bingham danyon well bade of damp	OK	Yes			
BCG2788B		WTR				OK	Yes			
BCG2788C		WTR				OK	Yes			
ECG2789A		WTR			East side collection toe of dump (abandon in 2020)	OK	Yes			
ECG2789B		WTR			East side collection toe of dump (abandon in 2020)	OK	Yes			
NES2790		WTR			Smelter flush mount (Arcadis well)	OK	Yes			
NES2791		WTR			Smelter flush mount (Arcadis well)	OK	Yes			
NES2791 NES2792		WTR			Smelter flush mount (Arcadis well)	OK	Yes			
NES2792 NES2793A		WTR			Smelter flush mount (Arcadis well)	OK OK	Yes			
NES2793B		WTR			Smelter flush mount (Arcadis well)	OK	Yes			
NES2793C		WTR			Smelter flush mount (Arcadis well)	OK OK	Yes			
NES2793C NES2794		WTR			· · · · · · · · · · · · · · · · · · ·	OK	Yes			
					Smelter flush mount (Arcadis well)	OK OK				
NES2795 ECP2796		WTR WTR	SE		Smelter flush mount (Arcadis well)	OK OK	Yes			
					RO Plant Product Water		Yes			
NES2797A		WTR	NE		Smelter west of slag bluff, south of hwy 201	OK	Yes			
NES2797B		WTR	NE		Smelter west of slag bluff, south of hwy 201	OK	Yes			
NES2797C		WTR	NE		Smelter west of slag bluff, south of hwy 201	OK	Yes			
NES2797D		WTR	NE		Smelter west of slag butt OK Yes Smelter West of slag butt					
NES2797E		WTR	NE		SmelterWest of slag butt OK Yes Smelter east of east smelter gate OK Yes					
NES2798A		WTR	NE							
NES2798B		WTR	NE		Smelter east of east smelter gate	OK	Yes			
NES2798C		WTR	NE		Smelter east of east smelter gate	OK	Yes			
NES2798Z		WTR	NE		Smelter east of east smelter gate	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
NES2799A		WTR	NE		smelter acid tank farm	OK	Yes			
NES2799B		WTR	NE		smelter acid tank farm	OK	Yes			
NES2800A		WTR	NE		smelter acid tank farm	OK	Yes			
NES2800B		WTR	NE		smelter acid tank farm	OK	Yes			
NES2801		WTR	NE		smelter acid tank farm	OK	Yes			
NES2802		WTR	NE		smelter acid tank farm	OK	Yes			
NES2803A		WTR	NE		smelter acid tank farm	OK	Yes			
NES2803B		WTR	NE		smelter acid tank farm	OK	Yes			
NES2804A		WTR	NE		smelter acid tank farm	OK	Yes			
NES2804B		WTR	NE		smelter acid tank farm	OK	Yes			
NES2804C		WTR	NE		smelter acid tank farm	OK	Yes			
NES2805		WTR	NE		smelter acid tank farm	OK	Yes			
NEW2807A		WTR	NE		Garfield wetlands	OK	Yes			
NEW2807B		WTR	NE		Garfield wetlands	OK	Yes			
NEW2807C		WTR	NE		Garfield wetlands	OK	Yes			
NEW2807D		WTR	NE		Garfield wetlands	OK	Yes			
NEW2807E		WTR	NE		Garfield wetlands	OK	Yes			
NEW2807F		WTR	NE		Garfield wetlands	OK	Yes			
NEW2807G		WTR	NE		Garfield wetlands	OK	Yes			
NER2808		WTR	NE		Charlie / Refinery gate	OK	Yes			
NEW2809A		WTR	NE		Garfield wetlands	OK	Yes			
NEW2809B		WTR	NE		Garfield wetlands	OK	Yes			
NEW2810A		WTR	NE		Garfield wetlands	OK	Yes			
NEW2810B		WTR	NE		Garfield wetlands	OK	Yes			
NEW2810C		WTR	NE		Garfield wetlands	OK	Yes			
NER2811A		WTR	NE		Refinery PM Cap	OK	Yes			
NER2811B		WTR	NE		Refinery PM Cap	OK	Yes			
NER2812A	NA	WTR	NE		Refinery North of MAP	OK	Yes			
NER2812B	NA NA	WTR	NE		Refinery North of MAP	OK	Yes			
NER2813A	NA NA	WTR	NE		KUC south west of refinery	OK	Yes			
NER2813B	NA NA	WTR	NE		KUC south west of refinery	OK	Yes			
NER2813C	NA NA	WTR	NE		KUC south west of refinery	OK	Yes			
NER2814A	NA NA	WTR	NE		KUC at Kesler springs	OK	Yes			
NER2814B	NA NA	WTR	NE		KUC at Kesler springs	OK OK	Yes			
NER2814C	NA NA	WTR	NE		KUC at Kesler springs	OK	Yes			
NEW2815A	NA NA	WTR	NE		wetlands garfield area	OK	Yes			
NEW2815B	NA NA	WTR	NE NE		wetlands garfield area	OK	Yes			
NEW2815C	NA NA	WTR	NE NE		wetlands garfield area	OK	Yes			
NER2816A	NA NA	WTR	NE		KUC Hillside west of refinery	OK	Yes			
NER2816B	NA NA	WTR	NE		KUC Hillside west of refinery	OK	Yes			
NER2816C	NA NA	WTR	NE NE		KUC Hillside west of refinery	OK	Yes			
MPC2817		WTR	NE NE		Leak detection sump located at the new magna res.	OK	res			
MPC2818	#1 magna Res	WTR	NE NE		Leak detection sump located at the riew magna res. Leak detection sump located at the originnal magna res.	OK				Yes
WJG2819A	#2 magna res		SE			OK				Yes
WJG2819A WJG2819B	NA NA	WTR	SE		Ground water well replacement for WJG1170A	OK OK	Yes			
	NA	WTR			Ground water well replacement for WJG1170B		Yes			
WJG2819C	NA	WTR	SE		Ground water well replacement for WJG1170C	OK	Yes	·		
EPS2820	NA	WTR	daybreak		Acid rock drainage surface sites at daybreak	OK		Yes		
EPS2821	NA	WTR	daybreak		Acid rock drainage surface sites at daybreak	OK OK		Yes		
EPS2822	NA	WTR	daybreak		Acid rock drainage surface sites at daybreak			Yes		
EPS2823	NA	WTR	daybreak		Acid rock drainage surface sites at daybreak OK		Yes			
EPS2824	NA	WTR	daybreak			Yes				
EPS2825	NA	WTR	daybreak		Acid rock drainage surface sites at daybreak	OK		Yes		
EPS2826	NA	WTR	daybreak		Acid rock drainage surface sites at daybreak	OK		Yes		
EPS2827	NA	WTR	daybreak		Acid rock drainage surface sites at daybreak	OK		Yes		

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process
BSG2828	NA	WTR	Mine		2012 new sulfate well. Water is shipped to the RO plant	OK	Yes		Yes	
BMP2829	NA	WTR	Mine		North well drainage gallery composite @ portal bingham pit	OK		Yes		
NEL2831		WTR	Sec 21		New Section 21 Well	OK	Yes		Yes	
BMS2832	NA	WTR	Mine		Cottonwood drainage composite sample @ flume	OK		Yes		
ECG2833A	NA	WTR	Mine		Adjacent to Saints rest drainage	OK	Yes			
ECG2833B	NA	WTR	Mine		Adjacent to Saints rest drainage	OK	Yes			
ECG2833C	NA	WTR	Mine		Adjacent to Saints rest drainage	OK	Yes			
ECG2833D	NA	WTR	Mine		Adjacent to Saints rest drainage	OK	Yes			
BCS2834	NA	WTR	Barneys		BC1 Drain down. Sample collected in sump	OK				Yes
BCS2835	NA	WTR	Barneys		BC2 drain down Sample collected in sump	OK				Yes
BCS2836	NA	WTR	Barneys		BC 3 Drain down. Sample collected in sump	OK				Yes
BCS2837	NA	WTR	Barneys		BC 4 drain down Sample collected in sump	OK				Yes
BCS2838	NA.	WTR	Barneys		BC 5 Drain down. Sample collected in sump	OK				Yes
BMP2839	147	WTR	Mine		Pit dewatering well 5490 east wall (2014)	ok				
BMP2840		WTR	Mine		Pit dewatering well 5490 east wall (2014)	ok				
BMP2841		WTR	Mine		East wall depressurization adjacent to crusher (2014)	OK				
DIVIPZ04 I		WIK	wiirie			OK				
SMP2842	Sec. 17	WTR	smelter		Section 17 blended from smelter reseviour (smelter wash down water) S.W.corner of hydromet	OK		Yes		
SMP2843	KLB-2	WTR	tailings		Monitor wells drilled to monitor horizonal drain water	OK	Yes			
SMP2844	SE2-3	WTR	Tailings		Monitor wells drilled to monitor horizonal drain water	OK	Yes			
BCS2845A		WTR	Barneys		Upper North Fork Barneys creek seep	OK				
BCS2845B		WTR	Barneys		Upper Mid North Fork Barneys creek seep	OK				
BCS2845C		WTR	Barneys		Lower mid North Fork Barneys creek seep	OK				
BCS2845D		WTR	Barneys		Lower North Fork Barneys creek seep	OK				
BCG2846		WTR	Barneys		Barneys canyon ground water monitor well	OK	Yes			
NEP2847		WTR	NE		North end se plant (Influent) sample port on north side of skid					Yes
NEP2848		WTR	NE		North end se plant (Effluent) off train #1 at south most sample spigot bioreactor 1120	OK				Yes
NEP2849		WTR	NE		North end se plant (Effluent) off train #2 middle sample port Bioreactor 1220	OK				Yes
NEP2850		WTR	NE		North end se plant Effluent off train #3 north sample port bioreactor 1320	OK				Yes
NEP2851A		WTR	NE		Effluentfrom all three trains sample port directly below sample site NEP2847	OK				Yes
NEP2851B		WTR	NE		Effluentfrom all three trains sample port directly below sample site NEP2847	OK				Yes
NES2852					Praxair Capture Trench sampled	OK				Yes
ECG2853A		WTR	South end		Bingham canyon ground water well	OK	Yes			
ECG2853B		WTR	South end		Bingham canyon ground water well	OK	Yes			
ECG2854		WTR	South End		Bingham canyon dumps well	OK	Yes			
BCS2855	Bass pond	WTR	Barneys		01-03 pond collection formaly (Bas pond)	OK		Yes		
ECP2856A	copper 4	WTR	South end		East side collection weir box (copper 4) sample water from the sump this is a combo of ECP2856 A&B	OK		Yes		
ECP2856B	copper 4	WTR	South end		East side collection weir box (copper 4) sump sample labled ECP2856A	OK		Yes		
ECP2857A	copper 2	WTR	South end		East side collection weir box (copper 2)	OK		Yes		
ECP2857B	copper 2	WTR	South end		East side collection weir box (copper 2) OK			Yes		
ECP2858A	South crapo	WTR	south end		East side collection weir box (south crapo) OK			Yes		
ECP2858B	South crapo	WTR	south end		East side collection weir box (south crapo) OK			Yes		
ECG2859	Keystone	WTR	south end		Keystone drainage ground water well OK		Yes			
ECG2859	Keystone	WTR	south end		Keystone drainage ground water well OK Yes					
BCG2860A	Barneys	WTR	south end							
BCG2860B	Barneys	WTR	south end		Barneys ground water east of well #32	OK	Yes			
HCG2861A	Harkers	WTR	south end		Harkers creek below PS 3B	OK	Yes			

Site ID	Alias	Program	Region ID	Area ID	Location/Description	Status	Ground	Surface	Drinking	Process	
HCG2861B	Harkers	WTR	south end		Harkers creek below PS 3B	OK	Yes				
WJG2862A	West Jordan	WTR	south end		Near 7800 so. Backus hwy	OK	Yes				
WJG2862B	West Jordan	WTR	south end		Near 7800 so. Backus hwy	OK	Yes				
WJG2863	West Jordan	WTR	south end		Production well near 2862 / 8600 west	OK	Yes				
BMS2864	Mine / Pit	WTR			Replacement for BMS1356 (Located in the PIT	OK	Yes				
COG2865	Mine / Pit	WTR	South end		Replacement for picnic flats well (COG 1172)	OK	Yes				
ECG2866A	bingham cyn	WTR	south end		Replacement for ECG2789 A Base vof bingham canyon	OK	Yes				
ECG2866B	bingham cyn	WTR	south end		Replacement for ECG2789 B Base of bingham canyon	OK	Yes				
COG2867A		WTR	south end		East of Retention Pond 4 Copperton Concentrator	OK	Yes				
COG2867B		WTR	south end		East of Retention Pond 4 Copperton Concentrator	OK	Yes				
HCG2868	WR5468	WTR			Private well, Strang Excavating, about 5500 South HWY 111	OK	Yes				
BMP2869	Mine/Pit	WTR	South end		High quality sump at 6190 pump station	OK				Yes	
NEL2870A		WTR	NE	LS	East Tailings Impoundment expansion	OK	Yes				
NEL2870B		WTR	NE	LS	East Tailings Impoundment expansion	OK	Yes				
NEL2870C		WTR	NE	LS	East Tailings Impoundment expansion	OK	Yes				
BCG2871		WTR	South end		East of Copperton Concentrator	OK	Yes				
TLL4100	LY94100	WTR	NE	TL	Lysimeter	OK					
TLL4100	LY94100	WTR	NE	TL	Lysimeter	OK					
TLL4101	LY94101	WTR	NE	TL	Lysimeter	OK					
TLL4101	LY94101	WTR	NE	TL	Lysimeter	OK					
TLL4102	LY94102	WTR	NE	TL	Lysimeter	OK					
TLL4102	LY94102	WTR	NE	TL	Lysimeter	OK					
TLL4103	LY94103	WTR	NE	TL	Lysimeter	OK					
TLL4103	LY94103	WTR	NE	TL	Lysimeter	OK					
TLL4124	LY94124	WTR	NE	TL	Lysimeter	OK					
TLL4124	LY94124	WTR	NE	TL	Lysimeter	OK					
TLL4125	LY94125	WTR	NE	TL	Lysimeter	OK					
TLL4125	LY94125	WTR	NE	TL	Lysimeter	OK					
TLL4126	LY94126	WTR	NE	TL	Lysimeter	OK					
TLL4126	LY94126	WTR	NE	TL	Lysimeter	OK					
TLL4127	LY94127	WTR	NE	TL	Lysimeter	OK					
TLL4127	LY94127	WTR	NE	TL	Lysimeter	OK					
TLL4128	LY94128	WTR	NE	TL	Lysimeter	OK					
TLL4128	LY94128	WTR	NE	TL	Lysimeter	OK					
TLL4129	LY94129	WTR	NE	TL	Lysimeter	OK					
TLL4129	LY94129	WTR	NE	TL	Lysimeter	OK					
TLL4133		WTR	NE	TL	Lysimeter	OK					
TLL4133		WTR	NE	TL	Lysimeter	OK					
TLL4134		WTR	NE	TL	Lysimeter	OK					
TLL4134		WTR	NE	TL	Lysimeter	OK					
TLL4135		WTR	NE	TL	Lysimeter	OK					
TLL4135		WTR	NE	TL	Lysimeter	OK					
TLL4136		WTR	NE	TL	Lysimeter	OK					
TLL4136		WTR	NE	TL	Lysimeter	OK					
TLL4137		WTR	NE	TL	Lysimeter	OK					
TLL4137		WTR	NE	TL	Lysimeter	OK					
TLL4137		WTR	NE	TL	Lysimeter	OK					
TLL4138		WTR	NE NE	TL	Lysimeter	OK					
USGS8A	B1236BAA3	WIIN	NE NE	NO NO	Lyamoto	OK					
USGS8A USGS8B	B1236BAA3		NE NE	NO		OK OK					
USGS8B USGS8C	B1236BAA2		NE NE	NO		OK OK					
030300	DIZOUDAAI		INE	NO		UK					

ANALYTICAL REQUEST SHEET Sample Chain of Custody

Sheet Request No.
Lab Use Only

ıb Use						FII	ELD DA	TA					Analys	ses Requested
ly ID#	LOCATION	Control #	Time	Date	рН	Cond	Temp	Depth	# of Cont				-	1
	EXAMPLE			01/01/01	0.00	0	0.0	0.00					GCMP	
	1.6.1 *** 11							Tala	nhana Na				For No	
	le Submitted by:								phone No					
_	rt Results to:							Tele	phone No	o	,		 Fax No	
Samp	les submitted on Io	e: Yes / No												
Surre	ndered By:		Dat	:e:	T	ime:		R	eceived l	Ву:		<u>-</u>	 Date:	Time:
•	ndered By:		Dat	٠.	т	ime:		D.	eceived l	D171			Date:	Time:

TABLE DC-3
SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES

ANALYTE	CONTAINER ¹	PRESERVATION	MAXIMUM HOLDING TIME
Alkalinity	P,G	*Store on ice	14 Days
BOD	P	*Store on ice	48 Hours
Chloride	P,G	None	28 Days
Coliform	P	*Store on ice	6 Hrs-UPDES 12 Hrs-Drinking
Cyanide	P,G	*Store on ice, NaOH to pH>12, store in dark	14 Days
Fluoride	P	None	28 Days
Hydrogen Ion (pH)	P,G	None	Analyze Immediately
Mercury	P,G	HNO ₃ to pH<2	28 Days
Metals, except Mercury	P,G	HNO ₃ to pH<2	6 Months
Nitrate	P,G	*Store on ice, H ₂ SO ₄	48 Hours 28 Days/once acidified
Nitrite	P,G	*Store on ice, H ₂ SO ₄	48 Hours
Oil & Grease	G	*Store on ice, H ₂ SO ₄ to PH<2	28 Days
Organics PCB	VOA	*Store on ice, pH 5-9	7 Days
Pesticides PHC SEM VOL	VOA G VOA VOA	*Store on ice, pH 5-9 *Store on ice *Store on ice *Store on ice	7 Days 7 Days 7 Days 7 Days 7 Days
Phenolics	G	*Store on ice, H ₂ SO ₄ to pH<2	28 Days
Phosphate	G	*Store on ice	48 Hours
Radionuclides	P,G	pH<2, HNO ₃	6 Months
Silica	P	*Store on ice	28 Days
Sulfate	P,G	*Store on ice, if pH is < 4.5, use HCL	28 Days
TDS	P,G	*Store on ice	7 Days

^{*}Or refrigerate.

¹Polyethylene (P), or Glass (G)

Figures

KENNECOTT UTAH COPPER

WELL INSPECTION REPORT

GENERAL

Well I.D. #:	Date of Inspection:		
Name of Inspector:			
SITE CONDITIONS			
Attach photogragh of site showing general site conditions.			
Attach photogragh showing inside of protective casing and well case	ing.		
Attach any additional maps and/or aerial photographs.			
Was site cleaned up and refuse removed after well constructions?		Yes	No
Is site cleanup required?		Yes	No
PROTECTIVE CASING			
<u>Description of Protective Casing</u>			
Is casing present?		Yes	No
Nominal Casing Diameter:inches			
Casing Material: PVC Steel Other:			
If "Other" describe:			
Paint Condition: None Good Poor			
Is painting recommended?		Yes	No
Is Well I.D. # painted on casing?		Yes	No
Is Well I.D. # stamped on casing?		Yes	No
Other markings:			
Is there a weep hole in the protective casin?		Yes	No
Well Pad Condition			
Does a concrete pad surround the protective casing?		Yes	No
Was the concrete formed when it was poured?		Yes	No
Is the pad thickness greater than 6 inches?		Yes	No
Is replacement of the pad recommended?		Yes	No
Is the Well I.D. # inscribed in the pad?		Yes	No
Lock			
Lock			
Is the protective easing lacked?		Vos	No
Is the protective casing locked? Can the protective casing be locked?		Yes Yes	No No
If not, identify cause of problem: Missing Lock	Locking Hasp		on Casing
in not, identify cause of problem. Wilssing Lock	LOCKING Masp	NO LIO	On Casing
WELL CONSTRUCTION			
WELL CONSTRUCTION			
Well Casing			
Inside Diameter: inches			
Casing Material: PVC Steel Other:			
If "Other" describe:			
Is a casing adapter used to terminate the casing?		Yes	No
Type of casing adapter: Male Female			
Is the casing top smooth and even?		Yes	No
Is there a cap or plug for the well casing?		Yes	No No
Is there a hole in the top of the well cap?		Yes	No No
Is the marker point for measuring the depth to water present?		Yes	No No
How is it identified?			
Is annular cement/grout present?		Yes	No
Is the grout in good condition?		Yes	No No
Is grout filled to near the top of the well casing?		Yes	No No
Is grout filled to within 1/2 inch of the protective casing we	ep hole?	Yes	No

DIVISION OF WATER RIGHTS REQUEST FOR MONITOR WELL CONSTRUCTION

APPLICANTS NAME Kennecott Utah Copper		
APPLICANTS ADDRESS P. O. Box 525, Bingham Canvon, Utah 84006-0525		
INDIVIDUAL CONTACTNeme		Phone
CURRENT PROPERTY OWNER		
PROPOSED NUMBER OF WELLS DIAMETERS A	PPROX.DEPIHS_	
TYPE OF COMPLETIONS (Casing, intake, gravel pack, grout, etc.)		
PROJECT ENGINEER/MANAGER Name		
Address		Phone
GENERAL LOCATION DESCRIPTION	COUNTY_	
WELLS IN CONJUNCTION WITH (LEAKING) UNDERGROUND STORAGE TANKS YES NO		
NAME OF LICENSED DRILLER	LICENSE	:#
PROPOSED CONSTRUCTION DATE ANTICIPATE	D COMPLETION I	DATE
LOCATION OF WELLS:		
1. N/S FT. & E/W FT. FRM COR. or 1/4 1/4 of SEC.		
2. N/SFT. & E/WFT. FRMCOR. Or 1/4 1/4 of SEC.		
3. N/SFT. & E/WFT. FRMCOR. or 1/4 1/4 of SEC.		
4. N/SFT. & E/WFT. FRMCOR. or1/41/4 of SEC.		
5. N/SFT. & E/WFT. FRMCOR. or 1/4 1/4 of SEC.	t_n/sr_	E/W SLEM/USM
6. N/SFT. & E/WFT. FRMCOR. or1/41/4 of SEC.	n/s r_	E/W SLBM/USM
7. N/SFT. & E/WFT. FRMCOR. or _ 1/4 1/4 of SEC.	tn/s r	E/W SLEM/USM
8. N/SFT. & E/WFT. FRMCOR. or _ 1/4 1/4 of SEC.	n/s r_	E/W SLEM/USM
9. N/S FT. & E/W FT. FRM COR. or 1/4 1/4 of SEC.		E/W SLEM/USM
10.N/SFT. & E/WFT. FRMCOR. or1/41/4 of SEC.		E/W SLEM/USM
Comments or explanation		
For office use only		
DATE OF REQUEST APP/REJ DATE BY AREA OFFICE AUTHORIZATION #		

Project	Sketch Map
Well I.D. # Weather Total Depth Diameter/Interval	
Total Depth Diameter/Interval	
inriace Elevation	
Creen: Dia	
Color Terrure Season Casing Dia.	
Scal Grout Key Number Drilling Company Drilling Method Driller Log By Date Drilled Description/Soil Company Well Sample Control Contr	
Depth Graphic Well Sample Description/Soil C	
Drilling Company Drilling Method Driller Log By Date Drilled Depth Graphic Well Sample Description/Soil C	
Depth Graphic Well Sample Description/Soil C	
Depth Graphic Well Sample Description/Soil C	Notes
Color Texture S	
	assification tructures)
- "	
1	
r 11 11	
F 4	
1	
L _	
Г 71 - 11 - 11 - 1	
F 11	
+ -	
F 71 11 11 1	

KENNECOTT UTAH COPPER SOIL MOISTURE LYSIMETERS

Site	Depth (ft)	Date/Time Vacuum Applied	Date/Time Sample Taken	Remaining Vacuum (centibars)	Volume Collected (ml)	рН	Temp	EC (ms)	Eh (mV)	Fe+2 (mg/L)	Sulfide (mg/L)	NO2 (mg/L)	NO3 (mg/L)	D.O. (mg/L)
LINDDUP														
TLL4100	4													
TLL4101	8													
TLL4102	12													
TLL4103	20													
TLL4124	2													
TLL4125	5													
TLL4126	2													
TLL4127	5													
TLL4128	2													
TLL4129	5													
TLL4133	3													
TLL4134	5													
TLL4135	8													
TLL4136	2													
TLL4137	2			·										
TLL4138	2													

KENNECOTT UTAH COPPER UPDES FIELD DATA SHEET

OUTFALL No			
DATE:	ARRIVAL TIME:		
METER ID			FIELD CALIBRATION
pH	pH Buffers (1)_	(2)	Final Readings (1)(2)
SC	Standard		Final Reading
FIELD MEASUR	EMENTS/OBSERVATIONS		
рН	Conductivity	Temp	
Visible Sheen (oil	l/grease)?	Floating So	lids or Visible Foam?
ANALYSES			
Nutrient Total Diss Hg Phenol CN		Bio Sample O+G Coliform	
COMMENTS:			
If this is a split san	mple with the State, please put (G) on the sam	ple ID.
	Sampler(s) Signatur	e(s)	
	Danartura Ti	ma	

Version 8.0

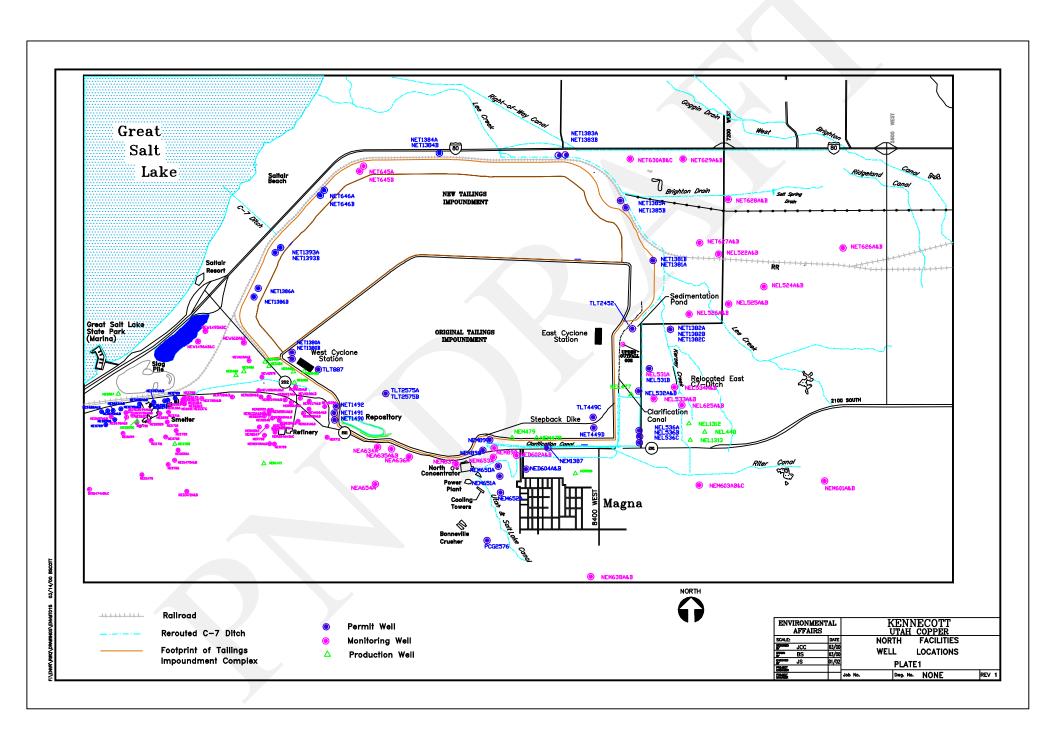
FIGURE DW-1 KENNECOTT UTAH COPPER

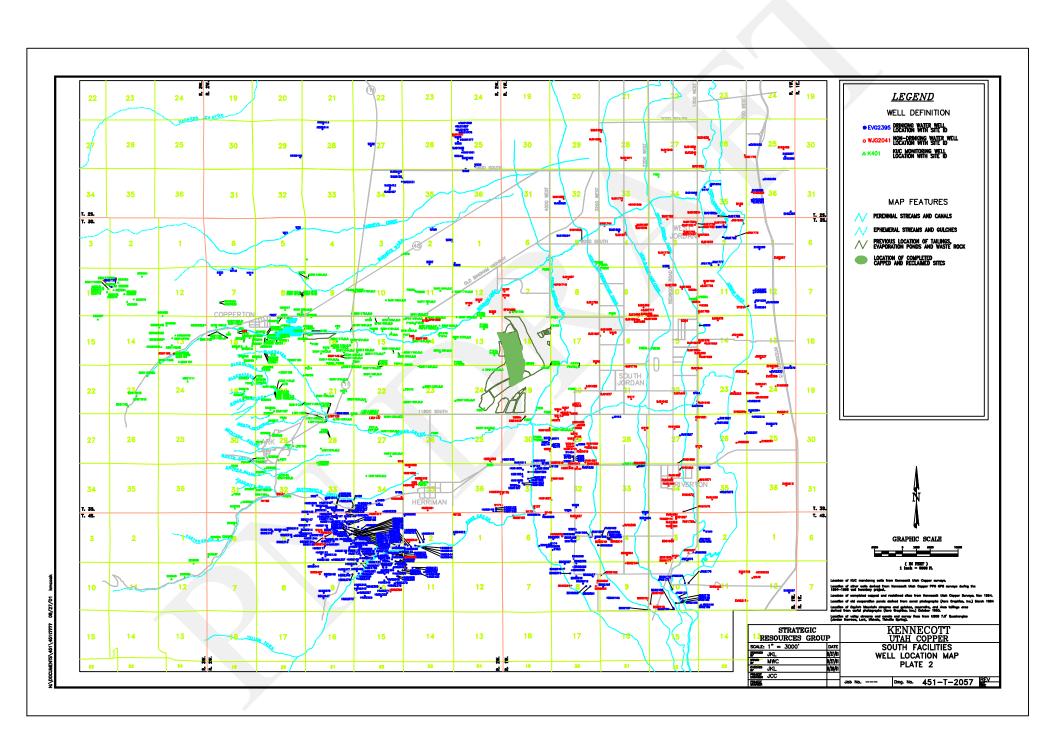
Kennecott Utah Copper

DRINKING WATER FIELD DATA SHEET

Sample ID #:		Meter ID Numbers	
See: Date:	Arrival Time	and Calibration Field Log Book:	
Sampler(s) Initials:			
Field Measurements			
Ph	_		
Cond	_		
Temp	_		
Sample Containers			
Nutrients (1/2 gal.) Total Metals (8 oz.)			
Diss. Metals (8 oz.) Mercury (Hg)-(8 oz. glass) Nitrates (N0 _x)-(8 oz. glass)			
Coliform yes no			
Remarks:			
	Sampler(s) Sig	gnature	
	Time Samplin	g Completed	

Water Bacteriological Analysis Test Request Form	LAB USE SECTION
Utah Public Health	LAB NUMBER
4431 S 2700 W Taylorsville, UT 84129-8600	ENDITONIDER
801 965 2400 Fax 801 969 3238	Received Date and Time Stamp
http://health.utah.gov/lab/chemistry Please fill out this form using block letters and with a black or blue pen. Do not attach this form to the sample.	
Customer Number Public Water System Facility ID Sampling Point ID	Analyzed Date and Time Stamp
System/Agency Name	
Sample Receipt Con	ditions
Collection Point Description / Project Name (if applicable) Temperature	Ice O Yes
Collection Point Description (Continued)	O No
USL: Public Health	n - Environmental Microbiology (801) 965-2400
Please fill in the circles or check boxes next to the appropriate option.	rinking Water (801) 536-4200
DO NOT make any other marks. If you need assistance with this form call 801 965 2405. Reporting Options Contact Your Local	al Health Department for Pool, Spa, and Hot Tub Information Unsatisfactory Sample
O State Drinking Water Compliance Samples □ Exceeded Hold O Private Investigative □ Out of Date Co	
O Repeat Original Sample Number Complete this section for	Container
O Near First Service Connection repeat samples.	
Original Site Original Sample Original Sample Original Sample	
	Please Submit a New Sample
O TCR Repeat ONLY Chlorine Residual ppm Type of Water Matrix Testing O TCR Repeat AND GW Source Drinking Water □ Well 51	Additional Testing
O Other O Pool/Spa	
○ Raw Water □ Well 97 ○ Deionized or RO □ HPC	LAB USE SECTION Well 51
GWR Trigger Source Sample(s) Facility ID (Source #):	LAB USE SECTION
Representative Site: SSG001 Collector's First Name	1
Sample # of source(s)	
☐ Sampled all sources in use at time of positive	1
Collection Date Collection Time	
Name of Wholesaler 2 0	O AM O PM
M M D D Y Y Y Y	J O TIM
Date Wholesaler notified Collector's Comments	
M M D D Y Y Y Y	
First Name REPORTING/CONTACT Last Name]
Atlan	
Address City	
State Zip Email	
Phone Fax New Information Up	odata Account
La rew information of	Account
First Name BILLING SAME AS REPORTING Last Name	1
Address	
State Zip Email	
Linear	
Phone Fax	


FIGURE SW-2 EXAMPLE SURFACE WATER QUALITY FIELD DATA SHEET


KENNI	ECOTT U	TAH COPPER		Sheet	of		
		ER QUALITY A SHEET			SKETCH:		
SAMPLE LOCATION	ON ID #: _						
DATE:	TI	ME:a	nm/pm				
SAMPLING PERSO	ONNEL: _						
SITE DESCRIPTIO	N:		_				
PHOTOGRAPH:		Roll #: Roll #:					
SAMPLE DESCRII	PTIONS:						
TIME:							DEPTH:
METER NUMBER CALIBRATION	S:		рН	CONDUC	CTIVITY	Eh	D.O.
CALIBRATION CONCENTRATON SAMPLING METH			рН	CONDUC	CTIVITY	Eh	D.O.
NUMBER OF COM PARAMETERS:	MPOSITE .					F	IELD
METER ID #:	Carbonat Bicarbon	ION: e (CO ₃): ate (HCO ₃): a.m./p.r	ml				
Ferrous Iron: Sulfide: Paper	mg/l	Colormetric	mg/l	time			

TIME	TEMP.(C)	рН	COND.	D.O./METHOD	TURB.(NTU)				
V 0.0									

Plates

