

State of Utah

SPENCER J. COX
Governor

DEIDRE HENDERSON
Lieutenant Governor

Department of Environmental Quality

Kimberly D. Shelley
Executive Director

DIVISION OF AIR QUALITY
Bryce C. Bird
Director

Air Quality Board
Cassady Kristensen, *Chair*
Kim Frost, *Vice-Chair*
Michelle Bujoso
Kevin R. Cromar
Randal S. Martin
Sonja Norton
John Rasband
Kimberly D. Shelley
Jeff Silvestrini
Bryce C. Bird,
Executive Secretary

DAQ-054-24

UTAH AIR QUALITY BOARD MEETING TENTATIVE AGENDA

**Tuesday, July 9, 2024 – 10:00 a.m.
195 North 1950 West, Room 1015
Salt Lake City, Utah 84116**

Board members may be participating electronically. Interested persons can participate telephonically by dialing 1-475-299-8810 using access code: 449-801-632#, or via the Internet at meeting link:
meet.google.com/dpm-oqgm-nzk

- I. Call-to-Order
- II. Date of the Next Air Quality Board Meeting: August 7, 2024
- III. Approval of the Minutes for the May 1, 2024, and June 5, 2024, Board Meetings.
- IV. Propose for Public Comment: Amendment to R307-110-13. General Requirements: State Implementation Plan. Incorporation of Utah State Implementation Plan, 2015 Ozone NAAQS Northern Wasatch Front Moderate Nonattainment Area, Section IX.D.11. Presented by Ryan Bares.
- V. Propose for Public Comment: Amend R307-202. Emission Standards: General Burning. Presented by Erica Pryor and Rachel Chamberlain.
- VI. Five-Year Reviews: R307-125. Clean Air Retrofit, Replacement, and Off-Road Technology Program; R307-501. Oil and Gas Industry: General Provisions; R307-502. Oil and Gas Industry: Pneumatic Controllers; R307-503. Oil and Gas Industry: Flares; and R307-504. Oil and Gas Industry: Tank Truck Loading. Presented by Erica Pryor.
- VII. Informational Items.
 - A. Air Toxics. Presented by Leonard Wright.
 - B. Compliance. Presented by Harold Burge, Rik Ombach, and Chad Gilgen.
 - C. Monitoring. Presented by Bart Cubrich.

D. Other Items to be Brought Before the Board.

E. Board Meeting Follow-up Items.

In compliance with the Americans with Disabilities Act, individuals with special needs (including auxiliary communicative aids and services) should contact LeAnn Johnson, Office of Human Resources at (385) 226-4881, TDD (801) 536-4284 or by email at leannjohnson@utah.gov.

ITEM 4

State of Utah

SPENCER J. COX
Governor

DEIDRE HENDERSON
Lieutenant Governor

Department of
Environmental Quality

Kimberly D. Shelley
Executive Director

DIVISION OF AIR QUALITY
Bryce C. Bird
Director

DAQ-057-24

M E M O R A N D U M

TO: Air Quality Board

THROUGH: Bryce C. Bird, Executive Secretary

THROUGH: Erica Pryor, Rules Coordinator

FROM: Ryan Bares, Environmental Scientist

DATE: June 27, 2024

SUBJECT: PROPOSE FOR PUBLIC COMMENT: Amendment to R307-110-13. General Requirements: State Implementation Plan. Incorporation of Utah State Implementation Plan, 2015 Ozone NAAQS Northern Wasatch Front Moderate Nonattainment Area, Section IX.D.11.

On August 3, 2018, the U.S. Environmental Protection Agency (EPA) designated Utah's Northern Wasatch Front (NWF) as a marginal nonattainment area (NAA) for the 2015 national ambient air quality standard (NAAQS) for 8-hour ozone concentrations (83 FR 25776). On October 7, 2022, EPA finalized the reclassification of the NWF NAA from marginal to moderate status (87 FR 60897) since the area failed to attain the standard by the attainment date of August 3, 2021. The reclassification to moderate status became effective on November 7, 2022. As a result of this designation, under Section 182(b) of the Clean Air Act (CAA), the state of Utah was required to submit a revision to Utah's State Implementation Plan (SIP) outlining specific provisions implemented in order for the NWF NAA to attain the NAAQS as expeditiously as practicable.

On September 12, 2023, the Utah Air Quality Board adopted amendments to the Utah SIP titled Section IX.D.11: 2015 Ozone NAAQS Northern Wasatch Front Moderate Nonattainment Area, which aimed to fulfill the CAA requirements for a moderate NAA. While this SIP revision demonstrated compliance with a number of CAA requirements, it failed to fully implement Reasonable Further Progress (RFP) requirements as required under CAA Section 182(b)(1)(A)(i). Specifically, the RFP requirements for a moderate NAA requires a 15% reduction in VOC emissions. However, the 2015 ozone implementation

rule states that a moderate NAA that has implemented federally enforceable VOC emission reductions equal to or greater than the current 15% requirement as part of a previous ozone SIP revision, shall be granted the opportunity to substitute a comparable amount of NO_x emission reductions, if those reductions deliver an equivalent improvement in air quality (83 FR 63004).

The proposed amendments to Section R307-110-13 results in the incorporation of revisions to Chapter 7 of the NWF moderate ozone SIP which demonstrate compliance with RFP requirement through the substitution of NO_x emission reductions in place of the VOC emission reduction requirement. Additionally, these amendments provide the analysis necessary to demonstrate the NO_x emission reductions achieved as part of the moderate SIP revision demonstrate an equal or greater improvement to air. The ability to pursue compliance through the use of NO_x substitutions is possible due to the substantial past VOC emission reductions achieved throughout the NWF NAA as part of the state's efforts to reduce fine particulate matter (PM_{2.5}) pollution.

Recommendation: Staff recommend the Board approve the amendment to Section R307-110-13, Incorporation of Utah State Implementation Plan, 2015 Ozone NAAQS Northern Wasatch Front Moderate Nonattainment Area, Section IX.D.11, for a 30-day public comment period.

State of Utah
Administrative Rule Analysis
Revised May 2024

NOTICE OF SUBSTANTIVE CHANGE

TYPE OF FILING: Amendment

Rule or Section Number:

R307-202

Filing ID: Office Use Only

Date of Previous Publication (Only for CPRs): Click or tap to enter a date.

Agency Information

1. Title catchline:	Environmental Quality, Division of Air Quality	
Building:	MASOB	
Street address:	195 N 1950 W	
City, state:	Salt Lake City	
Mailing address:	PO BOX 144820	
City, state and zip:	Salt Lake City, UT 84114-4820	
Contact persons:		
Name:	Phone:	Email:
Erica Pryor	385-499-3416	epryor1@utah.gov
Rachel Chamberlain	385-414-3390	rachelchamberlain@utah.gov

Please address questions regarding information on this notice to the persons listed above.

General Information

2. Rule or section catchline:

R307-202. Emission Standards: General Burning.

3. Purpose of the new rule or reason for the change:

The Division of Air Quality is filing an amendment to Rule R307-202 on account of HB567 becoming effective May 1, 2024.

4. Summary of the new rule or change:

This filing amends Rule R307-202 to align with the changes in statute because of HB567. On March 12, 2024, Governor Cox signed into law HB567 Fire Regulation Amendments. This bill has an effective date of May 1, 2024. The proposed amendments to R307-202 result in several changes to open burning with permits in the state. The bill changes the following: 1) the areas of the state that have different permit burning windows; 2) the time frame of the burning windows, and 3) the clearing index values at which burns are allowed to occur. The bill defines attainment areas to distinguish between the open burning timeframes.

Fiscal Information

5. Provide an estimate and written explanation of the aggregate anticipated cost or savings to:

A) State budget:

There is no anticipated cost or savings to the state budget, as this rule is clerical in nature and will have no impact besides some staff time spent reprogramming the permit interface which will be absorbed by the general budget.

B) Local governments:

There is no anticipated cost or savings to local governments, as this rule is clerical in nature and will have no impact but could increase permits application requests and reviews. The number is unknown and therefore costs or savings cannot be calculated.

C) Small businesses ("small business" means a business employing 1-49 persons):

There is no anticipated cost or savings to small businesses, as this rule is clerical in nature and will have no impact.

D) Non-small businesses ("non-small business" means a business employing 50 or more persons):

There is no anticipated cost or savings to non-small businesses, as this rule is clerical in nature and will have no impact.

E) Persons other than small businesses, non-small businesses, state, or local government entities ("person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an *agency*):

There is no anticipated cost or savings to persons other than small businesses, non-small businesses, state, or local government entities, as this rule is clerical in nature and will have no impact.

F) Compliance costs for affected persons (How much will it cost an impacted entity to adhere to this rule or its changes?):

There are no anticipated compliance costs for affected persons, as this rule is clerical in nature.

G) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)

Regulatory Impact Table

Fiscal Cost	FY2025	FY2026	FY2027
State Government	\$0	\$0	\$0
Local Governments	\$0	\$0	\$0
Small Businesses	\$0	\$0	\$0
Non-Small Businesses	\$0	\$0	\$0
Other Persons	\$0	\$0	\$0
Total Fiscal Cost	\$0	\$0	\$0
Fiscal Benefits	FY2025	FY2026	FY2027
State Government	\$0	\$0	\$0
Local Governments	\$0	\$0	\$0
Small Businesses	\$0	\$0	\$0
Non-Small Businesses	\$0	\$0	\$0
Other Persons	\$0	\$0	\$0
Total Fiscal Benefits	\$0	\$0	\$0
Net Fiscal Benefits	\$0	\$0	\$0

H) Department head comments on fiscal impact and approval of regulatory impact analysis:

The Executive Director of the Department of Environmental Quality, Kim D. Shelley, has reviewed and approved this regulatory impact analysis.

Citation Information

6. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:

Utah Code 19-2-104	U.S.C. Title 42 Chapter 85 Subchapter I Part A Section 7410 (a)(12)(A)	

Incorporations by Reference Information

7. Incorporations by Reference (if this rule incorporates more than two items by reference, please include additional tables):

A) This rule adds or updates the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; *if none, leave blank*):

Official Title of Materials Incorporated (from title page)	
Publisher	
Issue Date	
Issue or Version	

B) This rule adds or updates the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; *if none, leave blank*):

Official Title of Materials Incorporated (from title page)	
Publisher	
Issue Date	
Issue or Version	

Public Notice Information

8. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until: 09/03/2024

B) A public hearing (optional) will be held:

Date (mm/dd/yyyy):	Time (hh:mm AM/PM):	Place (physical address or URL):

To the agency: If more than one hearing will take place, continue to add rows.

9. This rule change MAY become effective on: 09/10/2024

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date.

Agency Authorization Information

To the agency: Information requested on this form is required by Sections 63G-3-301, 63G-3-302, 63G-3-303, and 63G-3-402. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin* and delaying the first possible effective date.

Agency head or designee and title:	Bryce C. Bird, Director, Division of Air Quality	Date:	06/20/2024
---	---	--------------	------------

1 **R307. Environmental Quality, Air Quality.**

2 **R307-202. Emission Standards: General Burning.**

3 **R307-202-1. Applicability.**

4 Sections R307-202-4 through R307-202-8 applies to general burning within incorporated community
5 under the authority of county or municipal fire authority.

7 **R307-202-2. Definitions.**

8 The following additional definitions apply only to Rule R307-202.

9 "Attainment areas" means any area that meets the national primary and secondary ambient air quality
10 standard (NAAQS) for the pollutant.

11 "County or municipal fire authority" means the public official so designated with the responsibility,
12 authority, and training to protect people, property, and the environment from fire, within their respective area
13 of jurisdiction.

14 "Federal Class I Area" means an area that consists of national parks exceeding 6,000 acres,
15 wilderness areas and national memorial parks exceeding 5,000 acres, and ~~all~~any international parks that
16 were in existence on August 7, 1977. See Clean Air Act sSection 162(a).

17 "Fire hazard" means a hazardous condition involving combustible, flammable, or explosive material
18 that represents a substantial threat to life or property if not immediately abated, as declared by the county or
19 municipal fire authority.

20 "Maintenance Area" as defined in Section R307-101-2, means an area that is subject to the
21 provisions of a maintenance plan that is included in the Utah state implementation plan, and that has been
22 redesignated by EPA from nonattainment to attainment of any NAAQS.

23 "Native American spiritual advisor" means a person who leads, instructs, or facilitates a Native
24 American religious ceremony or service~~s~~, or provides religious counseling~~s~~, is an enrolled member of a
25 federally recognized Native American tribe~~s~~, and is recognized as a spiritual advisor by a federally
26 recognized Native American tribe. "Native American spiritual advisor" includes a sweat lodge leader,
27 medicine person, traditional religious practitioner, or holy man or woman.

28 "Nonattainment Area" means an area designated by the Environmental Protection Agency as
29 nonattainment under Section 107, Clean Air Act for any NAAQS. The designations for Utah are listed in
30 40 CFR 81.345.

32 **R307-202-3. Exclusions.**

33 As provided in Section 19-2-114, the ~~provisions~~requirements of Rule R307-202 are not applicable
34 to:

35 (1) ~~E~~except for areas zoned as residential, burning incident to horticultural or agricultural
36 operations of:

37 (a) ~~P~~prunings from trees, bushes, and plants; and

38 (b) ~~D~~dead or diseased trees, bushes, and plants, including stubble~~s~~;

39 (2) ~~B~~burning of weed growth along ditch banks for clearing these ditches for irrigation purposes;

40 (3) ~~C~~controlled heating of orchards or other crops during the frost season to lessen the chances of
41 their being frozen so long as the emissions from this heating do not cause or contribute to an exceedance of
42 any ~~national ambient air quality standards~~NAAQS and is consistent with the federally approved State
43 Implementation Plan;~~s~~ and

44 (4) ~~F~~the controlled burning of not more than two structures per year by an organized and operating
45 fire department for the purpose of training fire service personnel when the National Weather Service clearing
46 index is above 500~~s~~, ~~S~~see also Section 11-7-1(2)(a)~~s~~; and

47 (5) ~~C~~ceremonial burning is excluded from Subsection R307-202-4(2) when conducted by a Native
48 American spiritual advisor.

50 **R307-202-4. Prohibitions.**

51 (1) No open burning ~~shall~~may be done at sites used for disposal of community trash, garbage, and
52 other wastes.

53 (2) No person ~~shall~~may burn under this rule when the director issues a public announcement under
54 Rule R307-302. The director ~~will~~shall distribute ~~such~~the announcement to the local media notifying the

1 public that a mandatory no-burn period is in effect for the area where the burning is to occur.

2

3 **R307-202-5. General Requirements.**

4 (1) Except as otherwise provided in this rule, no person ~~[shall]may~~ set or use an open outdoor fire
5 for the purpose of disposal or burning of:~~[of disposal or burning of petroleum wastes; demolition or~~
~~construction debris; residential rubbish; garbage or vegetation; tires; tar; trees; wood waste; other combustible~~
~~or flammable solid; liquid or gaseous waste; or for metal salvage or burning of motor vehicle bodies.]~~

- 6 (a) petroleum wastes;
- 7 (b) demolition or construction debris;
- 8 (c) rubbish;
- 9 (d) garbage or vegetation;
- 10 (e) tires;
- 11 (f) tar;
- 12 (g) trees;
- 13 (h) wood waste;
- 14 (i) other combustible or flammable solid;
- 15 (j) liquid or gaseous waste; or
- 16 (k) for metal salvage or burning of motor vehicle bodies.

17 (2) The county or municipal fire authority shall approve burning based on the predicted
18 meteorological conditions and whether the emissions would impact the health and welfare of the public or
19 cause or contribute to an exceedance of any ~~[national ambient air quality standard]~~NAAQS.

20 (3) Nothing in this regulation ~~[shall]may~~ be construed as relieving any person conducting open
21 burning from meeting the requirements of any applicable federal, state, or local requirements concerning
22 disposal of any combustible materials.

23 (4) The county or municipal fire authority that approves any open burning permit ~~[will]shall~~ retain a
24 copy of each permit issued for one year.

25

26 **R307-202-6. Open Burning - Without Permit.**

27 The following types of open burning do not require a permit when not prohibited by other local,
28 state, or federal laws and regulations, when it does not create a nuisance, as defined in Section 76-10-803, and
29 does not impact the health and welfare of the public~~[,]~~:

- 30 (1) ~~[D]~~devices for the primary purpose of preparing food ~~[such as]~~including outdoor grills and
31 fireplaces;
- 32 (2) ~~[E]~~campfires and fires used solely for recreational purposes where ~~[such]~~the fires are under
33 control of a responsible person and the combustible material is clean, dry, wood or charcoal; and
- 34 (3) ~~[H]~~indoor fireplaces and residential solid fuel burning devices except as provided in Section
35 R307-302-2.

36

37 **R307-202-7. Open Burning - With Permit.**

38 (1) No person ~~[shall]may~~ knowingly conduct open burning unless the open burning activities may
39 be conducted without a permit pursuant to Section R307-202-6 or the person has a valid permit for burning
40 on a specified date or period, issued by the county or municipal fire authority having jurisdiction in the area
41 where the open burning ~~[will]shall~~ take place.

42 (2) A permit applicant shall provide information as requested by the county or municipal fire
43 authority. No permit or authorization ~~[shall]may~~ be deemed valid unless the issuing authority determines that
44 the applicant has provided the required information.

45 (3) Persons seeking an open burning permit shall submit to the county or municipal fire authority an
46 application on a form provided by the director for each separate burn.

47 (4) A permit shall be valid only on the lands specified on the permit.

48 (5) No material ~~[shall]may~~ be burned unless it is clearly described and quantified as material to be
49 burned on a valid permit.

50 (6) No burning ~~[shall]may~~ be conducted contrary to the conditions specified on the permit.

51 (7) Any permit issued by a county or municipal fire authority ~~[shall be]~~is subject to the local, state,
52 and federal rules and regulations.

(8) Open burning is authorized by the issuance of a permit, as stipulated within this rule, for specification in Subsection R307-202-7(10). These permits can only be issued when not prohibited by other local, state, or federal laws and regulations and when a nuisance as defined in Section 76-10-803 is not created and does not impact the health and welfare of the public.

(9) Except as provided in Section R307-202-7(10)(f)(ii), [F]individual permits, as stipulated within this rule, for the types of burning listed in Subsection R307-202-7(10) may be issued by a county or municipal fire authority when the clearing index is 500 or greater. When the clearing index is below 500, [all]any permits issued for that day [will]shall be null and void until further notice from the county or municipal fire authority. Additionally, anyone burning on the day when the clearing index is below 500, or is found to be violating any part of this rule, shall be liable for a fine in accordance with Rule R307-130.

(10) The following include [T]ypes of open burning for which a permit may be granted[-are]:

(a) [E]except in nonattainment and maintenance areas, open burning of tree cuttings and slash in forest areas where the cuttings accrue from pulping, lumbering, and similar operations, but excluding waste from sawmill operations [such as]including sawdust and scrap lumber[.];

(b) [θ]open burning of trees and brush within railroad rights-of-way, provided that dirt is removed from stumps before burning, and that tires, oil more dense than #2 fuel oil, tar, or other materials which can cause severe air pollution, are not present in the materials to be burned, and are not used to start fires or to keep fires burning[.];

(c) [Ø]open burning of a fire hazard that a county or municipal fire authority determines cannot be abated by any other viable option[–];

(d) [Theta]open burning of highly explosive materials when a county or municipal fire authority, law enforcement agency, or governmental agency having jurisdiction determines that onsite burning or detonation in place is the only reasonably available method for safely disposing of the material[-];

(e) [θ]open burning for the disposal of contraband in the possession of public law enforcement personnel provided they demonstrate to the county or municipal fire authority that open burning is the only reasonably available method for safely disposing of the material[-]:

(f) [Q]open burning of clippings, bushes, plants, and pruning's from trees incident to property clean-up activities, including residential cleanup, provided that the following conditions have been met:

(i) [W]ithin only the counties designated as nonattainment and maintenance areas, [of Washington, Kane, San Juan, Iron, Garfield, Beaver, Piute, Wayne, Grand and Emery,] the county or municipal fire authority may issue a permit between March 1 March 30 and May 30 when the clearing index is 500 or greater. The county or municipal fire authority may issue a permit between September 15 to November 15 for [such]the burning to occur when the state forester has approved the burning window under Section 65A-8-211 and the clearing index is 500 or greater[-]:

(ii) [F]in [all other areas of the state]attainment areas, the county or municipal fire authority may issue a permit between [March 30 and May 30]November 1 and March 31 for [such]burning to occur when the clearing index is [500]250 or greater. The county or municipal fire authority may issue a permit between September 15 and October 30 and also between April 1 and May 30 for [such]burning to occur when the state forester has approved the burning window under Section 65A-8-211 and the clearing index is 500 or greater[.];

(iii) [Such]burnings occur in accordance with state and federal requirements;

(iv) [M]aterials to be burned are thoroughly dry; and

(v) [N]no trash, rubbish, tires, or oil are included in the material to be burned, used to start fires, or used to keep fires burning.

(g) [E]xcept for nonattainment and maintenance areas, the direct open burning not specified in Subsection R307-202-7(3) on written application, burning is consistent with the federally approved State Implementation Plan, to an exceedance of any [national ambient air quality standards]NAAQS.

(i) This permit may be granted once the director has reviewed the written application with the requirements and criteria found within this rule [~~and~~ in Section R307-202-7.

(ii) Open [B]burning [P]ermit [E]riteria shall include the following requirements.

(A) The director or the county or municipal fire authority shall consider the following factors in determining whether, and upon what conditions, to issue an open burning permit:

(I) [F]the location and proximity of the proposed burning to any building, other structures, the

1 public, and federal Class I areas that might be impacted by the smoke and emissions from the burn;
2 (II) ~~[B]~~burning ~~[will]~~shall only be conducted when the clearing index is 500 or above; and
3 (III) ~~[W]~~whether there is any practical alternative method for the disposal of the material to be
4 burned.

5 (B) Methods to minimize emissions and smoke impacts may include~~[, but are not limited to]~~:
6 (I) ~~[T]~~the use of clean auxiliary fuel;
7 (II) ~~[D]~~rying the material ~~[prior to]~~before ignition; and
8 (III) ~~[S]~~separation for alternative disposal of materials that produce higher levels of emissions and
9 smoke during the combustion process.

10 (C) Open burning permits are not valid during periods when the clearing index is below 500 or
11 publicly announced air pollution emergencies or alerts have been declared in the area of the proposed burn.

12 (D) For burns of piled material, ~~[all]~~any piles shall be reasonably dry and free of dirt.

13 (E) Open burns shall be supervised by a responsible person who shall notify the local fire
14 department and have available, either on-site or by the local fire department, the means to suppress the burn if
15 the fire does not comply with the terms and conditions of the permit.

16 (F) ~~[All]~~Any open burning operations shall be subject to inspection by the director or county or
17 municipal fire authority. The permittee shall maintain at the burn site the original or a copy of the permit that
18 shall be made available without unreasonable delay to the inspector.

19 (G) If at any time the director or the county or municipal fire authority granting the permit
20 determines that the permittee has not complied with any term or condition of the permit, the permit is subject
21 to partial or complete suspension, revocation, or imposition of additional conditions. ~~[All]~~Any burning
22 activity subject to the permit shall be terminated immediately upon notice of suspension or revocation. In
23 addition to suspension or revocation of the permit, the director or county or municipal fire authority may take
24 any other enforcement action authorized under state or local law.

25 **R307-202-8. Special Conditions.**

26 (1) Open burning for special purposes or under unusual or emergency circumstances may be
27 approved by the director if it is consistent with the federally approved State Implementation Plan and does
28 not cause or contribute to an exceedance of any ~~[national ambient air quality standards]~~NAAQS.

29 ([a]2) This permit may be granted once the director has reviewed the written application with the
30 requirements and criteria in Section R307-202-7.

31 **KEY: air pollution, open burning, fire authority**

32 **Date of Enactment or Last Substantive Amendment: October 6, 2014**

33 **Notice of Continuation: December 9, 2019**

34 **Authorizing, and Implemented or Interpreted Law: 19-2-104; 11-7-1(2)(a); 65A-8-211; 76-10-803**

1

2

3

Utah Division of Air Quality

4

5

State Implementation Plan

6

7

8

2015 Ozone NAAQS Northern Wasatch Front Moderate Nonattainment Area

9

10

[2023]2024

11

12

Section IX Part D.11

23

UTAH DEPARTMENT of
ENVIRONMENTAL QUALITY
**AIR
QUALITY**

1 **Contents**

2	List of Acronyms	8
3	Chapter 1 – Background and State Implementation Plan (SIP) Requirements	10
4	1.1 How Ozone is Formed	10
5	1.2 Health Effects of Ozone.....	10
6	1.3 History of Ozone NAAQS in the Northern Wasatch Front	11
7	1.4 2015 NAAQS Ozone NAAs	12
8	1.5 Responsible Air Agencies	15
9	1.6 Moderate SIP Elements.....	15
10	1.7 Moderate Area SIP Development Process	17
11	Chapter 2 – NWF Monitoring Network	18
12	2.1 Monitoring Network	18
13	2.2 Ozone Monitoring Data.....	20
14	2.3 Data Quality Assurance	22
15	Chapter 3 - Baseline and Future Year Emission Inventories.....	25
16	3.1 Emission Inventory Background.....	25
17	3.2 Baseline 2017 Emission Inventory and Projected 2023 Emission Inventory	25
18	Chapter 4 – Reasonably Available Control Technology (RACT) Analysis and Nonattainment New Source Review (NNSR).....	34
20	4.1 Reasonably Available Control Technology (RACT) Overview.....	34
21	4.2 Utah RACT Process	35
22	4.3 Big West Oil LLC - Refinery	36
23	4.4 Chevron Products Company – Salt Lake Refinery	40
24	4.5 Hexcel Corporation	45
25	4.6 Hill Air Force Base	48
26	4.8 Kennecott Utah Copper Bingham Canyon Mine and Copperton Concentrator	56
27	4.9 KUC Smelter and Refinery.....	60
28	4.10 LHoist North America of Arizona, Inc.....	66
29	4.11 Pacificorp Energy Gadsby Power Plant	67
30	4.12 Tesoro Refining & Marketing Company LLC dba Marathon Refinery	70
31	4.13 Utah Municipal Power Agency West Valley Power Plant	75
32	4.14 University of Utah	77
33	4.15 US Magnesium LLC.....	80
34	4.16 Chevron Salt Lake Marketing Terminal	85

1	4.17 Holly Energy Partners Woods Cross Terminal.....	87
2	4.18 Tesoro Logistics Operations LLC Truck Loading Rack and Remote Tank Farm	89
3	4.19 CTG and ACT.....	92
4	4.20 RACT Conclusions	92
5	4.21 Nonattainment New Source Review (NNSR)	95
6	Chapter 5 - Reasonably Available Control Measures (RACM) Analysis	96
7	5.1 Overview	96
8	5.2 RACM Analysis.....	97
9	5.3 RACM Analysis Conclusion	104
10	Chapter 6 – Inspection and Maintenance (I/M) Program	106
11	6.1 Overview of I/M Programs	106
12	6.2 Federal Requirements	106
13	6.3 I/M Testing	107
14	6.4 Utah I/M Program History and General Authority.....	107
15	6.5 UDAQ Evaluation of Current I/M Program.....	108
16	6.6 Implementation of I/M Program in Tooele County	110
17	Chapter 7 – Reasonable Further Progress (RFP)	112
18	7.1 Reasonable Further Progress	112
19	7.2 Methodology	112
20	7.3 RFP and Anthropogenic VOC Emission Reductions.....	113
21	7.4 Anthropogenic NO _x Emissions	115
22	7.5 CAA Section 172(c)(2) and NO _x Substitutions	118
23	[7.5]7.6 Future SIP Emission Reductions.....	122
24	7.7 RFP Conclusions	125
25	Chapter 8 - Attainment Demonstration and Weight of Evidence	126
26	8.1 Background	126
27	8.2 Photochemical Modeling Platform	127
28	8.3 Weight of Evidence (WOE).....	135
29	8.4 Conclusion	148
30	Chapter 9 - 179B(a) Prospective Demonstration.....	149
31	9.1 Overview	149
32	9.2 Ozone Source Apportionment (OSAT) Modeling	150
33	9.3 Ozone Source Apportionment Modeling Results.....	154

1	9.4 Future Design Values after Removal of Contributions from International Anthropogenic Emissions	156
2	
3	9.5 Conclusion	157
4	Chapter 10 - Transportation Conformity and Motor Vehicle Emission Budget	160
5	10.1 Introduction	160
6	10.2 Transportation Conformity	160
7	10.3 – Consultation	160
8	10.4 Motor Vehicle Emission Budgets (MVEB)	161
9	10.5 Emission Budgets for the Northern Wasatch Front NAA	162
10	10.6 Implementation of MVEB in Transportation Conformity Determinations	162
11	Chapter 11 - Contingency Measures	163
12	11.1 Overview	163
13	11.2 Contingency Measures.....	163
14	Chapter 12 - Environmental Justice & Title VI Considerations	165
15	12.1 Environmental Justice	165
16	12.2 Title VI of the Civil Rights Act	165
17	12.3 Screening-Level Analysis	166
18	12.4 Identified Stakeholders	167
19	12.5 Stakeholder Outreach, Meaningful Involvement, and Information Distribution	167
20		
21		

1 List of Tables

2 Table 1: NWF NAA marginal requirements under the CAA	14
3 Table 2: Ozone values in ppm from sites in NWF NAA from 2018 - 2020. Values calculated in accordance	
4 with 40 CFR Part 50, Appendix U.....	14
5 Table 3: SIP Requirements	16
6 Table 4: NWF 4th Maximum 8-Hour Ozone Values reported in ppm.	20
7 Table 5: NWF 8-Hour Ozone Three-Year Average 4th Maximum Ozone Values.....	21
8 Table 6: NWF Ozone Data Recovery Rates shown as percentages.	23
9 Table 7: 2017 Nonattainment Area Emission Inventory (tons per day)	26
10 Table 8: 2023 Projected Nonattainment Area Emission Inventory (tons per day)	27
11 Table 9: Biogenic Emissions (tons per day).....	27
12 Table 10: Solvent Emissions Inventory	28
13 Table 11: 2023 Solvent Emissions Inventory	28
14 Table 12: 2017 Area Source Emission Inventory	29
15 Table 13: Area Source Emission Inventory	29
16 Table 14: Non-Road, Rail and Airports Emission Inventory.....	30
17 Table 15: 2023 Non-Road, Rail and Airports Emission Inventory.....	30
18 Table 16: 2017 Point Sources and EGUs Emission Inventory	31
19 Table 17: 2023 Point Sources and EGUs Emission Inventory	32
20 Table 18: 2017 On-road emission inventory for ozone weekday.....	32
21 Table 19: 2023 On-road emission inventory for ozone weekday.....	32
22 Table 20: 2017 ERC Bank Emission Inventory.....	33
23 Table 21: 2023 ERC Bank Emission Inventory.....	33
24 Table 22: Big West Oil LLC Refinery Facility-Wide Emissions	37
25 Table 23: Big West Oil LLC - Refinery.....	37
26 Table 24: Chevron Products Company – Salt Lake Refinery Facility-Wide Emissions	40
27 Table 25: Chevron Products Company – Salt Lake Refinery	41
28 Table 26: Hexcel Corporation Facility-Wide Emissions.....	45
29 Table 27: Hexcel Corporation	45
30 Table 28: Hill Air Force Base Facility-Wide Emissions.....	48
31 Table 29: Hill Air Force Base	50
32 Table 30: Holly Frontier Sinclair Woods Cross Refinery Facility-Wide Emissions.....	53
33 Table 31: Holly Frontier Sinclair Woods Cross Refinery	54
34 Table 32: KUC Bingham Canyon Mine and Copperton Concentrator Facility-Wide Emissions	57
35 Table 33: Kennecott Utah Copper (KUC): Bingham Canyon Mine and Copperton Concentrator	57
36 Table 34: KUC Smelter and Refinery Facility-Wide Emissions	61
37 Table 35: Kennecott Utah Copper: Smelter and Refinery	61
38 Table 36: LHoist North America of Arizona Facility Facility-Wide Emissions	66
39 Table 37: Lhoist North America of Arizona, Inc.	67
40 Table 38: Pacificorp Energy Gadsby Power Plant Facility-Wide Emissions	68
41 Table 39: PacifiCorp Energy: Gadsby Power Plant.....	68
42 Table 40: Tesoro Marathon Refinery Facility-Wide Emissions	70
43 Table 41: Tesoro Refining and Marketing Company LLC dba Marathon Refinery	70
44 Table 42: West Valley Power Plant Facility-Wide Emissions	75
45 Table 43: Utah Municipal Power Agency West Valley Power Plant	76
46 Table 44: University of Utah Facility-Wide Emissions	77

1	Table 45: University of Utah	78
2	Table 46: US Magnesium LLC Facility-Wide Emissions	81
3	Table 47: US Magnesium RACT Determination	81
4	Table 48: Chevron Salt Lake Marketing Terminal Facility-Wide Emissions	86
5	Table 49: Chevron Salt Lake Marketing Terminal	86
6	Table 50: Holly Energy Partners Woods Cross Terminal Facility-Wide Emissions	88
7	Table 51: Holly Energy Partners Woods Cross Terminal	88
8	Table 52: Tesoro Logistics Operations LLC TLR and RTF Facility-Wide Emissions	90
9	Table 53: Tesoro Logistics Operations LLC TLR and RTF	90
10	Table 54: Controls identified by RACT analysis for the NWF NAA.....	94
11	Table 55: Existing area source VOC rules in the NWF NAA	97
12	Table 56: VOC RACM Assessment Summary	98
13	Table 57: NO _x RACM Assessment Summary.....	102
14	Table 58: RACM Identified Control Strategies	104
15	Table 59: 2023 Davis County Summer Basic Performance Modeling.....	109
16	Table 60: 2023 Salt Lake Summer Basic Performance Modeling	109
17	Table 61: 2023 Utah County Summer Basic Performance Modeling	110
18	Table 62: 2023 Weber County Summer Basic Performance Modeling	110
19	Table 63: I/M Program Implementation Evaluation for Tooele County in 2023.....	111
20	Table 64: Anthropogenic VOC Emission Reductions from 2017 to 2023 for the NWF.....	113
21	Table 65: Anthropogenic NO _x Emission Reductions from 2017 to 2023 for the NWF	115
22	Table 66: Performance statistics for maximum daily average 8-hour (MDA8) ozone on all days of the modeling episode. Results are shown for monitors in the 1.33 km modeling domain.....	129
23	Table 67: Performance statistics for maximum daily average 8-hour (MDA8) ozone on high O ₃ days (observed MDA8 > 60 ppb). Results are shown for monitors in the 1.33 km modeling domain.....	130
24	Table 68: Baseline design values (BDV), relative response factors (RRF), future design values (FDV) at Bountiful, Hawthorne and Herriman monitoring locations. Design values before and after exclusion of days impacted by wildfire smoke are shown.* indicates design value after removal of wildfire smoke- impacted ozone exceedance values.....	134
25	Table 69: Baseline design values (BDV), relative response factors (RRF), future design values (FDV) at monitors within the northern Wasatch Front ozone non-attainment area.....	134
26	Table 70: 2023 contributions from upwind states to NWF NAA (ppb) as identified by EPA 2016v2 modeling	138
27	Table 71: NO _x and VOC reductions resulting from PM _{2.5} SIPs.	141
28	Table 72: Emission reductions associated with incentive programs in and around the NWF NAA. * VOC emission reductions not available. ** Combined NO _x and NMOC emission reductions	145
29	Table 73: Emission source categories considered in 2023 ozone source apportionment modeling. *Only VOCs and NO _x tracer species from US Magnesium are tagged.	152
30	Table 74: Future design values (FDV), source contribution estimates for international anthropogenic emissions (IAE) and adjusted future design values (FDV adj) at monitoring locations within the northern Wasatch Front non-attainment area.....	157
31	Table 75: NWF Ozone 2023 NAA MVEB	162
32	Table 76: Percent Emission Reductions Based on 2017 Base Year Inventory.....	164
33	Table 77: Environmental Justice Indexes Over the 80th Percentile in the NWF NAA.....	166

1 List of Figures

2	Figure 1: Wasatch Front Ozone Nonattainment Areas.	13
3	Figure 2: Monitoring sites in the NWF NAA.....	19
4	Figure 3: Ozone 4th Highest 8-Hour Concentration in Wasatch Front.....	22
5	Figure 4: NWF Anthropogenic VOC Emission Inventories	114
6	Figure 5: NWF Anthropogenic NO _x Emission Inventories.....	116
7	Figure 6: NO _x -attributable (brown) and VOC-attributable (green) ozone at Hawthorne (left panel) and	
8	Bountiful (right) monitoring stations on average over all days of the modeling episode.....	117
9	Figure 7: 12/4/1.33 km CAMx Modeling Domains	128
10	Figure 8: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone	
11	concentration (O ₃ _8hrmax) at the Bountiful monitoring station.....	130
12	Figure 9: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone	
13	concentration (O ₃ _8hrmax) at the Hawthorne monitoring station.....	131
14	Figure 10: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone	
15	concentration (O ₃ _8hrmax) at the Erda monitoring station.	131
16	Figure 11: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone	
17	concentration (O ₃ _8hrmax) at the Herriman monitoring station.	131
18	Figure 12: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone	
19	concentration (O ₃ _8hrmax) at the Harrisville monitoring station.....	132
20	Figure 13: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone	
21	concentration (O ₃ _8hrmax) at the Ogden monitoring station.	132
22	Figure 14: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone	
23	concentration (O ₃ _8hrmax) at Gothic Colorado monitoring station.....	132
24	Figure 15: Ozone Attributed to Domain-Wide Sources at Hawthorne as simulated 8-hour mean daily	
25	ozone concentrations along the Wasatch Front.	137
26	Figure 16: Episode average of simulated 8-hour mean daily ozone concentrations at Hawthorne along	
27	the Wasatch Front.	137
28	Figure 17: Ozone Attributed to Domain-Wide Sources.....	140
29	Figure 18: MDA8 ozone source apportionment exceedance vs. non-exceedance days.....	140
30	Figure 19: Map of source regions used in 2023 ozone source apportionment modeling for the 4 and 1.33	
31	km domains. Each color represents a different source region.....	152
32	Figure 20: Source contributions by region and emission sector to maximum daily 8-hr average (MDA8)	
33	ozone concentration (ppb) at the Hawthorne monitoring station for each day of the modeling episode	
34	(left panel) and on average over all days of the modeling episode (right panel). Results are based on	
35	2023 OSAT model outputs for the 1.33 km modeling domain and spin-up days are excluded.....	155
36	Figure 21: Source contributions by region and emission sector to maximum daily 8-hr average (MDA8)	
37	ozone concentration (ppb) at the Hawthorne monitoring station for each day of the modeling episode	
38	(upper panel) and on average over all days of the modeling episode, exceedance days, top 10	
39	exceedance days and non-exceedance days (lower panel). Results are based on 2023 OSAT model	
40	outputs for the 1.33 km modeling domain and spin-up days are excluded.....	156
41	Figure 22: International contributions at Hawthorne monitor site on exceedance and non-exceedance	
42	days.....	158
43	Figure 23: EJ Indexes >80th percentile in Each NWF NAA Census Block.....	165
44		

1 List of Acronyms

2 ACT = Alternative Control Techniques
3 AO = Approval Order
4 BDV = Base Design Value
5 CAA = Clean Air Act
6 CAMx = Comprehensive Air Quality Model with Extensions
7 CFR = Code of Federal Register
8 CO = Carbon Monoxide
9 CTG = Control Techniques Guidelines
10 DERA = Diesel Emissions Reduction Act
11 DV = Design Value
12 EGU = Electric Generating Units
13 EMP = Enhanced Monitoring Program
14 EPA = U.S. Environmental Protection Agency
15 EV = Electric Vehicles
16 FDV = Future Design Value
17 FHWA = Federal Highway Administration
18 FIP = Federal Implementation Plan
19 FR = Federal Register
20 HAP = Hazardous Air Pollutants
21 HYSPLIT = Hybrid Single-Particle Lagrangian Integrated Trajectory
22 ICT = Interagency Consultation Team
23 I/M = Inspection and Maintenance
24 MDA8 = Maximum Daily Average Ozone Over an 8-Hour period
25 MOVES3 = Motor Vehicle Emission Simulator (2014 Release)
26 MPE = Model Performance Evaluation
27 MPO = Metropolitan Planning Organization
28 MVEB = Motor Vehicle Emissions Budgets
29 NAA = Nonattainment Area
30 NAAQS = National Ambient Air Quality Standard
31 NESHAP = National Emission Standards for Hazardous Air Pollutants
32 NMOG – Non-Methane Organic Gases
33 NOx = Nitrogen Oxides
34 NSPS = New Source Performance Standards
35 NNSR = Nonattainment New Source Review
36 OBD = On-Board Diagnostics
37 OSAT = Ozone Source Apportionment
38 PPB = Parts per Billion
39 PPM = Parts per Million
40 PPMV = Parts Per Million by Volume
41 RACM = Reasonably Available Control Measures
42 RACT = Reasonably Available Control Technology
43 RFP = Reasonable Further Progress
44 RRF = Relative Response Factor
45 SIP = State Implementation Plan
46 SMOKE = Sparse Matrix Operator Kernel Emissions

- 1 TIP = Transportation Improvement Program
- 2 TPD = Tons per Day
- 3 TPY = Tons per Year
- 4 TSD = Technical Support Document
- 5 UDAQ = Utah Division of Air Quality
- 6 VMT = Vehicle Miles Traveled
- 7 VOC = Volatile Organic Compounds
- 8 WOE = Weight of Evidence
- 9 WRF = Weather Research and Forecasting
- 10 ZEV = Zero Emission Vehicles
- 11

1 **Chapter 1 – Background and State Implementation Plan (SIP)**
2 **Requirements**

3 *1.1 How Ozone is Formed*

4 Ozone is a highly unstable and oxidative gas made up of three atoms of oxygen covalently
5 bonded together. Tropospheric ozone is not directly emitted but is formed in the atmosphere through a
6 complex series of secondary and tertiary reactions. In short, Volatile Organic Compounds (VOCs) from a
7 variety of natural and anthropogenic sources react in the atmosphere with Nitrogen Oxides (NO_x), and
8 to a lesser extent Carbon Monoxide (CO), in the presence of sunlight and heat to form ozone (Equation
9 1).

10
11 *Equation 1*

12 **VOC + NO_x + Sunlight + Heat = O₃**

13
14 Anthropogenic sources of VOCs and NO_x include, but are not limited to automobile exhaust,
15 refueling vapors, solvents, complete and incomplete combustion of fuels, and industrial activities.
16 Natural sources include wildfires, biogenic activities, and soil respiration.

17 In the Northern Wasatch Front (NWF), elevated concentrations of ground-level ozone are
18 predominantly a summertime phenomenon associated with extended periods of high-pressure
19 coinciding with high temperatures, low relative humidity, limited cloud cover, and intense incoming
20 solar radiation. In addition to favorable atmospheric conditions for the local formation of ozone, the
21 high elevation of the NWF and its location within the Intermountain West contribute to the observed
22 elevated ozone concentrations.

23 *1.2 Health Effects of Ozone*

24 Exposure to elevated levels of ozone is linked to an array of respiratory and pulmonary
25 problems, primarily among susceptible populations and those participating in outdoor activities.¹ These
26 health problems can include increased susceptibility to respiratory illnesses like pneumonia and
27 bronchitis, chest pain, inflammation of the respiratory tract, irritated and or permanently damaged lung
28 tissues, and cardiac impacts and aggravation of preexisting respiratory issues like asthma or chronic
29 obstructive pulmonary disease (COPD).

30 The Clean Air Act (CAA) requires the US Environmental Protection Agency (EPA) to set air quality
31 standards for certain criteria air pollutants, known as the National Ambient Air Quality Standards
32 (NAAQS), to protect both public health and the environment. States must develop plans to attain and
33 maintain these health-based standards called State Implementation Plans (SIPs). If an area is determined
34 to not meet these standards, then the SIP must be revised with plans on how the area will achieve the
35 standard by deadlines established in the CAA.

¹ Devlin BR, Raub AJ, Folinsbee JL. (1997). Health effects of ozone. *Science & Medicine*;(3):8-17.

1 1.3 History of Ozone NAAQS in the Northern Wasatch Front

2 Significant efforts have been made in reducing precursor emissions, primarily NO_x and VOCs,
3 throughout the NWF over the last 40 years. Much of the more recent efforts have been targeted at
4 reducing Utah's wintertime fine particulate matter (PM_{2.5}), however, there is a long history of efforts to
5 combat ozone directly.

6 1.3.1 1979 1-Hour Ozone Standard

7 In 1977 EPA designated parts of the Wasatch Front including Davis, Salt Lake, Utah, and Weber
8 Counties as nonattainment for the 1-hour ozone standard of 0.120 parts per million (ppm). In 1981 both
9 Weber and Utah Counties were re-designated as attainment. In April of 1981, an ozone SIP was
10 submitted to EPA that demonstrated attainment of the standard for both Davis and Salt Lake Counties
11 by May 1, 1984. This ozone SIP submittal was fully approved by the EPA.

12 In November of 1990, Congress amended the CAA. Under the 1990 Amendments, each area of
13 the country that was designated nonattainment for the 1-hour ozone NAAQS, including Salt Lake County
14 and Davis County, was classified by operation of law as marginal, moderate, serious, severe, or extreme
15 nonattainment depending on the severity of the area's air quality problem. The ozone nonattainment
16 designation for Salt Lake County and Davis County continued by operation of law according to section
17 107(d)(1)(C)(i) of the CAA, as amended in 1990. Furthermore, this area was classified by operation of law
18 as moderate for ozone under CAA section 181(a)(1). On November 12, 1993, Utah submitted a formal
19 request to EPA that the Salt Lake/Davis County nonattainment area (NAA) be redesignated to
20 attainment of the 1-hour ozone NAAQS, and the State, in accordance with the CAA, submitted a
21 maintenance plan. In July of 1997, the EPA approved the Ozone Maintenance Plan for Salt Lake and
22 Davis Counties, effective August 18, 1997, and redesignated both counties to attainment for 1-hour
23 ozone NAAQS.

24 1.3.2 1997 8-Hour Ozone Standard

25 In July 1997, the EPA established a new, more rigorous standard for the 8-hour ozone NAAQS.
26 The new 8-hour standard was set at a level of 0.080 ppm averaged over an eight-hour period. To better
27 account for variable meteorological conditions that can influence ozone formation, a violation of the
28 standard occurs when the three-year average of the fourth-highest maximum value at a monitor
29 exceeds the federal standard. On April 30, 2004, EPA published the first phase of its final rule (Phase 1
30 Rule) to implement the 8-hour ozone NAAQS.² At the same time, EPA also published 8-hour ozone
31 designations for all areas of the country. All areas of Utah were designated attainment or unclassifiable.
32 These designations became effective on June 15, 2004. The Phase 1 Rule provided that the 1979 1-hour
33 ozone NAAQS would be revoked following the effective date of the 8-hour ozone NAAQS, or June 15,
34 2005. This revocation action was affirmed on August 3, 2005.³ On November 29, 2005, EPA published
35 the Final Rule to Implement the 8-hour Ozone NAAQS - Phase 2.⁴

² Final Rule to Implement the 8-Hour Ozone National Ambient Air Quality Standard—Phase 1, 69 Fed. Reg. 23,951 (April 30, 2004).

³ Identification of Ozone Areas for Which the 1-Hour Standard Has Been Revoked and Technical Correction to Phase 1 Rule, 70 Fed. Reg. 44,470 (Aug. 3, 2005).

⁴ Final Rule to Implement the 8-Hour Ozone National Ambient Air Quality Standard—Phase 2; Final Rule to Implement Certain Aspects of the 1990 Amendments Relating to New Source Review and Prevention of Significant Deterioration as They Apply in Carbon Monoxide, Particulate Matter and Ozone NAAQS; Final Rule for Reformulated Gasoline, 70 Fed. Reg. 71,612 (Nov. 29, 2005).

1 The Utah Air Quality Board adopted a revised maintenance plan on January 3, 2007. Salt Lake
2 and Davis Counties were found to be in attainment on July 18, 1995, under the 1-hour ozone NAAQS⁵
3 and had been operating under an approved maintenance plan (62 Federal Register [FR] 38213) since July
4 17, 1997.⁶ This maintenance plan demonstrated that Salt Lake and Davis Counties had achieved the 8-
5 hour ozone standard and could maintain compliance with the standard through 2014.

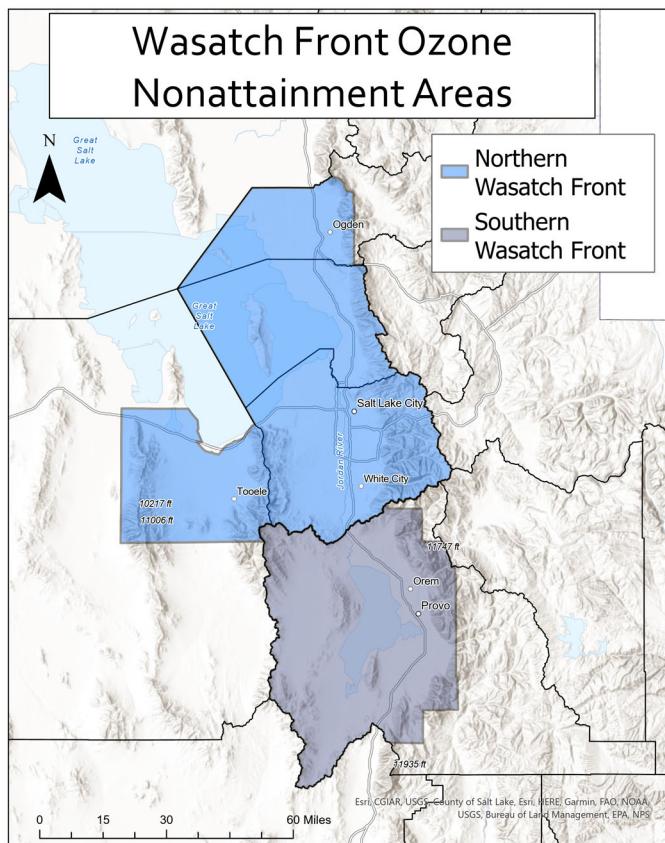
6 **1.3.3 2008 8-Hour Ozone Standard**

7 In March, 2008, the EPA revised the 1997 8-hour NAAQS from 0.080 to 0.075 ppm averaged
8 over an 8-hour period. In 2012, EPA finalized the standard and issued rulemaking relevant to the
9 implementation of the rule.⁷ In 2015, EPA finalized the SIP requirements and NAA classifications and
10 determinations for this standard.⁸ Monitoring data indicated that all areas of Utah were attaining the
11 standard, and thus no SIP revisions were required for the state of Utah for this NAAQS.

12 *1.4 2015 NAAQS Ozone NAAs*

13 On October 26, 2015, the EPA promulgated a revision to the primary NAAQS for ground-level
14 ozone in accordance with Section 107(d) of the CAA. This revision lowered the standard from 0.075 to
15 0.070 ppm for the 4th highest daily maximum 8-hour concentration (MDA8) averaged over three years.⁹
16 As a result of the more stringent standard, effective on August 3, 2018, the EPA designated two areas
17 along the Wasatch Front as marginal NAA including the Northern Wasatch Front and Southern Wasatch
18 Front.¹⁰ The NWF NAA includes Salt Lake and Davis counties as well as portions of Tooele and Weber
19 counties (Figure 1).

⁵ Determination of Attainment of Ozone Standard for Salt Lake and Davis Counties, Utah, and Determination Regarding Applicability of Certain Reasonable Further Progress and Attainment Demonstration Requirements, 60 Fed. Reg. 36,723 (July 18, 1995).


⁶ Approval and Promulgation of Air Quality Implementation Plans; State of Utah; Salt Lake and Davis Counties Ozone Redesignation to Attainment, Designation of Areas for Air Quality Planning Purposes, Approval of Related Elements, Approval of Partial NOX RACT Exemption, and Approval of Weber County I/M Program, 62 Fed. Reg. 38,213 (July 17, 1997).

⁷ 77 FR 30160

⁸ FR 80 12264

⁹ National Ambient Air Quality Standards for Ozone, 80 Fed. Reg. 65,292 (Oct. 26, 2015).

¹⁰ Additional Air Quality Designations for the 2015 Ozone National Ambient Air Quality Standards, 83 Fed. Reg. 25,776 (June 4, 2018).

1
2 *Figure 1: Wasatch Front Ozone NAA*

3 **1.4.1 Northern Wasatch Front Ozone NAA**

4 The boundaries for the NWF NAA include three valleys that are part of the Intermountain West's
 5 basin and range geological province: Tooele Valley, the North Salt Lake Valley, and the Salt Lake Valley.
 6 The majority of the approximately 1.8 million residents within the NAA reside in the Salt Lake valleys
 7 situated along the base of the Wasatch Mountains. The three valleys consist of a variety of complex
 8 topography including low and large valleys bordered by steep mountain terrain and a large body of
 9 water—the Great Salt Lake. The average elevation of the three valleys is 4,327 feet above sea level with
 10 the bordering Wasatch Mountains rising to elevations over 11,000 feet. The area experiences a dry-
 11 summer continental climate with hot and dry summers dominated by persistent high-pressure systems.
 12 The relatively high baseline elevation of over 4,000 feet, coupled with its warm and dry climate, and its
 13 prominent location in the Intermountain West, results in a naturally high contribution of background
 14 ozone in the NWF NAA¹¹ during the typical summer ozone season.

15
16 **1.4.2 NWF Marginal Ozone NAA Requirements**

17 The NWF NAA failed to attain the standard by the marginal attainment date but has met all
 18 statutory requirements for a marginal NAA under the CAA Section 182(a) as shown in Table 1.

¹¹ Scientific assessment of background ozone over the U.S.: Implications for air quality management. Jaffe et al.

1

2 Table 1: NWF NAA marginal requirements under the CAA.

CAA Requirement	Federal Register Approval
2017 Base Year Emission Inventory	86 FR 35404, July 6, 2021
Emission Inventory Statement Rule	87 FR 24273, April 25, 2022
Nonattainment New Source Review	87 FR 24273, April 25, 2022

3

4 The design value (DV) calculated from data collected from 2018-2020 was used to determine if
 5 the area attained the standard by the attainment date of August 3, 2021. Validated data in EPA's Air
 6 Quality System (AQS) shows a 3-year average of the 4th high maximum daily 8-hour ozone value at the
 7 NWF Bountiful monitor of 0.077 ppm, with exceedances also observed at all other monitoring sites in
 8 the NAA except Erda in Tooele County (Table 2).

9

10 Table 2: Ozone values in ppm from sites in NWF NAA from 2018 - 2020. Values calculated in accordance with 40 CFR Part 50,
 11 Appendix U.

Ozone Summary						
Site ID	Site Name	County	Annual 4th Highest (ppm)			Three Year Average (ppm) 2018-2020
			2018	2019	2020	
49-057-1003	Harrisville	Weber	0.077	0.064	0.074	0.071
49-011-0004	Bountiful	Davis	0.080	0.073	0.080	0.077
49-035-2005	Copperview	Salt Lake	0.079	0.067	0.075	0.073
49-035-3006	Hawthorne	Salt Lake	0.074	0.073	0.075	0.074
49-035-3010	Rose Park	Salt Lake	0.080	0.071	0.080	0.077
49-035-3013	Herriman	Salt Lake	0.078	0.070	0.073	0.073
49-045-0004	Erda	Tooele	0.074	0.065	0.070	0.069

12

13 On October 7, 2022, the EPA finalized rulemaking where it determined that the NWF did not
 14 attain by the attainment date and reclassified the area to moderate with a new attainment date of
 15 August 3, 2024.¹² The effective date of this rulemaking was November 7, 2022, marking the effective
 16 date of moderate designation for the NWF NAA.

17

18 1.4.3 Utah's Request to Adjustment the NWF NAA Boundary

19 On February 27, 2023, Governor Spencer J. Cox submitted a letter¹³ and supporting
 20 documentation¹⁴ to EPA Region 8 administrator Kathleen Becker. In this letter, Governor Cox used his
 21 authority under Section 107(d)(3)(D) of the CAA to request an adjustment to the existing NWF NAA
 22 boundary (figure 1). The requested modification would extend the western edge of the existing
 23 boundary in Tooele County 7.6 miles further west. This adjustment would result in the inclusion of US

¹² Determinations of Attainment by the Attainment Date, Extensions of the Attainment Date, and Reclassification of Areas Classified as Marginal for the 2015 Ozone National Ambient Air Quality Standards, 87 Fed. Reg. 60,897 (Oct. 7, 2022).

¹³ Utah's Request for Boundary Adjustment for the Northern Wasatch Front NAA. Feb. 27, 2023: <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-002065.pdf>

¹⁴ Request for Adjustment of the Northern Wasatch Front NAA Boundary for the 2015 8-hour Ozone National Ambient Air Quality Standard. Feb. 27, 2023: <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-002086.pdf>

1 Magnesium LLC (section 4.15) into the NWF NAA. US Magnesium's Rowley plant is currently one of the
2 largest point sources of VOCs and NO_x in the greater Wasatch Front. US Magnesium is also a unique
3 source of halogen emissions which have been shown to impact both summer and wintertime pollution.¹⁵
4 Upon the receipt of the letter, EPA has 18 months to either approve or deny the state's request. EPA has
5 not formally acted on this request and thus the extent of the NWF NAA remains as described in section
6 1.4.3 (Figure 1). However, given the magnitude of emissions from US Magnesium LLC, and their impacts
7 on the NWF NAA, the Utah Division of Air Quality (UDAQ) has included US Magnesium LLC in this SIP
8 revision where it is appropriate.

9 *1.5 Responsible Air Agencies*

10 **1.5.1 Utah Division of Air Quality (UDAQ)**

11 Section 19-2-104 of the Utah Code gives the Utah Air Quality Board the authority to promulgate
12 rules "regarding the control, abatement, and prevention of air pollution from all sources and the
13 establishment of the maximum quantity of air pollutants that may be emitted by an air pollutant
14 source."¹⁶ The UDAQ develops, prepares, and submits SIPs to the Utah Air Quality Board for
15 consideration and promulgation. UDAQ is the primary state agency responsible for the development and
16 implementation of SIPs once they are approved by the Utah Air Quality Board, and associated
17 administrative rules, as required by the CAA.

18 **1.5.2 Interagency Consultation Team**

19 UDAQ works in close coordination with local Metropolitan Planning Organizations (MPOs) on
20 relevant traffic and travel-related aspects of SIP and transportation conformity activities. The
21 Interagency Consultation Team¹⁷ (ICT) is a group of MPOs and transportation planning agencies, that
22 undertake the interagency consultation process as it relates to the development of the SIP, applicable
23 control measures related to transportation included in the SIP, transportation plans, the Transportation
24 Improvement Program (TIP), and Transportation Conformity determinations. Within the NWF NAA, the
25 Wasatch Front Regional Council (WFRC) serves as the MPO for Box Elder, Davis, Salt Lake, Tooele, and
26 Weber Counties. The Utah Department of Transportation (UDOT), Federal Highway Transportation
27 Administration, Federal Transit Administration, and the EPA, are all part of the ICT as well.

28 *1.6 Moderate SIP Elements*

29 As part of the reclassification to a moderate NAA, EPA has required that Utah submit a SIP
30 revision.¹⁸ A moderate SIP revision requires mandatory planning elements per CAA section 182(b) which
31 are outlined in the final SIP Requirements Rule as well as in Table 3.¹⁹

¹⁵ Womack CC, Chace WS, Wang S, Baasandorj M, Fibiger DL, Franchin A, Goldberger L, Harkins C, Jo DS, Lee BH, Lin JC, McDonald BC, McDuffie EE, Middlebrook AM, Moravek A, Murphy JG, Neuman JA, Thornton JA, Veres PR, Brown SS. Midlatitude Ozone Depletion and Air Quality Impacts from Industrial Halogen Emissions in the Great Salt Lake Basin. *Environ Sci Technol*. 2023 Feb 7;57(5):1870-1881. doi: 10.1021/acs.est.2c05376. Epub 2023 Jan 25. PMID: 36695819.

¹⁶ Utah Code Ann. § 19-2-104(1)(a).

¹⁷ Utah State Implementation Plan Section XII; Transportation Conformity Consultation (May 2, 2007), available at <https://documents.deq.utah.gov/legacy/laws-and-rules/air-quality/sip/docs/2007/05May/SECXII.PDF>

¹⁸ 87 Fed. Reg. 60,897.

¹⁹ Implementation of the 2008 National Ambient Air Quality Standards for Ozone: NAA Classifications Approach, Attainment Deadlines and Revocation of the 1997 Ozone Standards for Transportation Conformity Purposes, 77 Fed. Reg. 30,160 (May 21, 2012).

1 *Table 3: SIP Requirements*

Category	Requirement	Reference	Addressed in Section
Reasonable Further Progress (RFP)	Demonstrate a 15% reduction of VOCs from the base year inventory to the attainment year.	CAA §182(b)(1)(A)(i) and 40 CFR §51.1310	Chapter 7 (IX D.11)
Base Year and Projected Emission Inventories	Establish the base year emission inventory (2017) and attainment year inventory (2023) for use in establishing RFP and demonstration of attainment.	CAA §182(b)(1)(B) and 40 CFR §51.1315	Chapter 3 (IX D.11)
Attainment Demonstration	Demonstration that the NAA will attain the standard using a photochemical model and methods approved in EPA modeling guidance.	CAA §182(c)(2)(A) and 40 CFR §51.1308	Chapter 8 (IX D.11)
Reasonable Available Control Technology (RACT)	Evaluation of the application of reasonable control technology (technically and economically feasible) at major sources.	CAA §182(b)(2) and 40 CFR §51.1312	Chapter 4 (IX D.11)
Reasonable Available Control Measure (RACM)	Evaluation of application of RACM for all other sources of ozone precursors.	CAA §182(b)(2) and 40 CFR §51.1312	Chapter 5 (IX D.11)
Motor Vehicle Inspection and Maintenance (I/M) Program	Evaluate if current I/M program meets CAA requirements.	CAA §182(b)(4)	Chapter 6 (IX D.11)
Nonattainment New Source Review (NNSR) Program	General offsets for VOCs shall be a ratio of at least 1.15 to 1.0.	CAA §182(b)(5) and 40 CFR §51.1314	Chapter 4 (IX D.11)
Contingency Measures	Emission reduction measure triggered if the NAA fails to attain the standard by the attainment date.	CAA §182(c)(9)	Chapter 11 (IX D.11)

Motor Vehicle Emission Budgets	Establishment of maximum allowable emissions from on-road mobile sector for ozone precursor emissions used in transportation conformity analysis.	CAA §182(c)(5)	Chapter 10 (IX D.11)
---------------------------------------	---	----------------	----------------------

1 *1.7 Moderate Area SIP Development Process*

2 UDAQ led the development of the moderate SIP and coordinated with the MPOs and EPA on the
 3 development of the various SIP elements. Work began in September 2019 in anticipation of the
 4 reclassification of the area from marginal to moderate status. Throughout the SIP development, public
 5 stakeholder meetings were held to solicit comment and engagement from interested parties as detailed
 6 in Chapter 10 of this SIP revision. The UDAQ holds regular bi-monthly meetings with both industry
 7 representatives and environmental advocates. These meetings provide the opportunity to maintain
 8 open dialogue and transparency in the development of a SIP with interested parties. Once aspects of the
 9 SIP were developed to the point where they could be shared, UDAQ scheduled public outreach meetings
 10 to present data and information to the public, and the public was provided with the opportunity to
 11 comment or make suggestions. UDAQ also posted all documents related to the development of this SIP
 12 revision, including all technical supporting documentation, to its public webpage²⁰ as soon as they
 13 became available.

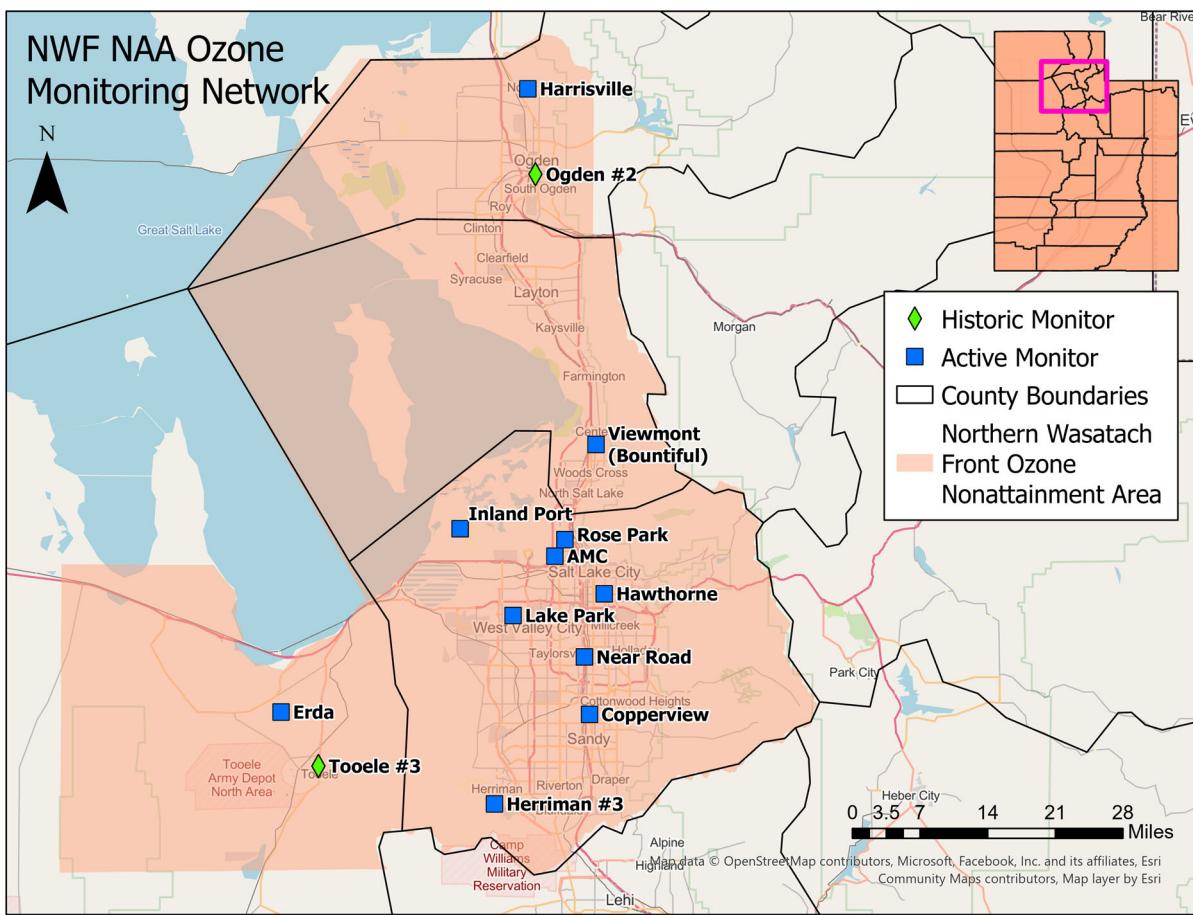
14

²⁰ <https://deq.utah.gov/air-quality/northern-wasatch-front-moderate-ozone-sip-technical-support-documentation#supporting-ts>

1 Chapter 2 – NWF Monitoring Network

2 2.1 Monitoring Network

3 The UDAQ maintains a highly reliable, continuous near-surface ambient air monitoring network
4 that meets the requirements of 40 CFR Parts 50, 53, and 58.²¹ The 1970 CAA and subsequent
5 amendments provide the framework for an ambient air monitoring network that is designed to collect
6 data addressing five basic needs to:


- 7 1. Activate emergency control procedures that prevent or alleviate air pollution episodes.
- 8 2. Provide air pollution data to the public in a timely manner.
- 9 3. Judge compliance with and progress towards meeting ambient air quality standards.
- 10 4. Observe pollution trends throughout the region, including non-urban areas.
- 11 5. Provide a database for research evaluation of the following effects: urban, land-use, transportation
12 planning, development and evaluation of abatement strategies, and development and validation of
13 diffusion models.

14
15 The UDAQ collects monitoring data for five NAAQS criteria pollutants including: sulfur dioxide
16 (SO_2), CO, ozone (O_3), nitrogen dioxide (NO_2) and particulate matter (PM_{10} and $\text{PM}_{2.5}$). In addition, UDAQ
17 currently operates one continuous gas chromatograph for the collection and analysis of ozone precursor
18 data for the Photochemical Assessment Monitoring Station (PAMS) program. Each year, a network
19 review is performed by staff and the Annual Monitoring Network Plan is submitted as a separate
20 document to EPA Region 8 for approval. In addition, Utah has established a comprehensive
21 meteorological monitoring network to supply data for modeling activities, including measurements of
22 temperature, relative humidity, wind speed, and wind direction.

23 As part of the air monitoring network, the UDAQ specifically operates an extensive network of
24 ground level in-situ ambient air quality monitoring stations throughout the NWF NAA. The network
25 consists of eight active sites that monitor atmospheric concentrations of ozone that are used for
26 regulatory purposes, as well as two historic sites which help provide context for the extent and length of
27 UDAQs monitoring network (Figure 2). Beyond the UDAQ operated network of sites, there are several
28 research grade ozone monitoring stations within the NAA boundary that are supported by UDAQ
29 including: The Red Butte Ozone Monitoring Network, the mobile based TRAX Air Quality Observation
30 Project platform and the Mobile Electric Bus Air Quality Monitoring Project. While these projects are not
31 regulatory and are not included in the EPA's Air Quality System and determination of a DV for the NAA,
32 they significantly contribute to the understanding of transport, production, and the spatiotemporal
33 patterns of ozone throughout the NAA.

²¹ Title 40 Protection of the Environment, Chapter 1 Environmental Protection Agency, Subchapter C Air Programs, Part 50 National Primary and Secondary Ambient Air Quality Standards, Part 53 Ambient Air Monitoring Reference and Equivalent Methods and Part 58 Ambient Air Quality Surveillance.

1
2 *Figure 2: Monitoring sites in the NWF NAA*

3 The UDAQ currently operates one PAMS site at Hawthorne, located in Salt Lake County. The PAMS
 4 program is a subset of the State or Local Air Monitoring Stations (SLAMS) network for enhanced
 5 monitoring of ozone precursor chemicals at sites located in an area with a population over 1,000,000
 6 and in areas of moderate and above nonattainment status. The PAMS program is designed with the
 7 objective to produce an air quality database to be used to evaluate and refine ozone prediction models.
 8 In addition, the program will assist to identify and quantify the ozone precursors and establish the
 9 temporal patterns and associated meteorological conditions to assist and refine the control strategies.
 10 UDAQ is measuring the following parameters at the PAMS required site:

- 11 • Carbonyls
- 12 • Meteorological parameters: ambient temperature, wind direction, wind speed, atmospheric
- 13 pressure, relative humidity, precipitation, mixing layer height, solar radiation, and UV radiation
- 14 • Speciated VOCs
- 15 • True NO₂
- 16 • NO & NO_y
- 17 • Ozone

1 Since significant portions of the NWF NAA overlap with the Salt Lake City PM_{2.5} NAA, the UDAQ
2 operates the PAMS site for the full calendar year to account for both wintertime PM_{2.5} and summertime
3 ozone seasons.

4 In order to meet the Enhanced Monitoring Plan (EMP) requirements for a moderate NAA the UDAQ
5 is developing an EMP in fulfillment of federal regulations, 40 CFR Part 58, Appendix D 5(h). These
6 regulations require that a state with any area designated moderate or above for the 8-hour ozone
7 standard, and any state within the Ozone Transport Region (OTR), develop, implement, and submit an
8 EMP for ozone to the regional EPA office two years following the effective date of a designation to a
9 classification of moderate or above. The EMP is intended to provide monitoring organizations the
10 flexibility to implement any additional monitoring beyond the minimum requirements for the SLAMS to
11 complement the needs of their area.

12 As part of UDAQ's proposed EMP, UDAQ plans to expand PAMS monitoring beyond the existing site
13 at Hawthorne to include 5 additional sites throughout the NWF NAA. These sites will represent an array
14 of land use types and will be distributed to provide insight into the underlying atmospheric chemical
15 regimes present at a variety of locations.

16 *2.2 Ozone Monitoring Data*

17 Table 4 and Table 5 show the monitoring data for the past twelve years for the NWF ozone
18 monitoring sites. The MDA8, and the 3-year averages of the MDA8 at each site are shown, respectively.
19 A trend graph of data from 2002 – 2021 for the key sites in the NWF is presented in Figure 3.

20
21 *Table 4: NWF MDA8 reported in ppm.*

NWF NAA Ozone MDA8 (ppm)														
Site	ID	AQS #	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Bountiful	BV	49-011-0004	0.074	0.068	0.067	0.062*	0.074	0.073*	0.076	0.078	0.080	0.073	0.080	0.082
Copperview	CV	49-035-2005	---	---	---	---	---	---	---	---	0.079*	0.067	0.075	0.086
Hawthorne	HW	49-035-3006	0.073	0.075	0.078	0.077	0.072	0.081	0.074	0.081	0.074	0.073	0.075	0.081
Rose Park	RP	49-035-3010	---	---	---	---	---	---	---	---	0.080	0.071	0.080	0.079
Herriman	H3	49-035-3013	---	---	---	---	---	0.074	0.076	0.078	0.078	0.070	0.073	0.087
Lake Park	LP	49-035-3014	---	---	---	---	---	---	---	---	---	---	0.062*	0.082
Tech Center	UT	49-035-3015	---	---	---	---	---	---	---	---	---	0.038*	0.071*	0.083
Near Road	NR	49-035-4002	---	---	---	---	---	---	---	---	---	0.064	0.072	0.083
Tooele #3	T3	49-045-0003	0.074	0.071	0.074	0.072	0.069	---	---	---	---	---	---	---
Erda	ED	49-045-0004	---	---	---	---	---	0.071*	0.072	0.077	0.074	0.065	0.070	0.075
Harrisville	HV	49-057-1003	0.070	0.074	0.076	0.073	0.070	0.074	0.073	0.073	0.077	0.064	0.074	0.077
Ogden	O2	49-057-0002	0.073	0.074	0.066	0.076	0.070	0.072	0.072	0.075	0.079	0.059*	---	---

* Indicates numbers that do not meet the data completeness requirements

1 Table 5: NWF 8-Hour Ozone Three-Year Average 4th Maximum Ozone Values.

3-yr. Average MDA8 (ppm)													
Site	ID	AQS #	2010-2012	2011-2013	2012-2014	2013-2015	2014-2016	2015-2017	2016-2018	2017-2019	2018-2020	2019-2021	
Bountiful	BV	49-011-0004	0.069	0.065*	0.067*	0.069*	0.074*	0.075*	0.078	0.077	0.077	0.078	
Copperview	CV	49-035-2005	---	---	---	---	---	---	0.079*	0.073*	0.073*	0.076*	
Hawthorne	HW	49-035-3006	0.075*	0.076	0.075	0.076	0.075	0.078	0.076*	0.076	0.074	0.076	
Rose Park	RP	49-035-3010	---	---	---	---	---	---	0.08*	0.075*	0.077*	0.076*	
Herriman	H3	49-035-3013	---	---	---	0.074	0.075	0.076	0.077	0.075	0.073	0.076	
Lake Park	LP	49-035-3014	---	---	---	---	---	---	---	---	---	---	
Tech Center	UT	49-035-3015	---	---	---	---	---	---	---	---	---	0.064*	
Near Road	NR	49-035-4002	---	---	---	---	---	---	---	---	---	0.073*	
Tooele #3	T3	49-045-0003	0.073	0.072	0.071	0.07	---	---	---	---	---	---	
Erda	ED	49-045-0004	---	---	---	0.071*	0.071*	0.073*	0.074	0.072	0.069	0.07	
Harrisville	HV	49-057-1003	0.073	0.074	0.073	0.072	0.072	0.073	0.074	0.071	0.071	0.071	
Ogden	O2	49-057-0002	0.071	0.072	0.07	0.072	0.071	0.073	0.075	0.071*	---	---	

* Indicates numbers that do not meet the data completeness requirements

2
3

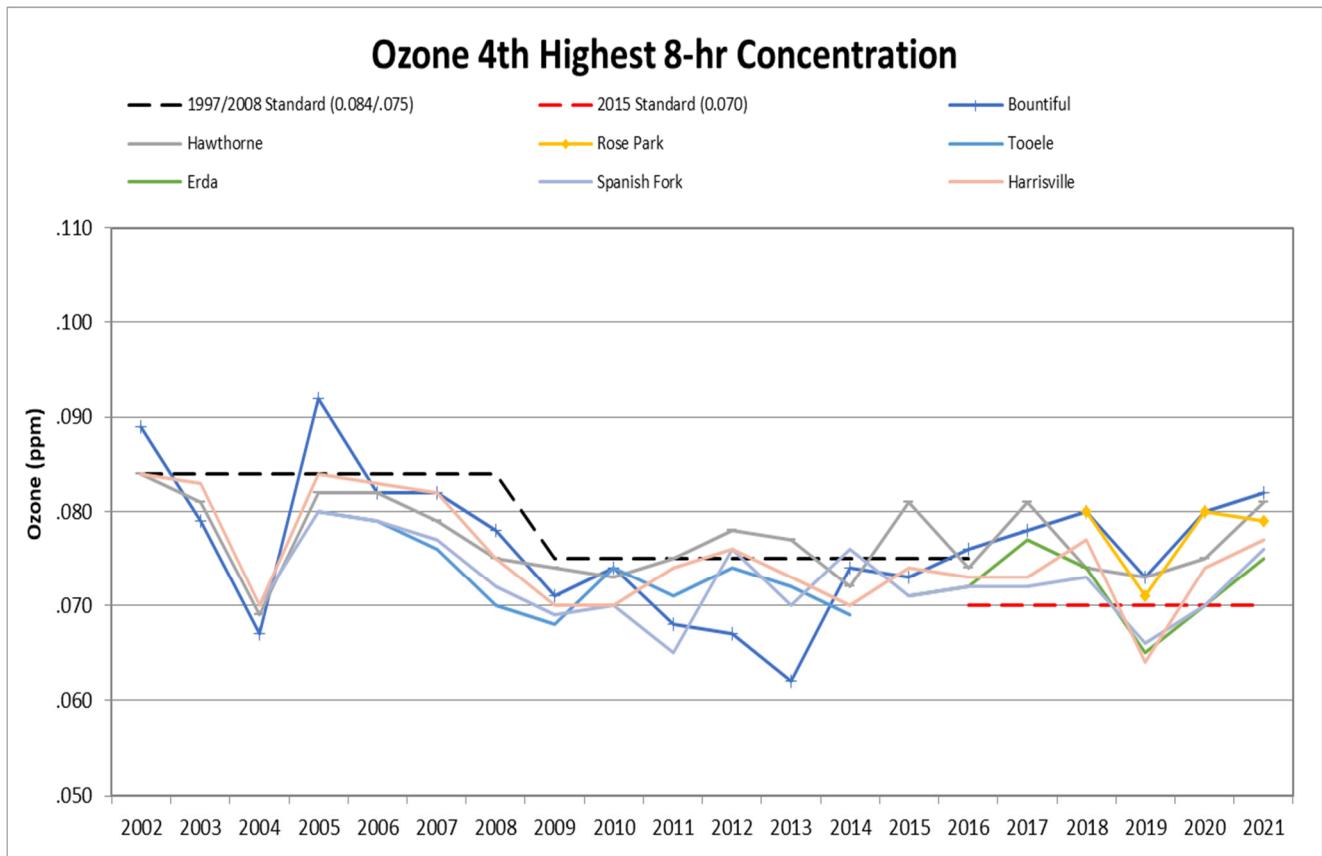


Figure 3: MDA8 in Wasatch Front

As shown in Figure 3, the combined state air agency and federal regulatory actions have been successful at reducing ozone values in the NWF. However, the area is still experiencing exceedances of the ozone standard at all regulatory air monitors within the NAA. Ozone represents a unique challenge in the Intermountain West. Despite years of success in reducing precursor emissions of NO_x and VOCs, the region still faces significant and unique challenges in meeting ambient ozone concentration health-based standards. These regionally specific challenges include significantly elevated background ozone levels,²² increasing instances and contributions of emissions from wildfire events,²³ significant biogenic contributions,²⁴ as well as both interstate and international²⁵ transport.

2.3 Data Quality Assurance

The primary purpose of UDAQ's ambient air monitoring network is to determine whether the area is meeting the criteria pollutant NAAQS. Other purposes for air monitoring include, but are not limited to, determining the impact of sources on air quality, establishing background concentrations, and determining the extent of regional ozone transport. The goal of UDAQ's Air Monitoring Section is to

²² Scientific Assessment of background ozone over the U.S.: Implications for air quality management

²³ Influence of Fires on O₃ Concentrations in the Western U.S.; Dan Jaffe, Duli Chand, Will Hafner, Anthony Westerling, and Dominick Spracklen; Environmental Science & Technology 2008 42 (16), 5885-5891. DOI: 10.1021/es800084k

²⁴ EPA Webinar; Description and preliminary evaluation of BELD 6 and BEIS 4. ORD. Jesse O. Bash and Jeff Vukovich

²⁵ Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.; Langford, A.O. et al. (2017), J. Geophysics. Res. Atmos., 122, 1312-1337, doi:10.1002/2016JD025987

1 produce data that are complete, comparable, representative, precise, and accurate in accordance with
2 40 CFR Part 58, Appendix A. Data quality is calculated at least annually according to EPA's accepted
3 statistical procedures to determine compliance with the recommended limits. Data outside these limits
4 are still reported to Air Quality System (AQS), but UDAQ flags the data internally and attempts to
5 determine the source of the problems. The UDAQ Air Monitoring Quality Assurance Program Plan
6 provides details of how UDAQ meets the requirements of 40 CFR Part 58, Appendix A and is made
7 available to the public for review.²⁶

8 Table 6 shows the data recovery rates for each monitoring site in the NWF NAA as a percentage.
9 The percent of data recovery is the number of valid sampling hours occurring within the ozone season
10 divided by the total number of hours encompassing the ozone season. The ozone season for Utah was
11 defined as from January 1 to December 31, thus is year-round.²⁷ A valid sampling day is one in which at
12 least 75% of the hourly averages are recorded.

13
14 *Table 6: NWF Ozone Data Recovery Rates shown as percentages.*

Site	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Bountiful 49-011-0004	99%	97%	98%	64%	99%	53%	100%	99%	99%	98%	99%	99%
Copperview 49-035-2005	---	---	---	---	---	---	---	---	96%	93%	98%	97%
Hawthorne 49-035-3006	99%	97%	98%	64%	99%	53%	100%	99%	99%	98%	99%	96%
Rose Park 49-035-3010	---	---	---	---	---	---	---	---	87%	80%	98%	99%
Herriman 49-035-3013	---	---	---	---	---	100%	98%	98%	97%	99%	99%	98%
Lake Park 49-035-3014	---	---	---	---	---	---	---	---	---	---	99%	98%
Tech Center 49-035-3015	---	---	---	---	---	---	---	---	---	99%	99%	98%
Near Road	---	---	---	---	---	---	---	---	---	99%	98%	99%
Tooele 49-045-0003	64%	98%	99%	100%	99%	100%	83%	83%	97%	99%	92%	---
Erda 49-045-0004	---	---	---	---	---	61%	100%	99%	93%	97%	99%	99%
Harrisville 49-057-1003	83%	99%	98%	99%	100%	96%	99%	89%	99%	82%	98%	96%
Ogden 49-057-0002	98%	94%	96%	99%	100%	100%	99%	99%	99%	99%	---	---

15
16 As shown in Table 6, the UDAQ monitoring program is extremely robust with a consistently high
17 level of data recovery. On an annual basis, the monitoring network is evaluated, assessed, and adjusted
18 as necessary to ensure that the agency and the public have an accurate understanding of local air quality

²⁶ <https://documents.deq.utah.gov/air-quality/planning/air-monitoring/DAQ-2022-007189.pdf>

²⁷ 83 FR 25776

1 concentrations and trends. What these monitoring values represent and how they are impacted will be
2 evaluated and discussed in other SIP chapters.

3

4

1 Chapter 3 - Baseline and Future Year Emission Inventories

2 *3.1 Emission Inventory Background*

3 **3.1.1 2017 Base Year Inventory**

4 In accordance with the CAA and 40 CFR §51.1315, when the NWF was designated as a marginal
5 ozone NAA, the UDAQ was required to submit a base year emission inventory 24 months after the
6 effective date of designation. A base year inventory is comprised of a comprehensive, accurate, current
7 inventory of actual emissions from sources of VOCs and NO_x emitted within the boundaries of the NAA
8 as required by CAA Section 182(a)(1). The base year for this SIP submittal is 2017, which is the most
9 recent calendar year for which a complete triennial inventory was submitted to the EPA. The inventory
10 is compiled in ozone season day emissions, which is an average day's emissions for a typical ozone
11 season work weekday. This requirement was met and approved by EPA in 86 FR 35404, on July 6, 2021.
12 As a result of being reclassified as a moderate ozone NAA, the 2017 base year inventory is being
13 resubmitted as part of this NWF moderate SIP as some refinements have been made since the submittal
14 of the marginal base year inventory. The methodology for each inventory source category will be
15 provided in this chapter, with a more detailed description provided in the technical support document
16 (TSD) for this SIP.

17 **3.1.2 2023 Projected Year Inventory**

18 To support the CAA requirement for a moderate NAA to demonstrate RFP towards attainment,
19 UDAQ has developed a projected emission inventory for 2023 based on the base year inventory
20 described in Section 3.1.1. 2023 is the year prior to the required attainment date of August 3, 2024, thus
21 the state is required to demonstrate a 15% reduction in VOCs between 2017 and 2023 in accordance
22 with 40 CFR § 51.1310. The emission inventory presented here represents the projected inventory for
23 sources with no additional emission controls implemented beyond actions taken under the PM_{2.5} SIPs. A
24 discussion of proposed or potential emission controls and how they will help achieve the required VOC
25 reductions and demonstration of attainment will be discussed in Chapter 7, RFP. This chapter provides
26 the methodology and results of developing the baseline and future year inventories in accordance with
27 available EPA guidance.²⁸

28 *3.2 Baseline 2017 Emission Inventory and Projected 2023 Emission Inventory*

29 Both inventories developed for the SIP are reported as an average day's emissions for a typical
30 ozone season work weekday, in the unit of tons per day (tpd). This is an average summer day for the
31 NWF. The 2017 inventory of actual emissions is the basis for any projections made to represent future
32 years. Emission inventories are generally collected and reported as annual emissions. These annual
33 inventories are processed through the Sparse Matrix Operating Kernel Emissions Model (SMOKE).²⁹
34 SMOKE modeling spatially allocates, temporalizes, and chemically speciates annual emissions
35 estimations from the emissions inventories. Post-SMOKE, annual emissions are temporalized and can be
36 represented in tons per day. Spatial allocation, temporalization, and chemical speciation are SCC-specific
37 operations. UDAQ typically tabulates emissions from area and mobile sources on a county-by-county

²⁸ SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

²⁹ SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

1 basis, however the NAA includes two partial counties. To obtain the typical ozone season day, emission
2 inventories are entered into the SMOKE model such that it is assigned a geographic location (grid cell).
3 To report emissions specific to the NAA, UDAQ cropped the post-SMOKE processed gridded emissions
4 using a Geographic Information System (GIS) tool using polygons representing the boundaries of the
5 NAA.

6 An inventory of emissions was developed for the major source categories as presented in Table
7 for the 2017 emission inventory. Residential wood combustion is excluded as this source is not a
8 significant emitter of ozone precursors when compared to more predominant sources in the NAA and is
9 not seasonally relevant to summertime ozone production in the NWF. More detailed post-SMOKE
10 emissions inventory tables can be found in the SMOKE TSD.³⁰

11
12 *Table 7: 2017 Nonattainment Emission Inventory (tons per day)*

NWF NAA 2017 base year		
Sector	NO _x TPD	VOC TPD
Solvents	0.56	43.20
Area (non-point)	5.36	8.51
Livestock		0.69
Non-road	10.52	12.53
Rail	9.25	0.47
Airports	3.14	1.25
Electric Generating Units (EGUs)	0.44	0.03
Point Sources	20.43	5.85
On-road Mobile	55.53	20.47
ERC Bank	3.1	0.7
TOTAL ANTHROPOGENIC	108.33	93.7

13
14 The projection year emissions inventory was prepared for 2023 as this is the year prior to the
15 attainment date of August 3, 2024. The emission projections reflect changes due to growth and existing
16 controls. The 2023 emission inventories presented here do not account for controls put in place
17 specifically from actions taken for this SIP.
18

³⁰ SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

Table 8: 2023 Projected Nonattainment Emission Inventory (tpd)

NWF NAA 2023 future year		
Sector	NO _x TPD	VOC TPD
Solvents	0.71	44.52
Area (non-point)	4.85	8.26
Livestock		0.71
Non-road	8.05	12.62
Rail	8.77	0.44
Airports	3.74	1.42
Electric Generating Units (EGUs)	0.45	0.03
Point Sources	22.00	6.00
On-road Mobile	35.40	15.32
ERC Bank	3.1	0.7
TOTAL ANTHROPOGENIC	87.07	90.02

3.2.1 Fires and Biogenic Sources

3 Emissions from wildland and prescribed fires, and biogenic sources, which are dependent on
4 meteorological conditions, are accounted for during the modeling phase and are not traditionally
5 inventoried.³¹ Emissions from wildfires are accounted for using the Blue-Sky Framework in the SMOKE
6 model. Biogenic emissions are modeled with the Biogenic Emissions Inventory System (BEIS) version
7 3.6.1. BEIS creates gridded, hourly, model-species emissions from vegetation and soils. Forests are
8 significant sources of VOCs, and the burning of forest material is a source of ozone precursors and
9 particulate matter. These source categories are crucial to include in any ozone modeling demonstration.
10 The emissions from biogenic sources are shown in Table 9 and are held constant between 2017 and
11 2023.

Table 9: Biogenic Emissions (tons per day)

NWF NAA COUNTIES (includes all of Tooele and Weber Counties) 2017 base year		
Sector	NO TPD	VOC TPD
TOTAL NAA COUNTY-WIDE BIOGENIC	5.57	246.88

3.2.2 Solvent Emissions

15 The solvents sector includes VOC emissions from everyday items such as cleaners, personal care
16 products, adhesives, architectural and aerosol coatings, printing inks, asphalt, and pesticides. Emissions
17 estimates were sourced from EPA's 2016v2 platform, which were generated with the VCPy framework.
18 EPA's 2017 platform predates EPA's 2016v2 platform, and it does not include emissions from solvents
19 according to the VCPy framework. The VCPy framework features better VOC emissions estimates than
20 previous platforms, thus UDAQ made every effort to include improved emissions in the solvents
21 inventory.³² Since EPA's 2016 modeling base year did not align with the NWF SIP 2017 base year, the
22 inventory was projected to 2017. The only relation expected to change between 2016 and 2017 base
23 years is the mass of chemical products used. To determine a change in product used, UDAQ evaluated

³¹ SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

³² SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

1 the average Producer Price Index (PPI) across the summer months represented during our modeling
2 episode: June, July, and August. In 2016, the average summer PPI for all commodities was 187.3. In 2017
3 the PPI was 193.6. This shows a 3% increase in PPI from 2016 to 2017, so all solvents emissions from the
4 2016v2 platform VCPy inventory were increased by 3% to produce the 2017 base year VCPy inventory
5 used in this modeling demonstration. The 2016v2 platform includes projected emissions inventories for
6 2023 that were utilized by UDAQ. Table 10 and Table 11 provide the 2017 baseline inventory for
7 solvents and the projected 2023 inventory respectively.

8 Emissions from hot mix asphalt (HMA) plants are submitted as point source inventories,
9 however, all HMA plants in the NAA have 2017 NO_x and/or VOC emissions less than 100 tons per year
10 (tpy). Point sources with NO_x and/or VOC emissions less than 100 tpy are assumed to be represented in
11 nonpoint sectors, but emissions from asphalt plants are technically not represented in the solvents or
12 nonpoint sectors. To accommodate planned rulemaking, UDAQ added emissions from HMA plants to
13 the solvents sector. It is important to note that the emissions associated with HMA facilities discussed in
14 this section represent UDAQ's best assumptions for actual annual emissions associated with the
15 production of HMA products based on known metrics like annual production. Elsewhere in this SIP
16 revision emissions may be reported based on the combined potential to emit based on permitted
17 maximums from all HMA facilities, and thus represent the upper bounds of potential emissions from
18 HMA facilities.

19
20 *Table 10: Solvent Emissions Inventory*

NWF NAA 2017 base year		
Sector	NO _x TPD	VOC TPD
Solvents	0.56	43.20
Consumer Products	-	18.23
HMA plants	0.56	0.06
Other Solvents	-	24.91

21
22 *Table 11: 2023 Solvent Emissions Inventory*

NWF NAA 2023 future year		
Sector	NO _x TPD	VOC TPD
Solvents	0.71	44.52
Consumer Products	-	18.80
HMA plants	0.71	0.11
Other Solvents	-	25.62

23 **3.2.3 Area Sources**

24 Nonpoint (area) sources are typically smaller, yet pervasive sources that do not qualify as point
25 sources under the relevant emissions cutoffs. Area sources encompass more widespread sources that
26 may be abundant, but that, individually, release small amounts of a given pollutant. These are sources
27 for which emissions are estimated as a group rather than individually. Examples typically include
28 residential heating and residential charcoal grilling. Area sources generally are not required to submit
29 individual emissions estimates, and instead are reported as county totals.

30 Area source calculation methods are consistent with Utah's methods for reporting the EPA's tri-
31 annual National Emissions Inventory. Area source emissions are calculated based on activity data, which

1 is gathered from sources such as Departments of Transportation, State Tax Commissions, State Data
2 Centers, State Offices of Planning and Budget, State Energy Commissions, federal agencies such as the
3 U.S. Census Bureau, county and local government agencies, airports, natural gas suppliers, and local
4 trade associations. These data include population, employment, vehicle miles traveled (VMT), fuel
5 usage, animal, crop, and other estimates. Area source calculations are often based on combining these
6 activity data with emission factors. Emission factors were also gathered from similar sources, mostly EPA
7 documents. Area sources were adjusted for potential overlaps and double counts with point sources.³³

8 Emission projections for 2023 were based on 2017 data and projected forward. Projection
9 methods were consistent with methods used in past Utah SIPs. Emission projections were based on
10 activity data, similar to their baseline estimates. Depending on the specific source, emissions were
11 projected to scale with population, manufacturing, agricultural, employment data, Energy Information
12 Agency energy use projections, VMT, and other similar data sources.

13 Livestock emissions were calculated using EPA generated emission factors for livestock animals
14 and multiplying them by the respective livestock populations for each county. Future emissions were
15 forecast using a linear regression model to predict future year livestock emissions as based on
16 agricultural employment.

17
18 *Table 12: 2017 Area Source Emission Inventory*

NWF NAA 2017 base year		
Sector	NO _x TPD	VOC TPD
Livestock	-	0.69
Nonpoint	5.36	8.51
2 - 5 MMBTU boilers	0.91	0.05
Other Nonpoint Sources	4.45	8.46

19
20 *Table 13: Area Source Emission Inventory*

NWF NAA 2023 future year		
Sector	NO _x TPD	VOC TPD
Livestock	-	0.71
Nonpoint	4.85	8.26
2 - 5 MMBTU boilers	0.87	0.05
Other Nonpoint Sources	3.99	8.21

21 **3.2.4 Non-Road, Rail, and Airport Sources**

22 EPA's Motor Vehicle Emission Simulator (MOVES3) model was used to obtain emission
23 inventories for non-road mobile vehicles and equipment that operate on unpaved roads and other areas
24 but not on paved roads.³⁴ They include non-road engines and equipment, such as lawn and garden
25 equipment, construction equipment, engines used in recreational activities, portable industrial,
26 commercial, and agricultural engines. Emissions from MOVES3 for the month of July are input to SMOKE
27 to obtain the typical ozone season day value.

33 Area Source Inventories; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001348.pdf>

34 2017 BASELINE, EPISODIC AND 2023 PROJECTION OZONE EMISSIONS INVENTORY NON-ROAD MOBILE SOURCE; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001585.pdf>

1 Emissions from snow blowers and snowmobiles have been removed from the non-road sector,
2 assuming that these emissions are zero during the summertime modeling episode. Emissions from
3 pleasure craft (personal watercraft and recreational boats with outboard or inboard/sterndrive motors)
4 are allocated to counties according to the number of watercraft registrations in each county. However,
5 along the Wasatch Front, personal watercraft is not operated in the county of residence. Bodies of
6 water on which pleasure craft may be operated exist in mainly rural counties beyond the urban corridor
7 of the Wasatch Front. Assuming that pleasure craft owners transport their recreational vehicles to use
8 them, UDAQ removes any pleasure craft emissions from Salt Lake, Davis, Weber, and Tooele counties.
9 These four counties do not include any bodies of water on which pleasure craft may be operated.³⁵

10 Emissions in the airports sector include all emissions from aircraft and associated ground
11 support equipment. UDAQ's platform base year airport emissions are sourced from EPA's 2017 platform
12 within Utah, and from EPA's 2016v2 platform outside Utah. All future year 2023 emissions were copied
13 from EPA's 2016v2 platform future year emissions inventories (2023). Rail emissions within the state of
14 Utah include all locomotives, railway maintenance locomotives, and point source yard locomotives.³⁶

16 *Table 14: Non-Road, Rail and Airports Emission Inventory*

NWF NAA 2017 base year		
Sector	NO _x TPD	VOC TPD
Non-road	10.52	12.53
2-stoke Lawn/garden Equipment	0.11	3.33
Other Lawn/garden Equipment	1.48	4.35
Other Non-road Sources	8.94	4.86
Rail	9.25	0.47
Airports	3.14	1.25

17 *Table 15: 2023 Non-Road, Rail and Airports Emission Inventory*

NWF NAA 2023 future year		
Sector	NO _x TPD	VOC TPD
Non-road	8.05	12.62
2-stoke Lawn/garden Equipment	0.12	3.63
Other Lawn/garden Equipment	1.46	4.42
Other Non-road Sources	6.47	4.57
Rail	8.77	0.44
Airports	3.74	1.42

19 3.2.5 Point Sources and Electric Generating Units (EGUs)

20 The definition of a Type B Source under Title V of the CAA (as specified in 40 CFR Appendix A to
21 Subpart A of Part 51) includes point source thresholds in the NAA. This definition includes all facilities
22 with the potential to emit 100 tpy or more of VOC or NO_x. Emissions from sources under the Type B
23 thresholds are included in the area source baseline inventory, as they do not have large enough

35 SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

36 SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

1 potential emissions to qualify for the point source inventory. According to the Type B Source definition,
2 Utah had 53 major point sources of NO_x and VOC in 2017, 12 of which are located in the NWF NAA.

3 UDAQ has improved emissions inventory data management with the implementation of the
4 State and Local Emissions Inventory System (SLEIS). This system has established an online emissions
5 inventory system, whereby point sources can submit their air emissions inventories to UDAQ. SLEIS
6 includes built-in calculation capabilities which simplify the process and reduce the workload for point
7 sources. SLEIS also contains extensive Quality Assurance and Quality Control (QA/QC) tools which guide
8 point sources as they submit their data, thereby greatly reducing oversight required by UDAQ staff. The
9 2017 triannual emissions inventory was submitted to UDAQ by point sources using the SLEIS online
10 system. The submitted emissions inventories were thoroughly reviewed using additional QA/QC by
11 UDAQ staff before being finalized. The QA/QC contained in the SLEIS online system along with the
12 review performed by UDAQ staff greatly surpasses EPA guidance requiring 10% QA/QC as the minimum
13 criteria necessary for a SIP inventory.

14 The 2017-point source emissions inventory was used for the baseline emissions inventory for
15 the SIP.³⁷ Point source emissions were represented as the actual emissions from the 2017 triannual
16 emissions inventory which coincides with the most recent triannual inventory that has been compiled
17 and reviewed by UDAQ.

18 Point source emissions, as based on annual actual emissions, in the NAA and affecting the NWF
19 NAA was grown on a case-by-case basis for each source and represented in the ozone SIP workbooks for
20 2023. Emission estimates were projected to future years and to display any control technologies that
21 will be applied. Data from Kem C. Gardner Policy Institute County Projections were used for developing
22 projected emissions for all major point sources.³⁸ More information on how the Kem C. Gardner data
23 was used is found on page 3 of the 2023 Point Source TSD.

24 Point source operators provided a monthly percentage of annual emissions from January to
25 December as part of their emissions inventory submission, which was used to generate source-specific
26 monthly temporal profiles in SMOKE for point sources in Utah's emissions inventory. Emissions
27 summaries are provided on a per-facility basis in the SMOKE TSD.³⁹

28
29
30 *Table 16: 2017 Point Sources and EGUs Emission Inventory*

NWF NAA 2017 base year		
Sector	NO _x TPD	VOC TPD
EGUs	0.44	0.03
Point Sources	20.43	5.85
5+ MMBTU boilers	1.90	0.12
Other Point Sources	18.52	5.74

31
32
33
34
37 Base Year Ozone SIP Point Source Inventory; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001356.pdf>

38 Projected Ozone SIP Point Source Inventory; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001361.pdf>

39 SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

Table 17: 2023 Point Sources and EGUs Emission Inventory

NWF NAA 2023 future year		
Sector	NO _x TPD	VOC TPD
EGUs	0.45	0.03
Point Sources	22.00	6.00
5+ MMBTU boilers	1.48	0.14
Other Point Sources	20.52	5.86

2 3.2.6 On-Road Mobile

3 On-road mobile source emissions include vehicles that travel on paved roads that produce
4 exhaust, evaporative, and road dust emissions. The on-road mobile inventory was compiled using Motor
5 Vehicle Emissions Simulator (MOVES3) according to the document “MOVES3 Technical Guidance: Using
6 MOVES to Prepare Emissions Inventories for SIPs and Transportation Conformity” November 2020. The
7 baseline year and projection year inventories was compiled through the ICT. The interagency
8 consultation team is primarily used to discuss and decide what MOVES modeling inputs should be used
9 with the SIP modeling domain. The ICT includes representatives from EPA, Federal Highway
10 Administration (FHWA), Federal Transit Authority, Utah Department of Transportation, Utah Transit
11 Authority, Wasatch Front Regional Council (WFRC), Mountainland Association of Governments (MAG),
12 Cache MPO, and UDAQ.⁴⁰

13 On-road mobile source baseline and projection emission inventories are prepared for an
14 average ozone season weekday based on average hourly temperatures and relative humidity from 2017
15 July data. VMT were reported as an average ozone season day weekday.

16
17
18 Table 18: 2017 On-road emission inventory for ozone weekday

NWF NAA 2017 base year		
Sector	NO _x TPD	VOC TPD
On-road Mobile	55.53	20.47
Heavy Duty Vehicles	27.21	3.65
Light Duty Vehicles	28.32	16.82

19
20 Table 19: 2023 On-road emission inventory for ozone weekday

NWF NAA 2023 future year		
Sector	NO _x TPD	VOC TPD
On-road Mobile	35.40	15.32
Heavy Duty Vehicles	23.41	2.74
Light Duty Vehicles	11.98	12.58

⁴⁰ 2017 THE NORTHERN WASATCH FRONT, UT NONATTAINMENT OZONE AREA SUMMER BASELINE OZONE INVENTORY ON-ROAD TECHNICAL SUPPORT DOCUMENTATION; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001725.pdf> & 2023 NORTHERN WASATCH FRONT, UT NONATTAINMENT OZONE AREA SUMMER PROJECTION OZONE INVENTORY ON-ROAD TECHNICAL SUPPORT DOCUMENT; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001699.pdf>

1 **3.2.7 Emission Reduction Credit Bank**

2 The NAA has Emission Reduction Credit Bank (ERC) from past ozone SIP revisions that include
3 NO_x and VOC credits available. Emission credit banks for VOCs and NO_x were reviewed for the four NAA
4 counties. All banked credits were reviewed for validity concerning applicable emission credits meeting
5 2017 RACT or better for controlled or reduced emissions. Upon review, the majority of credits were
6 awarded as a result of a unit or facility closure or decommissioning. Credits are valid and remained in
7 the bank if the applicable change was RACT or better. These credits are available in the ERC offset bank
8 moving forward and were included in the ERC portion of both the baseline and projected year
9 inventories to represent all potential emissions within the NAA boundary.⁴¹

10 *Table 20: 2017 ERC Bank Emission Inventory*

NWF NAA 2017 base year		
Sector	NO _x TPD	VOC TPD
ERC Bank	3.10	0.70

12 *Table 21: 2023 ERC Bank Emission Inventory*

NWF NAA 2023 future year		
Sector	NO _x TPD	VOC TPD
ERC Bank	3.10	0.70

14 ⁴¹ SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

1 Chapter 4 – Reasonably Available Control Technology (RACT) Analysis 2 and Nonattainment New Source Review (NNSR)

3 *4.1 Reasonably Available Control Technology (RACT) Overview*

4 Under the CAA 182(b)(2), all areas designated moderate nonattainment for the 2015 8-hour
5 ozone NAAQS are required to implement RACT for all existing major sources of VOCs or NO_x that emit
6 100 tpy of either pollutant, as well as all VOC sources subject to an EPA Control Technique Guideline
7 (CTG).

8 CTGs are documents issued by the EPA to provide states with recommendations on how to
9 control VOC emissions from specific sources or products in an ozone NAA. When determining what is
10 RACT, in addition to existing CTGs and alternative control techniques (ACTs), states should consider, “all
11 relevant information (including recent technical information and information submitted by the public)
12 that is available at the time they develop the RACT SIPs.”⁴² “States may require VOC and NO_x reductions
13 that are “beyond RACT” if such reductions are needed to provide for timely attainment of the ozone
14 NAAQS.”⁴³

15 A RACT analysis identifies controls that could be implemented at the lowest emission limitation
16 that a source is capable of meeting by the application of a control technology that is reasonably
17 available, considering technological and economic feasibility.⁴⁴ Implementation of controls identified
18 under the RACT process must be implemented by January 1, 2023, for emission reductions to be
19 creditable towards RFP requirements (section 7).⁴⁵ A RACT analysis must include the latest information
20 when evaluating control technologies. Control technologies evaluated for a RACT analysis can range
21 from work practices to add-on controls. As part of the RACT analysis, current control technologies
22 already in use for VOCs or NO_x sources can be taken into consideration. To conduct a RACT analysis, a
23 top-down analysis is used to rank all control technologies.

24 **4.1.1 Top Down RACT Analysis Steps**

25 For sources that meet or exceed the applicable emission thresholds, the following steps are
26 followed:

- 27 • Step 1. Identify all RACT options applicable to the source
- 28 • Step 2. Eliminate technically infeasible control technologies
- 29 • Step 3. Rank remaining control technologies based on capture and control efficiencies
- 30 • Step 4. Evaluate remaining control technologies based on economic, energy, and environmental
31 feasibility
- 32 • Step 5. Select RACT options

⁴² Implementation of the 2015 National Ambient Air Quality Standards for Ozone: NAA State Implementation Plan Requirements, 83 Fed. Reg. 62,998, 63,007 (Dec. 6, 2018).

⁴³ Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan Requirements, 80 Fed. Reg. 12,264, 12,279 (March 6, 2015).

⁴⁴ 40 CFR § 51.1312 Requirements for reasonably available control technology (RACT) and reasonably available control measures (RACM).

⁴⁵ 87 Fed. Reg. 60,897.

1 All available control technologies must be included in a RACT analysis for all VOC and NO_x
2 sources, with a thorough description and discussion of technological feasibility. Economic feasibility is
3 determined through Step 4 of a RACT analysis using EPA's Air Pollution Control Cost Manual as
4 guidance.⁴⁶

5 *4.2 Utah RACT Process*

6 The UDAQ relied on multiple available analyses when determining if sources within the NWF NAA
7 met RACT requirements, or if the implementation of additional RACT were required to demonstrate that
8 the NWF NAA will attain the standard at the earliest possible date. First, the UDAQ reviewed and
9 reconsidered control options submitted as part of the Salt Lake City, UT PM_{2.5} serious SIP, which
10 required the implementation of the more stringent Best Available Control Technologies (BACT) for both
11 NO_x and VOCs.⁴⁷ BACT relies on more restrictive emission control requirements than RACT, and thus
12 emission reduction strategies identified and implemented under BACT are more stringent than those
13 identified through the RACT process. Therefore, by reexamining past BACT analyses, the UDAQ relied on
14 a recently conducted analysis which implemented controls that conform to a higher economic and
15 technological standard. In doing so, the UDAQ is remaining consistent with guidance provided by the
16 EPA⁴⁸, in which the EPA concludes that states may conclude a source has already addressed RACT based
17 on a RACT determination for a previous NAAQS SIP revision. For instance, the EPA proposes that in some
18 instances a RACT analysis submitted for the 1997 NAAQS are appropriate for meeting RACT
19 requirements for the 2008 NAAQS.⁴⁹ In this example, states are granted the discretion to rely on a like-
20 for-like RACT analysis with a substantial time laps between respective SIP revisions under each NAAQS.
21 For this SIP revision, the UDAQ reexamined the more stringent BACT analyses submitted with a shorter
22 time lapse than that provided in the example, with BACT reports being submitted just 4 to 5 years
23 earlier.

24 In addition to reexamining past BACT reports, the UDAQ identified three emission sources that were
25 not evaluated as part of the PM_{2.5} serious SIP. Those analyses were provided to UDAQ by Tesoro
26 Refining and Marketing Company LLC⁵⁰, Holly Energy Partners Woods Cross Terminal⁵¹, and Chevron Salt
27 Lake Marketing Terminal⁵². These three RACT reports were later included in facility wide updated RACT
28 analyses by each of the respective sources and therefore were analyzed in multiple rounds of RACT
29 analysis conducted as part of this SIP revision.

30 Beyond the past PM_{2.5} BACT reports, and three additional RACT reports submitted for review, the
31 UDAQ notified sources that they could opt-in to submitting an updated facility wide RACT analysis for
32 consideration in this SIP revision. Subsequently, 9 sources within the NAA provided UDAQ with new
33 RACT analyses for emissions of both VOCs and NO_x. The UDAQ reviewed all analyses submitted in

⁴⁶ EPA's Air Pollution Control Cost Manual can be found at: https://www.epa.gov/sites/default/files/2020-07/documents/c_allchs.pdf

⁴⁷ Utah State Implementation Plan; Control Measures for Area and Point Sources, Fine Particulate Matter, Serious Area PM_{2.5} SIP for the Salt Lake City, Utah NAA; Section IX. Part A.31: <https://deq.utah.gov/air-quality/control-strategies-serious-area-pm2-5-sip>

⁴⁸ 80 FR 12264 & 83 FR 62998

⁴⁹ 80 FR 12264 p.12278

⁵⁰ The RACT analysis from the Tesoro Refinery and Marketing Company can be found at: <https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2022-011275.pdf>

⁵¹ The RACT analysis for the Holly Energy Partners Woods Cross Terminal can be found at: <https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2022-011295.pdf>

⁵² The RACT analysis for the Chevron Salt Lake Marketing Terminal can be found at: <https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2022-011292.pdf>

1 conjunction with past BACT reports, and where warranted, requested updated RACT reports with
2 additional or clarifying information. All RACT analyses, and all follow-up reports, were made available for
3 public review at the earliest possible date⁵³.

4 UDAQ determined that one major source located outside the NWF NAA impacts the ability of the
5 NAA to attain the NAAQS, and as such was required to provide a RACT analysis to UDAQ. This source, US
6 Magnesium, its RACT analysis, and identified control options, will be discussed in detail in Section 4.15.

7 **4.2.1 Actual Emissions and Potential to Emit (PTE)**

8 Utah Administrative Rule R307-101; General Requirements, contains the definitions for the
9 terms “Actual Emissions”, “Potential to Emit”, and “Enforceable”. Thus, the actual emissions of a source
10 refers to the actual rate of emissions of an air pollutant from an emissions unit. Actual emissions are
11 calculated using the unit’s actual operating hours, production rates, and types of materials processed,
12 stored, or combusted during the selected time period. The actual emissions of a source can fluctuate
13 from year-to-year due to changes in a source’s year-to-year operations.

14 The PTE of a source means the estimated maximum capacity of a source to emit an air pollutant
15 under its physical and operational design. A source’s PTE is not an enforceable limitation in itself, but is
16 instead the maximum amount of air pollutants a source could emit if each emission unit operated at
17 100% of its design capacity, 24 hours a day, 365 days a year. Any physical or operational limitation on
18 the capacity of a source to emit an air pollutant, including air pollution control equipment and
19 operational or process restrictions or limitations, are treated as part of a source’s design if the limitation
20 is enforceable.

21 Enforceable limitations and conditions include requirements developed pursuant to 40 CFR
22 Parts 60 and 61, requirements within the Utah SIP and Utah Administrative Rule Series R307, and any
23 permit requirements established pursuant to Utah Administrative Rule R307-401; Permit: New and
24 Modified Sources.

25 *4.3 Big West Oil LLC - Refinery*

26 **4.3.1 Introduction**

27 This section specifically serves as an evaluation of Big West Oil LLC – Big West Oil Refinery (Big
28 West). The UDAQ relied on past submitted BACT reports and an additional RACT analysis submitted by
29 Big West for evaluation on January 31, 2023; specific sections from this analysis are referenced in the
30 RACT analysis. Specific ozone SIP conditions for Big West can be found in Section IX, Part H.32.a.

31 **4.3.2 Facility Process Summary**

32 The Big West Oil Refinery is a petroleum refinery capable of processing 30,000 barrels per day of
33 crude oil. The source consists of a specific type of Fluidized Catalytic Cracking Unit (FCCU), a Millisecond
34 Catalytic Cracker (MSCC); catalytic reforming unit; hydrotreating units; and a sulfur recovery unit. The
35 source also has an assortment of heaters, boilers, cooling towers, storage tanks, flares, and fugitive
36 emissions.

53 <https://deq.utah.gov/air-quality/northern-wasatch-front-moderate-ozone-sip-technical-support-documentation#supporting-tds>

1 4.3.3 Facility Baseline Actual Emissions and Current PTE

2 The baseline and current PTE from Big West processes and equipment are summarized in Table
3 22. The 2017 actual emissions were used as the baseline emissions. The current PTE values for Big West
4 were established by the most recent active Approval Orders (AOs) issued to the source. Big West
5 currently has several open AO modifications that will include updating their PTE to more accurately
6 reflect their operations.

- 7 • AO DAQE-AN101220077-22 issued January 13, 2022 (0077-22)
- 8 • AO DAQE-AN101220074-19 issued October 23, 2019 (0074-19)
- 9 • AO DAQE-AN101220072-19 issued July 10, 2019 (0072-19)

10 Table 22: Big West Oil LLC Refinery Facility-Wide Emissions

Big West Oil LLC Refinery Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	115.15	195.00
VOC	676.59	432.78

11 4.3.4 RACT Analysis

12 The RACT evaluations were performed using data from Big West Oil, AOs and supporting
13 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
14 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
15 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
16 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
17 NO_x and VOCs are provided in Table 23.

18 Table 23: Big West Oil LLC - Refinery

Big West Oil LLC - Refinery						
RACT Section # ⁵⁴	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability		Comments
				AO Conditions	PM _{2.5} SIP Conditions	
3.1	FCCU (MSCC) Regenerator	NO _x	Low-NO _x regeneration with low-NO _x promoter catalyst - meets MACT Subpart UUU.	(0077-22) II.B.3.b	H.12.b.ii & H.12.b.vi	Current operations meet RACT, no further action warranted.
			VOCs	Good combustion practices, no	(0077-22) I.5	

54 <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001493.pdf>

			additional controls.			
3.2 - 3.4	Process Heaters and Boilers	NO _x	LNB & ULNB required on various units, & refinery-wide NO _x limit.	(0077-22) II.B.1.d & II.B.8.d	H.12.b.ii & H.12.b.vi	Current operations meet RACT, no further action warranted.
		VOCs	Good combustion practices, no additional controls.	(0077-22) I.5	No	
3.5	Refinery Flares	NO _x	Evaluated through control of flare gases, not through individual pollutants, requirement to meet New Source Performance Standards (NSPS) Subpart Ja and MACT Subpart CC for flares.	(0077-22) II.B.4 & II.B.7.c	H.11.g.v, H.12.b.ii, & H.12.b.vi	Current operations meet RACT, no further action warranted.
		VOCs				
3.4	SRU	NO _x	Existing tail gas incinerator & refinery-wide NO _x limit.	(0077-22) II.B.8.d	H.12.b.ii & H.12.b.vi	Current operations meet RACT, no further action warranted.
3.13	Cooling Towers	VOCs	MACT Subpart CC requirements on cooling towers servicing high VOC heat exchangers.	(0077-22) II.B.7.a	H.11.g.iii	Current operations meet RACT, no further action warranted.
3.7	Fugitive emissions	VOCs	Low leak LDAR requirements of NSPS Subpart GGGa.	(0077-22) II.B.1.a & II.B.7.b	H.11.g.iv	Current operations meet RACT, no further action warranted.

3.10 & 3.11	Tanks	VOCs	Submerged fill operations & tank degassing requirements - eventual compliance with NSPS Subpart Kb or MACT Subpart CC.	(0072-19) II.B.1.a & II.B.1.b	H.11.g.vi	Current operations meet RACT, no further action warranted.
3.12	Wastewater System	VOCs	API separator with fixed cover, carbon canisters for VOC control, 90% removal efficiency.	No	H.12.b.vi	Current operations meet RACT, no further action warranted.
3.6	Standby Fire Pumps	VOCs	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0074-19) I.5	H.12.b.iv	Current operations meet RACT, no further action warranted.
		NO _x		(0074-19) II.B.1.c		
3.8	Truck Loading Rack	VOCs	Vapor recovery unit with carbon adsorption in compliance with MACT Subpart CC.	(0077-22) I.5	H.12.b.vi	Current operations meet RACT, no further action warranted.
3.9	Railcar Loading Rack	VOCs	Vapor recovery with vapor combustion unit in compliance with MACT Subpart R.	(0077-22) I.5	H.12.b.vi	Current operations meet RACT, no further action warranted.
N/A	Refinery General Approach	NO _x	Refinery-wide NO _x limit.	(0077-22) II.B.8.d	H.12.b.ii	Current operations meet RACT, no further action warranted.

1 4.3.5 Conclusion of RACT Implementation

2 The emission units/activities currently meet all RACT requirements, and the existing controls
3 and emission limitations are considered RACT for the Big West Oil Refinery. RACT evaluations showed
4 that additional add-on controls or limitations are not technically or economically feasible options at this
5 time. No additional RACT measures were identified, and all RACT determinations are already being
6 implemented. Therefore, there are no additional implementation schedules or requirements for Big
7 West Oil Refinery as required by this SIP revision.

8 4.4 Chevron Products Company – Salt Lake Refinery

9 4.4.1 Introduction

10 This section specifically serves as an evaluation of Chevron Products Company – Salt Lake
11 Refinery (Chevron Refinery). In addition to its past submitted BACT reports, Chevron Refinery submitted
12 an additional RACT analysis for evaluation January 31, 2023, with supporting information submitted
13 February 23, 2023, and February 24, 2023; specific sections from this analysis are referenced in the
14 RACT analysis. Specific Ozone SIP conditions for Chevron Refinery can be found in Section IX, Part
15 H.32.b.

16 4.4.2 Facility Process Summary

17 The Chevron Refinery is a petroleum refinery with a nominal capacity of approximately 50,000
18 barrels per day of crude oil. The source consists of two FCCUs, a delayed coking unit, a catalytic
19 reforming unit, hydrotreating units, and two sulfur recovery units. The source also has an assortment of
20 heaters, boilers, cooling towers, storage tanks, flares, and fugitive emissions. The refinery operates with
21 a flare gas recovery system on its hydrocarbon flares.

22 4.4.3 Facility Baseline Actual Emissions and Current PTE

23 The baseline and current PTE from the Chevron Refinery processes and equipment are
24 summarized in Table 24. The 2017 baseline actual emissions were used as the baseline emissions. The
25 current PTE values for Chevron Refinery were established by the most recent active AOs issued to the
26 source.

27 • AO DAQE-AN101190106-22 issued August 24, 2022 (0106-22)
28 • AO DAQE-AN101190104-22 issued September 26, 2022 (0104-22)

29 Table 24: Chevron Products Company – Salt Lake Refinery Facility-Wide Emissions

Chevron Products Company – Salt Lake Refinery Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	265.50	766.50
VOC	339.60	1,242.06

1

2 **4.4.4 RACT Analysis**

3 The RACT evaluations were performed using data from Chevron Refinery, AOs and supporting
 4 documentation, and Section IX, Utah SIP Parts H.11 and H.12. Various resources were evaluated to
 5 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
 6 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
 7 regulations; and other state SIPs. The RACT determinations for each emission unit or activity emitting
 8 NO_x and VOCs are provided in Table 25.

9

10 *Table 25: Chevron Products Company – Salt Lake Refinery*

Chevron Products Company – Salt Lake Refinery						
RACT Section # ⁵⁵	Emission Unit / Activity	Pollutant	RACT Determi- nation	Enforceability		Comments
				AO Conditions	PM _{2.5} SIP Conditions	
II.A	FCCU Regenerator	NO _x	Feed hydrotrea- ting & refinery- wide NO _x limit.	(0106-22) II.B.1.h & II.B.7.b	H.12.d.ii	Current operations meet RACT, no further action warranted.
		VOCs	Good combustio- n practices, no additional controls.	(0106-22) I.5	No	
II.B	Process Heaters and Boilers	NO _x	LNB, FGR (Boilers 5, 6,7), & refinery- wide NO _x limit, compliance with NSPS Subpart Ja.	(0106-22) II.B.1.h, II.B.2, & II.B.3	H.12.d.ii & H.12.d.vii	Current operations meet RACT, no further action warranted.
		VOCs	Good combustio- n practices,	(0106-22) I.5	No	

55 <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001911.pdf>

			no additional controls, compliance with NSPS Subpart Ja.			
II.B	Crude Heaters	NO _x	LNB & refinery-wide NO _x limit.	(0106-22) II.B.1.h	H.12.d.ii & H.12.d.vii	Current operations meet RACT, no further action warranted.
		VOCs	Good combustion practices.	(0106-22) I.5	No	
II.C	SRU	NO _x	Existing tail gas treatment unit and thermal oxidizer & refinery-wide NO _x limit.	(0106-22) II.B.1.h	H.12.d.ii & H.12.d.vii	Current operations meet RACT, no further action warranted.
II.D	Cooling Towers	VOCs	MACT Subpart CC requirements on cooling towers servicing high VOC heat exchangers.	(0106-22) II.B.10.a	H.11.g.iii	Current operations meet RACT, no further action warranted.
II.E	Fugitive emissions	VOCs	Low leak LDAR requirements of NSPS Subpart GGGa.	(0106-22) II.B.10.b	H.11.g.iv	Current operations meet RACT, no further action warranted.
II.F	Tanks	VOCs	Submerged fill	(0106-22) II.B.10.c1	H.11.g.vi	Current operations

			operations & tank degassing requirements - compliance with NSPS Subpart Kb or MACT Subpart CC.	& (0104-22) II.B.2.c2		meet RACT, no further action warranted.
II.G	Wastewater System	VOCs	Induced air floatation & RTO, compliance with NSPS Subpart QQQ and National Emission Standards for Hazardous Air Pollutants (NESHAP) Subpart FF.	(0104-22) II.B.2.a & II.B.2.b	H.12.d.vii	Current operations meet RACT, no further action warranted.
II.H	Refinery Flares	NO _x	Evaluated through control of flare gases, not through individual pollutants, requirement to meet NSPS Subpart Ja for flares.	(0106-22) II.B.10.d	H.11.g.v, H.12.d.ii, & H.12.d.vii	Current operations meet RACT, no further action warranted.

II.I	Standby Fire Pumps and Emergency Diesel Engines	VOCs	Proper maintenance and operation, and compliance with NESHAP Subpart ZZZZ.	(0106-22) I.5	H.12.d.iv	Current operations meet RACT, no further action warranted.
		NO _x		(0106-22) II.B.8.c		
II.L	Reformer Compressor Engines	NO _x	Use of NSCR meeting NO _x emission limits in SIP Section IX, Part H.12.d.v.	(0106-22) II.B.9.a	H.12.d.v & H.12.d.vii	SCR incorrectly required in SIP Section IX, Part H.12.d.vii. Correct control required is NSCR. Current operations meet RACT, no further action warranted.
II.J	Crude Oil Loading Racks	VOCs	Vapor Combustion Unit with a 98% VOC control efficiency.	(0104-22) II.B.3.a	H.12.d.vii	Current operations meet RACT, no further action warranted.
N/A	Refinery General Approach	NO _x	Refinery-wide NO _x limit.	(0106-22) II.B.1.h	H.12.d.ii	Current operations meet RACT, no further action warranted.

1 **4.4.5 Conclusion of RACT Implementation**

2 The emission units/activities examined in this RACT analysis indicates that all activities currently
 3 meet all RACT requirements, and all other existing controls and emissions limitations are considered

1 RACT for the Chevron Refinery. No other additional add-on controls or limitations are technically or
2 economically feasible options at this time.

3 *4.5 Hexcel Corporation*

4 **4.5.1 Introduction**

5 This section specifically serves as an evaluation of Hexcel Corporation (Hexcel). In addition to its
6 past BACT reports, Hexcel submitted an additional RACT analysis for evaluation January 31, 2023.
7 Specific Ozone SIP conditions for Hexcel can be found in Section IX, Part H.32.c.

8 **4.5.2 Facility Process Summary**

9 Hexcel owns and operates a carbon fiber and fabric pre-impregnation manufacturing plant in
10 West Valley City. Products made at Hexcel are used in commercial aerospace primary and secondary
11 structures, helicopters, defense aircraft, satellites, and sporting equipment. The facility consists of
12 twelve production buildings, two raw material receiving warehouses, and a material testing laboratory.
13 The plant manufactures carbon fibers and hot melt pre-impregnation fabrics. The plant also produces
14 epoxy resins, adhesive films, and solvated fabrics.

15 **4.5.3 Facility Baseline Actual Emissions and Current PTE**

16 The baseline and current PTE from the Hexcel industrial processes and equipment are
17 summarized in Table 26. The 2017 actual emissions were used as the baseline emissions. The current
18 PTE values for Hexcel were established by the most recent active AOs issued to the source.

19 • AO DAQE-AN113860032-19 issued May 13, 2019 (0032-19)

20 *Table 26: Hexcel Corporation Facility-Wide Emissions*

Hexcel Corporation Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	187.90	197.51
VOC	154.20	168.34

21 **4.5.4 RACT Analysis**

22 The RACT evaluations were performed using data from Hexcel, AOs and supporting
23 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
24 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
25 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
26 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
27 NO_x and VOCs are provided in Table 27.

28
29 *Table 27: Hexcel Corporation*

Hexcel Corporation				
		Pollutant	Enforceability	Comments

RACT Section # ⁵⁶	Emission Unit/Activity		RACT Determination	AO Conditions	PM _{2.5} SIP Conditions	
4.0 - 4.2	All Fiber Lines	All	Consumption and production limits.	(0032-19) II.B.1.b	H.12.f.i & H.12.f.vi	Current operations meet RACT, no further action warranted.
4.0 - 4.2	Fiber Lines 2 thru 8, 10 thru 12	VOCs	Good combustion practices, natural gas as fuel, incineration and flaring technology.	(0032-19) I.5; II.B.1.d - II.B.1.l; II.B.3.a - II.B.3.d; II.B.4.a - II.B.4.c; & II.B.5.a - II.B.5.b	No	Current operations meet RACT, no further action warranted.
	Fiber Lines 2, 5, 6, 8, 10 thru 12	NO _x	ULNB with FGR required to be installed by December 31, 2024.	No		
4.0 - 4.2	Fiber Lines 3, 4, and 7	NO _x	ULNB with FGR required to be installed by December 31, 2024.	No	H.12.f.iv	Current operations meet RACT, no further action warranted.
4.0 - 4.2	Fiber Lines 13 thru 16	VOCs	RTO, incineration and flaring technology.	(0032-19) I.5; II.B.1.d - II.B.1.l;	H.12.f.ii	Current operations meet RACT, no further action warranted.
		NO _x	LNB on thermal oxidizer and RTO, good combustion practices, natural gas as fuel.	II.B.6.a; & II.B.7.a		
4.3	Pilot	VOCs	Good combustion practices, natural gas as fuel, proper maintenance, incineration and flaring technology.	(0032-19) I.5 & II.B.1.d - II.B.1.l	No	Current operations meet RACT, no further action warranted.
		NO _x	Good combustion practices, natural gas as fuel, proper maintenance, incineration and flaring technology.			

⁵⁶ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001511.pdf>

5.0	Matrix (Solvent Coating Operations)	VOCS	Good combustion practices, natural gas as fuel, proper maintenance, incineration and flaring technology.	(0032-19) I.5; II.B.1.j; II.B.1.o; & II.B.1.p	No	Current operations meet RACT, no further action warranted.
		NO _x				
6.0	Boilers	VOCS	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0032-19) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x	Compliance with a NO _x emission rate of 9 ppm.	(0032-19) I.5	No	
7.0	Emergency Generators	VOCS	Proper maintenance and operation, Subpart IIII and Subpart ZZZZ.	(0032-19) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				
8.0	HVAC	VOCS	Proper maintenance and operation.	(0032-19) I.5 & II.B.1.o	No	Current operations meet RACT, no further action warranted.
		NO _x				

1 **4.5.5 Conclusion of RACT Implementation**

2 The emission units/activities currently meet all RACT requirements, and the existing controls
 3 and emissions limitations are considered RACT for Hexcel. RACT evaluations showed that additional add-
 4 on controls or limitations are not technically or economically feasible options at this time. No additional
 5 RACT measures were identified, and all RACT determinations are already being implemented. Therefore,
 6 there are no additional implementation schedules or requirements for Hexcel as required by this SIP
 7 revision.

1 4.6 Hill Air Force Base

2 4.6.1 Introduction

3 This section specifically serves as an evaluation of Hill Air Force Base (Hill AFB). Hill AFB did not
4 submit an additional RACT analysis for evaluation, and thus UDAQ relied on the more stringent BACT
5 analysis submitted for NO_x and VOC emissions as evaluated for the Salt Lake City PM_{2.5} serious SIP.
6 Specific conditions as they relate to this SIP revision for Hill AFB can be found in Section IX, Part H.32.d.

7 4.6.2 Facility Process Summary

8 Hill AFB is a large U.S. Air Force base located in northern Utah, just south of the city of Ogden.
9 Hill AFB is the home of the Air Force Material Command's Ogden Air Logistics Complex, which is the
10 worldwide manager for a wide range of aircraft, engines, missiles, software, avionics, and accessories
11 components, and provides worldwide logistics support for Air Force and Defense Department weapon
12 systems. Additional tenant units include the Air Combat Command and the Air Force Reserve Command.
13 Hill AFB has extensive industrial facilities for painting, paint stripping, plating, parts
14 warehousing/distribution, wastewater treatment, and manages and maintains air munitions, solid
15 propellants, landing gear, and training devices.

16 4.6.3 Facility Baseline Actual Emissions and Current PTE

17 The baseline and current PTE from the Hill AFB processes and equipment are summarized in Table
18 28. The 2017 actual emissions were used as the baseline emissions. The current PTE values for Hill AFB
19 were established by the most recent active AOs issued to the source.

- 20 • AO DAQE-AN101210245-16 issued September 1, 2016 (0245-16)
- 21 • AO DAQE-AN101210200A-09 issued December 17, 2009 (0200A-09)
- 22 • AO DAQE-AN0121175-06 issued October 16, 2006 (175-06)
- 23 • AO DAQE-AN101210266-19 issued May 8, 2019 (0266-19)
- 24 • AO DAQE-AN0101210195-09 issued August 10, 2009 (0195-09)
- 25 • AO DAQE-AN101210233-12 issued January 27, 2012 (0233-12)
- 26 • AO DAQE-AN101210225-12 issued April 19, 2012 (0225-12)
- 27 • AO DAQE-AN101210248-17 issued June 7, 2017 (0248-17)
- 28 • AO DAQE-AN101210228-12 issued June 13, 2012 (0228-12)
- 29 • AO DAQE-AN0101210214-11 issued June 28, 2011 (0214-11)
- 30 • AO DAQE-AN101210229-12 issued October 29, 2012 (0229-12)
- 31 • AO DAQE-AN101210233-14 issued June 26, 2014 (0233-14)
- 32 • AO DAQE-AN101210237-15 issued March 9, 2015 (0237-15)
- 33 • AO DAQE-AN101210241-15 issued November 5, 2015 (0241-15)
- 34 • AO DAQE-AN101210260-19 issued April 3, 2019 (0260-19)
- 35 • AO DAQE-AN101210240B-16 issued February 8, 2016 (0240B-16)

36 Table 28: Hill Air Force Base Facility-Wide Emissions

Hill Air Force Base Facility Emissions		
Pollutant	Baseline Emissions	PTE

	(TPY)	(TPY)
NO _x	101.43	279.81
VOC	140.24	330.41

1 4.6.4 RACT Analysis

2 The RACT evaluations were performed using data from Hill AFB, AOs and supporting
 3 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
 4 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
 5 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
 6 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
 7 NO_x and VOCs are provided in Table 29.

8

Table 29: Hill Air Force Base

Hill Air Force Base						
TSD Section # ⁵⁷	Emission Unit/Activity	Pollutant	BACT Determination	Enforceability		Comments
				AO Conditions	PM _{2.5} SIP Conditions	
2.1.1	Boilers	VOCs	Use of pipeline quality natural gas (low sulfur fuel), good combustion practices, good design, and proper operation.	(0245-16) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x	All boilers older than January 1, 1989, will be removed. The combined heat NO _x emissions for all boilers (except those less than 5 MMBtu/hr) shall not exceed 95 lb/hr.	(0245-16) II.B.1.a & II.B.2.a	H.12.q.ii	Current operations meet RACT, no further action warranted.
2.1.2	Surface Coating, Cleaning & Chemically De-painting Operations	VOCs	Low VOC coatings, work practice standards, emissions limit of 0.58 tpd, and proper maintenance.	(0200A-09) II.B.1.a through II.B.1.m	H.12.q.i	Current operations meet RACT, no further action warranted.

⁵⁷ <https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2018-007651.pdf>

2.1.3	Emergency Equipment Operations	VOCs	Limited hours of operation for maintenance and testing, good combustion practices, use of a tier-certified engine when required under NSPS Subpart IIII and JJJJ, the use of ULSD and proper equipment operation, maintenance schedules and protocols.	(175-06) I.E & II.C (0266-19) I.5 & II.B.1.b	No	Current operations meet RACT, no further action warranted.
		NO _x				
2.1.4	Testing Operations	VOCs	Site-wide fuel limit and proper operation, maintenance, and protocols.	(0195-09) I.5, II.B.1.a, II.B.2.a, & II.B.3.a (0233-12) I.5 & II.B.1.b (0225-12) I.5 & II.B.1.a (0248-17) I.4, II.B.1.a, & II.B.1.b	No	Current operations meet RACT, no further action warranted.
		NO _x				
2.1.5	Degreasing Operations	VOCs	Use of low volatility solvents, proper operation, maintenance and operation protocols with	(0228-12) I.6, II.B.1.a through II.B.1.f	No	Current operations meet RACT, no further action warranted.

			a limit on VOC emissions.			
2.1.6	Misc. Coating and Blasting	VOCs	Scrubbers, low-sulfur fuel, limited use, proper operation, maintenance and protocols.	(0214-11) I.5 & II.B.1.a (0229-12) I.5 (0233-14) I.5 & II.B.1.a	No	Current operations meet RACT, no further action warranted.
		NO _x	Limited use, proper operation, maintenance, and protocols.			
2.1.7	Air Handlers & Heaters	VOCs	LNBs, low sulfur fuel, limited use, proper operation, maintenance and protocols.	(0237-15) I.5 & II.B.1.a	No	Current operations meet RACT, no further action warranted.
		NO _x				
2.1.8	Fuel Operations	VOCs	Fuel storage: vapor balancing system and submerged loading as required by R307-328, limited use, proper operation, maintenance and protocols. Distillation: Limited use, proper operation, Maintenance and protocols.	(0241-15) I.5 and II.B.1.a (0260-19) I.5, II.B.1.a, & II.B.1.b	No	Current operations meet RACT, no further action warranted.
2.1.10	Industrial Wastewater Operation	VOCs	Limiting VOC emission, proper operation,	(0240B-16) I.5, II.B.1.a, & II.B.1.b	No	Current operations meet RACT, no further action warranted.

			maintenance and protocols.			
--	--	--	----------------------------	--	--	--

1 4.6.5 Conclusion of RACT Implementation

2 The emission units/activities currently meet all RACT requirements, and the existing controls
 3 and emissions limitations are considered RACT for Hill AFB. Re-evaluation of BACT showed that
 4 additional add-on controls or limitations are not technically or economically feasible options at this time.
 5 No additional RACT measures were identified, and all RACT determinations are already being
 6 implemented. Therefore, there are no additional implementation schedules or requirements for Hill AFB
 7 as required by this SIP revision.

8

9 4.7 Holly Frontier Sinclair Woods Cross Refinery

10

11 4.7.1 Introduction

12 This section specifically serves as an evaluation of Holly Frontier Sinclair Woods Cross Refinery
 13 (HF Sinclair Refinery). In addition to its BACT report submitted as part of the Salt Lake City PM_{2.5} serious
 14 SIP, HF Sinclair Refinery submitted an additional RACT analysis for evaluation on January 31, 2023, with
 15 supporting information submitted February 23, 2023. Specific conditions related to this SIP revision for
 16 HF Sinclair Refinery can be found in Section IX, Part H.32.e.

17

18 4.7.2 Facility Process Summary

19 The HF Sinclair Refinery is a petroleum refinery capable of processing 60,000 barrels per day of
 20 crude oil, primarily heavier black wax and yellow wax crudes from eastern Utah. The refinery produces a
 21 variety of products including gasoline, natural gas liquids, propane, butanes, jet fuels, fuel oils, and
 22 kerosene products. The refinery receives and distributes products by tanker truck, rail car, and pipeline.
 23 The source consists of two FCCUs, both controlled with wet gas scrubbers. A single sulfur recovery unit
 24 controls the sulfur content of the fuel gas. The source also has an assortment of heaters, boilers, cooling
 25 towers, storage tanks, flares, and related fugitive emissions.

26

27 4.7.3 Facility Baseline Actual Emissions and Current PTE

28 The baseline and current PTE from the HF Sinclair Refinery processes and equipment are
 29 summarized in Table 28. The 2017 actual emissions were used as the baseline emissions. The current
 30 PTE values for HF Sinclair Refinery were established by the most recent active AOs issued to the source.

31 • AO DAQE-AN101230053-22 issued September 1, 2022 (0053-22)

32 Table 30: Holly Frontier Sinclair Woods Cross Refinery Facility-Wide Emissions

Holly Frontier Sinclair Woods Cross Refinery Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	170.51	347.10
VOC	217.45	223.63

33

34 4.7.4 RACT Analysis

35 The RACT evaluations were performed using data from HF Sinclair Refinery, AOs and supporting
 36 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to

1 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
 2 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
 3 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
 4 NO_x and VOCs are provided in Table 31.

5
 6 *Table 31: Holly Frontier Sinclair Woods Cross Refinery*

Holly Frontier Sinclair Woods Cross Refinery						
RACT Section # ⁵⁸	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability		Comments
				AO Condition s	PM _{2.5} SIP Conditions	
3.4 & 4.5	FCCU Regenerator	NO _x	Wet gas scrubber with use of LoTOx add-on & refinery-wide NO _x limit.	(0053-22) II.B.4 & II.B.8.b	H.12.g.ii & H.12.g.vi	Current operations meet RACT, no further action warranted.
4.5		VOCs	Good combustion practices, no additional controls.	(0053-22) I.5	No	
3.1 & 4.1	Process Heaters and Boilers	NO _x	LNB, ULNB, some use of SCR, & refinery-wide NO _x limit.	(0053-22) II.B.4.a & II.B.6.b	H.12.g.ii & H.12.g.vi	Current operations meet RACT, no further action warranted.
4.1		VOCs	Good combustion practices, no additional controls.	(0053-22) I.5 & II.B.6.d	No	
3.3 & 4.4	Sulfur Recovery Unit Tail Gas incinerator	NO _x	Wet Gas Scrubber, Low- NO _x burner & refinery-wide NO _x limit.	(0053-22) I.5 & II.B.4.a	H.12.g.ii & H.12.g.vi	Current operations meet RACT, no further action warranted.
4.4		VOCs	Wet Gas Scrubber.			
4.3	Cooling Towers	VOCs	MACT Subpart CC requirements on cooling	(0053-22) II.B.12.a	H.11.g.iii	Current operations meet RACT, no further

⁵⁸ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001865.pdf>

			towers servicing high VOC heat exchangers.			action warranted.
4.9	Fugitive emissions/ Equipment Leaks	VOCs	Low leak LDAR requirements of NSPS Subpart GGGa.	(0053-22) II.B.1.h	H.11.g.iv	Current operations meet RACT, no further action warranted.
4.6	Fixed Roof Tanks	VOCs	Compliance with NSPS Subpart Kb, MACT Subpart WW, and LDAR.	(0053-22) I.5	H.11.g.vi	Current operations meet RACT, no further action warranted.
4.7	Internal Floating Roof Storage tanks	VOCs	Submerged fill operations & tank degassing requirements - eventual compliance with NSPS Subpart Kb or MACT Subpart CC and MACT Subpart WW.	(0053-22) I.5	H.11.g.vi	Current operations meet RACT, no further action warranted.
4.8	External Floating Roof	VOCs	Compliant with NSPS Subpart Kb or MACT Subpart CC and MACT Subpart WW.	(0053-22) I.5	H.11.g.vi	Current operations meet RACT, no further action warranted.
4.10	Wastewater System	VOCs	Closed vent system with carbon adsorption. Compliance with NSPS Subpart QQQ and MACT Subpart FF.	(0053-22) I.5	H.12.g.vi	Current operations meet RACT, no further action warranted.
3.2 & 4.2	Refinery Flares	NO _x	Flare Gas recovery system, requirement to	(0053-22) II.B.1.g	H.11.g.v, H.12.g.ii, & H.12.g.vi	Current operations meet RACT, no further action warranted.
4.2		VOCs				

			meet NSPS Subpart Ja.			
3.5 & 4.12	Standby Diesel Engines	VOCs	Proper maintenance and operation, compliance with MACT Subpart ZZZZ.	(0053-22) I.5	H.12.g.iv	Current operations meet RACT, no further action warranted.
4.1		NO _x				
3.6 & 4.13	Standby Emergency Nat Gas Engines	VOCs	Proper maintenance and operation, compliance with NSPS Subpart JJJJ and MACT Subpart ZZZZ.	(0053-22) I.5	No	Current operations meet RACT, no further action warranted.
4.1		NO _x				
4.11	Product Loading	VOCs	Submerged or bottom loading as well as vapor balancing.	(0053-22) I.5	No	Current operations meet RACT, no further action warranted.
N/A	Refinery General Approach	NO _x	Refinery-wide NO _x limit.	(0053-22) II.B.4	H.12.g.ii	Current operations meet RACT, no further action warranted.

1 4.7.5 Conclusion of RACT Implementation

2 The emission units/activities currently meet all RACT requirements, and the existing controls
 3 and emissions limitations are considered RACT for the HF Sinclair Refinery. RACT evaluations showed
 4 that additional add-on controls or limitations are not technically or economically feasible options at this
 5 time. No additional RACT measures were identified, and all RACT determinations are already being
 6 implemented. Therefore, there are no additional implementation schedules or requirements for the HF
 7 Sinclair Refinery as required by this SIP revision.

8 4.8 Kennecott Utah Copper Bingham Canyon Mine and Copperton Concentrator

9 4.8.1 Introduction

10 This section specifically serves as an evaluation of Kennecott Utah Copper (KUC) – Bingham
 11 Canyon Mine (BCM) and Copperton Concentrator (CC). In addition to past submitted BACT reports, KUC
 12 submitted an additional RACT analysis for evaluation January 30, 2023. Specific conditions for this SIP
 13 revision for KUC BCM & CC can be found in Section IX, Part H.32.f.

1 4.8.2 Facility Process Summary

2 The KUC BCM is an open pit mining operation located in the southwest corner of Salt Lake
3 County. The ore and waste rock at the BCM are transferred from the mining areas to other areas of the
4 mine through a series of transfers using haul trucks and conveyor belts. Ore is crushed in the in-pit
5 crusher. After the ore is crushed, it is conveyed to the KUC CC located approximately five miles north of
6 the open pit. At the CC, semi-autogenous grinding mills and ball mills grind the ore into a slurry. The
7 slurry is sent through cyclone clusters, and the cyclone overflow is fed into flotation circuits and mixed
8 with reagents. The flotation circuits are aerated to float copper and other valuable by-products from the
9 ore. Once the ore is processed at the concentrator, it is transferred to the smelter.

10 4.8.3 Facility Baseline Actual Emissions and Current PTE

11 The baseline and current PTE from the KUC BCM & CC processes and equipment are
12 summarized in Table 31. The 2017 actual emissions were used as the baseline emissions. The current
13 PTE values for KUC BCM & CC were established by the most recent active AOs issued to the source.

14 • AO DAQE-AN105710047-21 issued May 10, 2021 (0047-21)
15 • AO DAQE-AN105710044-18 issued August 21, 2018 (0044-18)

16 Table 31: KUC Bingham Canyon Mine and Copperton Concentrator Facility-Wide Emissions

KUC Bingham Canyon Mine & Copperton Concentrator Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	4,209.19	5,852.77
VOC	210.03	318.17

17 4.8.4 RACT Analysis

18 The RACT evaluations were performed using data from KUC, AOs and supporting
19 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
20 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
21 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
22 regulations; and other state SIPs. The RACT determinations for each emission unit or activity emitting
23 NO_x and VOCs are provided in Table 33.

24 Table 33: Kennecott Utah Copper: Bingham Canyon Mine and Copperton Concentrator

Kennecott Utah Copper: Bingham Canyon Mine & Copperton Concentrator						
Bingham Canyon Mine						
RACT Section # ⁵⁹	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability		Comments
				AO Condition	PM _{2.5} SIP Conditions	

59 <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001509.pdf>

2.1.1	Tailpipe Emissions from Mobile Sources	NO _x	Compliance with non-road EPA Standards.	(0047-21) II.B.1.f	H.12.h.i.A	Current operations meet RACT, no further action warranted.
2.1.5	Solvent Extraction and Electrowinning Process	NO _x	Use of mist eliminators and covers in tanks, mixers, and settlers.	(0047-21) II.B.2.f & II.B.2.g	No	Current operations meet RACT, no further action warranted.
		VOCs	Stage I and Stage 2 recovery systems.			
2.1.2	Gasoline Fueling	VOCs	Stage I and Stage 2 recovery systems.	(0047-21) I.5	No	Current operations meet RACT, no further action warranted.
2.1.3	Cold Solvent Degreasing Washers	VOCs	Compliance with R307-335.	(0047-21) I.5	No	Current operations meet RACT, no further action warranted.
2.1.4	Propane Communications Generator	VOCs	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0047-21) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.			
PM _{2.5} BACT TSD 1.4 ⁶⁰	Diesel-Fired Emergency Generators	VOCs	BACT determination: proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0047-21) I.5	No	Equipment not operated during evaluation period, no additional RACT submitted. Current operations meet RACT, no further action warranted.
		NO _x	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.			

⁶⁰ <https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2018-007709.pdf>

Copperton Concentrator						
RACT Section #	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability		Comments
				AO Condition	PM _{2.5} SIP Conditions	
2.2.1	Tioga Heaters	VOCs	Use of pipeline quality natural gas, good combustion practices, and good design and proper operation	(0044-18) I.5	No	Current operations meet RACT, no further action warranted.
			NO _x			
2.2.4	Feed and Product Dryer Oil Heaters	VOC _s	Use of pipeline quality natural gas and good combustion practices.	(0044-18) I.5	No	Current operations meet RACT, no further action warranted.
			NO _x		H.12.h.ii.A	
2.2.2	Degreasing Parts Washers	VOCs	Compliance with the requirements of R307-335.	(0044-18) I.5	No	Current operations meet RACT, no further action warranted.
2.2.3	Gasoline Fueling Stations	VOCs	Stage I and Stage 2 recovery systems.	(0044-18) I.5	No	Current operations meet RACT, no further action warranted.
PM _{2.5} BACT TSD 1.4	Three Storage Tanks (Sodium Cyanide)	VOCs	BACT determination: use of submerged pipes.	(0044-18) I.5	No	Equipment not operated during evaluation period, no additional RACT submitted. Current operations meet RACT, no further action warranted.

2.1.4	Liquid Propane-Fired Emergency Generator	VOCs NO _x	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0044-18) I.5	No	Current operations meet RACT, no further action warranted.
-------	--	-------------------------	---	------------------	----	--

1

2 4.8.5 Conclusion of RACT Implementation

3 The emission units/activities currently meet all RACT requirements, and the existing controls
 4 and emissions limitations are considered RACT for KUC BCM & CC. RACT evaluations showed that
 5 additional add-on controls or limitations are not technically or economically feasible options at this time.
 6 No additional RACT measures were identified, and all RACT determinations are already being
 7 implemented. Therefore, there are no additional implementation schedules or requirements for KUC
 8 BCM & CC as required by this SIP revision.

9 4.9 KUC Smelter and Refinery

10 4.9.1 Introduction

11 This section specifically serves as an evaluation of KUC – Smelter and Refinery. In addition to
 12 past BACT reports, KUC submitted an additional RACT analysis for evaluation January 30, 2023. Specific
 13 conditions for this SIP revision for the KUC Smelter and Refinery can be found in Section IX, Part H.32.g.

14 4.9.2 Facility Process Summary

15 KUC operates a copper smelter and refinery in Salt Lake County. The Smelter employs flash
 16 smelting technology with flash converting technology to produce copper anodes and high concentration
 17 sulfur dioxide gases. Copper ore concentrates from the Copperton Concentrator are first dewatered,
 18 dried, blended with fluxes and secondary copper-bearing materials, then fed to a flash smelting furnace
 19 where the ore is melted and reacts to produce copper matte. The copper matte is converted to blister
 20 copper by oxidization, reduced in the anode furnace to produce a high purity copper, and then poured
 21 in molds to cast solid copper ingots (anodes). The anodes are moved to the Refinery co-located near the
 22 Smelter. The Refinery uses an electrolytic refining process to convert the Smelter-produced anodes to
 23 high-purity cathode copper and also recover precious metals from the electrolytic refinery slimes in a
 24 precious metals circuit.

25 4.9.3 Facility Baseline Actual Emissions and Current PTE

26 The baseline and current PTE from the KUC Smelter and Refinery processes and equipment are
 27 summarized in Table 34. The 2017 actual emissions were used as the baseline emissions. The current
 28 PTE values for the KUC Smelter and Refinery were established by the most recent active AOs issued to
 29 the source.

30 • AO DAQE-AN103460058-20 issued November 12, 2020 (0058-20)
 31 • AO DAQE-AN103460061-22 issued June 23, 2022 (0061-22)

1 *Table 34: KUC Smelter and Refinery Facility-Wide Emissions*

KUC Smelter and Refinery Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	154.87	198.13
VOC	10.94	20.47

2 **4.9.4 RACT Analysis**

3 The RACT evaluations were performed using data from KUC, AOs and supporting
 4 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
 5 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
 6 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
 7 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
 8 NO_x and VOCs are provided in Table 35.

9

10

11

Table 35: Kennecott Utah Copper: Smelter and Refinery

Kennecott Utah Copper: Smelter and Refinery							
Refinery						Comments	
RACT Section # ⁶¹	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability			
				AO Condition	PM _{2.5} SIP Conditions		
3.2.1	Boiler	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0058-20) I.5 & II.B.4.a	No	Current operations meet RACT, no further action warranted.	
		NO _x	Installation of ULNB (9 ppmvd) on the boiler & continued use of FGR.	(0058-20) II.B.1.A	H.12.j.ii.A & H.12.j.ii.C		
3.2.2	CHP	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0058-20) I.5 & II.B.4.d	H.12.j.ii.D	Current operations meet RACT, no further action warranted.	

⁶¹ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001509.pdf>

		NO _x	Use of SoLoNO _x burner technology (9 ppmv) on turbine.	(0058-20) II.B.1.A	H.12.j.ii.A	
3.1.8	Space Heaters	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0058-20) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				
3.1.6	Gasoline Fueling	VOCs	Stage I and Stage 2 recovery systems.	(0058-20) I.5	No	Current operations meet RACT, no further action warranted.
PM _{2.5} BACT TSD 1.4 ⁶²	Degreasing	VOCs	BACT determination: compliance with R307-335.	(0058-20) I.5	No	Equipment not operated during evaluation period, no additional RACT submitted. Current operations meet RACT, no further action warranted.
3.2.8	Paint	VOCs	Enclosures.	(0058-20) I.5	No	Current operations meet RACT, no further action warranted.
3.2.7	Prime Diesel Generators	VOCs	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0058-20) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				
3.1.4	Refinery LPG Emergency	VOCs	Proper maintenance and operation, and	(0058-20)	No	Current operations meet RACT, no further

⁶² <https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2018-007702.pdf>

	Communication Generator	NO _x	compliance with applicable NSPS or MACT requirements.	I.5 & II.B.4.e		action warranted.
Smelter						
RACT Section #	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability		Comments
				AO Condition	PM _{2.5} SIP Conditions	
3.1.1	Main Stack	NO _x	Controls are described for each source that vents to the Main Stack. The following sources vent to the Main Stack: anode furnaces, secondary gas system, matte grinding, concentrate dryer, acid plant, and vacuum cleaning system. Compliance with MACT Subpart EEEEEEE.	(0061-22) II.B.1.a & II.B.3.a	H.12.j.i.A.I. 3	Current operations meet RACT, no further action warranted.
3.1.1.1	Anode Furnaces	NO _x	LNB (30 ppmvd)	(0061-22) II.B.1.a & II.B.3.a	No	Current operations meet RACT, no further action warranted.
		VOCs	Use of pipeline quality natural gas and oxy-fuel, good combustion practices, good design, & proper operation.	(0061-22) I.5		
3.1.1	Concentrate Dryer	NO _x	Use of LNB & good combustion practices.	(0061-22) II.B.1.a & II.B.3.a	No	Current operations meet RACT, no further action warranted.
		VOCs	Use of pipeline quality natural gas and oxy-fuel,	(0061-22) I.5		

			good combustion practices, good design, & proper operation.			
3.1.2	Powerhouse Holman Boiler	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, proper operation, & limited natural gas consumption.	(0061-22) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x	Use of continuous monitoring to ensure NO _x emissions do not exceed 14 lbs/hr (calendar-day average); FGR.	(0061-22) II.B.1.a & II.B.2	H.12.j.i.A.II	
3.1.3	Powerhouse Foster Wheeler Boiler (Now Rentech Boiler)	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, proper operation, & limited natural gas consumption.	(0061-22) I.5	No	Replaced by Rentech Boiler in AO DAQE-AN103460056-20 issued January 10, 2020. Current operations meet RACT, no further action warranted.
		NO _x	ULNB, 15 ppm	(0061-22) II.B.1.a & II.B.2		
3.1.5	Cold Solvent Degreaser	VOCs	Compliance with R307-335	(0061-22) I.5	No	Current operations meet RACT, no further action warranted.
3.1.8	Space Heaters	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0061-22) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				

3.1.6	Fueling	VOCs	Stage I and Stage 2 recovery systems.	(0061-22) I.5	No	Current operations meet RACT, no further action warranted.
3.2.7, 3.1.7	Emergency Backup Power Generators	VOCs	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0061-22) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				
PM _{2.5} BACT TSD 1.4	Diesel Compressor	VOCs	BACT determination: proper maintenance and operation.	(0061-22) I.5	No	Equipment not operated during evaluation period, no additional RACT submitted. Current operations meet RACT, no further action warranted.
		NO _x				
3.1.4	Smelter LPG Emergency Communication Generator	VOCs	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0061-22) I.5	No	Current operations meet RACT, no further action warranted.
3.1.9	Hot Water Boilers	VOCs	Proper maintenance and operation.	(0061-22) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				

1

2 **4.9.5 Conclusion of RACT Implementation**

3 The emission units/activities currently meet all RACT requirements, and the existing controls
 4 and emissions limitations are considered RACT for the KUC Smelter and Refinery. RACT evaluations
 5 showed that additional add-on controls or limitations are not technically or economically feasible
 6 options at this time. No additional RACT measures were identified, and all RACT determinations are
 7 already being implemented. Therefore, there are no additional implementation schedules or
 8 requirements for the KUC Smelter and Refinery as required by this SIP revision.

1 4.10 LHoist North America of Arizona, Inc.

2 **4.10.1 Introduction**

3 This section specifically serves as an evaluation of LHoist North America of Arizona, Inc. (LHoist).
4 LHoist did not submit an additional RACT analysis for evaluation. UDAQ referenced the more stringent
5 BACT for NO_x and VOCs evaluated as part of the Salt Lake City PM_{2.5} serious SIP. Specific conditions for
6 this SIP revision for LHoist can be found in Section IX, Part H.32.h.

7 **4.10.2 Facility Process Summary**

8 LHoist operates a lime production facility near Grantsville that consists of a Quarry and Lime
9 Plant. Kiln operations were placed in temporary care and maintenance mode November 14, 2008, with
10 support operations having had limited operation since that date. Activities at the facility include mining
11 of limestone ore, limestone processing through various crushing and screening processes, operation of a
12 rotary kiln that heats the crushed limestone ore and converts it into quicklime, lime hydration
13 equipment to create hydrated lime, bagging facilities, and load-out operations. When operating, the
14 facility produces a variety of products including quicklime, hydrate, aggregate kiln-grade limestone,
15 overburden/low-grade limestone, and limestone chat.

16 **4.10.3 Facility Baseline Actual Emissions and Current PTE**

17 The baseline and current PTE from the LHoist processes and equipment are summarized in Table
18 36. The 2017 actual emissions were used as the baseline emissions. The current PTE values for LHoist
19 were established by the most recent active AOs issued to the source.

20 • AO DAQE-AN0707015-06 issued August 14, 2006 (015-06)

21 *Table 36: LHoist North America of Arizona Facility Facility-Wide Emissions*

LHoist North America of Arizona Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	0.11	328.66
VOC	0.07	3.01

26 **4.10.4 RACT Analysis**

27 The RACT evaluations were performed using data from LHoist, AOs and supporting
28 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
29 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
30 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
31 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
32 NO_x and VOCs are provided in Table 37.

1 Table 37: Lhoist North America of Arizona, Inc.

TSD Section # ⁶³	Emission Unit/Activity	Pollutant	BACT Determination	Enforceability		Comments
				AO Conditions	PM _{2.5} SIP Conditions	
4.0	Rotary Kiln System	NO _x	SNCR required upon facility startup.	No	H.12.c.i & H.12.c.ii	Current operations meet RACT, no further action warranted.
		VOCs	Good combustion practices and burner/process optimization.	(015-06) #22	No	
5.0	Pressure Hydrator	NO _x	Good combustion practices and natural gas as fuel.	(015-06) #22	No	Current operations meet RACT, no further action warranted.
		VOCs	Good combustion practices and proper maintenance.	(015-06) #22	No	
7.0	Kiln Shaft Motor	NO _x	Good combustion practices and proper maintenance.	(015-06) #22	No	Current operations meet RACT, no further action warranted.

2

3 **4.10.5 Conclusion of RACT Implementation**

4 The emission units/activities currently meet all RACT requirements, and the existing controls
 5 and emissions limitations are considered RACT for LHoist. Re-evaluation of BACT showed that additional
 6 add-on controls or limitations are not technically or economically feasible options at this time. No
 7 additional RACT measures were identified, and all RACT determinations are already being implemented.
 8 Therefore, there are no additional implementation schedules or requirements for LHoist as required by
 9 this SIP revision.

10 **4.11 Pacificorp Energy Gadsby Power Plant**

11 **4.11.1 Introduction**

12 This section specifically serves as an evaluation of Pacificorp Energy – Gadsby Power Plant
 13 (Pacificorp Gadsby). Pacificorp Gadsby did not opt to submit an additional RACT analysis for evaluation,
 14 therefore UDAQ referenced the more stringent BACT for NO_x and VOCs evaluated as part of the PM_{2.5}
 15 serious SIP, with support information submitted by Pacificorp Gadsby March 10, 2023. Specific
 16 conditions for this SIP revision for Pacificorp Gadsby can be found in Section IX, Part H.32.i.

63 <https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2018-007681.pdf>

1 [4.11.2 Facility Process Summary](#)

2 Pacificorp Energy operates the Gadsby Power Plant located in Salt Lake City. The Gadsby Power
3 Plant is a natural gas-fired electric generating plant consisting of three steam boilers (Units #1-3) and
4 three simple-cycle combustion turbines (Units #4-6). Unit #1 is a 65 MW unit equipped with low NO_x
5 burners; Unit #2 is an 80 MW unit equipped with low NO_x burners; and Unit #3 is a 105 MW unit. All
6 three units are capable of using fuel oil as a back-up fuel during natural gas curtailments. Units #4-6 are
7 43.5 MW combustion turbine engines. The plant also has small emergency generators, cooling towers,
8 and small storage tanks.

9 [4.11.3 Facility Baseline Actual Emissions and Current PTE](#)

10 The baseline and current PTE from Pacificorp Gadsby processes and equipment are summarized
11 in Table 38. The 2017 actual emissions were used as the baseline emissions. The current PTE values for
12 Pacificorp Gadsby were established by the most recent active AOs issued to the source.

13 • AO DAQE-AN103550015-09 issued January 12, 2009 (0015-09)

14 *Table 38: Pacificorp Energy Gadsby Power Plant Facility-Wide Emissions*

Pacificorp Energy Gadsby Power Plant Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	38.81	716.10
VOC	2.26	23.00

15 [4.11.4 RACT Analysis](#)

16 The RACT evaluations were performed using data from Pacificorp Gadsby, AOs and supporting
17 documentation, and SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to identify all
18 existing and potential controls and emission rates, including EPA's RBLC; technical documents, EPA fact
19 sheets, applicable CTGs, and other applicable literature; state and federal regulations; and other state
20 SIPS. The RACT determinations for each emission unit or activity emitting NO_x and VOCs are provided in
21 Table 39.

22 *Table 39: PacifiCorp Energy: Gadsby Power Plant*

TSD Section # ⁶⁴	Emission Unit/Activity	Pollutant	BACT Determination	Enforceability		Comments
				AO Conditions	PM _{2.5} SIP Conditions	
4.0	Steam Generating Units (Boilers 1-3)	NO _x	Natural gas as fuel, good combustion practices, ULSD as backup fuel, NO _x emission limits.	(0015-09) II.B.4	H.12.I.i, H.12.I.ii, H.12.I.iii, & H.12.I.iv	Current operations meet RACT, no further action warranted.

⁶⁴ <https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2018-006882.pdf>

		VOCs	Good combustion practices, proper design.	(0015-09) I.5	No	
5.0	Combustion Turbines (Units 4-6)	NO _x	SCR, water/steam injection.	(0015-09) II.B.3	H.12.l.v	Current operations meet RACT, no further action warranted.
		VOCs	GCP and oxidation catalysts.	(0015-09) I.5	No	
6.3	Fuel Storage Tanks	VOCs	Submerged fill operations, no additional controls.	(0015-09) I.5	No	Current operations meet RACT, no further action warranted.
6.5	Misc. Painting Operations	VOCs	Use of low-VOC compliant coatings, high transfer efficiency applications, & proper operation.	(0015-09) I.5	No	Current operations meet RACT, no further action warranted.
6.2	Standby Emergency Engines	VOCs	Proper maintenance and operation.	(0015-09) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				
5.5	Startup/Shutdown at Combustion Turbines	NO _x	Limitation of hours of operation for startup/shutdown to limit NO _x , alternative operating scenarios included.	(0015-09) I.5	H.12.l.vi	Current operations meet RACT, no further action warranted.

1 4.11.5 Conclusion of RACT Implementation

2 The emission units/activities currently meet all RACT requirements, and the existing controls
 3 and emissions limitations are considered RACT for Pacificorp Gadsby. Re-evaluation of BACT showed
 4 that additional add-on controls or limitations are not technically or economically feasible options at this
 5 time. No additional RACT measures were identified, and all RACT determinations are already being
 6 implemented. Therefore, there are no additional implementation schedules or requirements for
 7 Pacificorp Gadsby as required by this SIP revision.

1 4.12 Tesoro Refining & Marketing Company LLC dba Marathon Refinery

2 **4.12.1 Introduction**

3 This section specifically serves as an evaluation of Tesoro Refining and Marketing Company LLC
4 dba Marathon Refinery (Marathon Refinery). In addition to past BACT reports, Marathon Refinery
5 submitted an additional RACT analysis for evaluation January 31, 2023, with a subsequent submission
6 including additional information submitted on March 31, 2023. Specific conditions for this SIP revision
7 for Marathon Refinery can be found in Section IX, Part H.32.j.

8 **4.12.2 Facility Process Summary**

9 The Marathon Refinery is a petroleum refinery capable of processing 57,500 barrels per day of
10 crude oil. The source consists of one FCCU, a catalytic reforming unit, hydrotreating units, a sulfur
11 recovery unit, and cogeneration units. The source also has assorted heaters, boilers, cooling towers,
12 storage tanks, flares, and similar fugitive emissions.

13 **4.12.3 Facility Baseline Actual Emissions and Current PTE**

14 The baseline and current PTE from the Marathon Refinery processes and equipment are
15 summarized in Table 40. The 2017 actual emissions were used as the baseline emissions. The current
16 PTE values for Marathon Refinery were established by the most recent active AOs issued to the source.

17 • AO DAQE-AN103350075-18 issued January 11, 2018 (0075-18)
18 • AO DAQE-AN103350081A-21 issued January 12, 2021 (0081A-21)

19
20
21 *Table 40: Tesoro Marathon Refinery Facility-Wide Emissions*

Tesoro Marathon Refinery Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	313.27	638.05
VOC	230.77	769.88

22

23 **4.12.4 RACT Analysis**

24 The RACT evaluations were performed using data from Marathon Refinery, AOs and supporting
25 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
26 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
27 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
28 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
29 NO_x and VOCs are provided in Table 41.

30
31 *Table 41: Tesoro Refining and Marketing Company LLC dba Marathon Refinery*

Tesoro Refining and Marketing Company LLC dba Marathon Refinery					
		Pollutant		Enforceability	Comments

RACT Section # ⁶⁵	Emission Unit/Activity		RACT Determination	AO Conditions	PM _{2.5} SIP Conditions	
4.0	FCCU Regenerator & CO Boiler	NO _x	Wet gas scrubber with use of LoTOx add-on & refinery-wide NO _x limit.	(0075-18) II.B.1.g, II.B.4.a, II.B.4.f, & II.B.7.a	H.12.m.ii & H.12.m.vi	Current operations meet RACT, no further action warranted.
			VOCs	Good combustion practices, no additional controls.	(0075-18) I.5	No
5.0	Process Heaters and Boilers	NO _x	LNB & ULNB required on various units, & refinery-wide NO _x limit.	(0075-18) II.B.1.g, II.B.3.a, & II.B.7.a	H.12.m.ii & H.12.m.vi	Current operations meet RACT, no further action warranted.
			VOCs	Good combustion practices, no additional controls.	(0075-18) I.5	No

⁶⁵ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001490.pdf>

6.0	Cogeneration Turbines	NO _x	Good combustion practices, use of gaseous fuels, & refinery-wide NO _x limit. SCR installation required.	(0075-18) II.B.1.g & II.B.7.a	H.12.m.ii	Installation of SCR that meets a 5 ppm NO _x limit by October 1, 2028. Required by SIP Section IX, Part H.32.j.
		VOCs	Good combustion practices, no additional controls.	(0075-18) I.5	No	
7.0	SRU	NO _x	Good combustion practices & refinery-wide NO _x limit.	(0075-18) II.B.1.g	H.12.m.ii & H.12.m.vi	Current operations meet RACT, no further action warranted.
13.0	Cooling Towers	VOCs	MACT Subpart CC requirements on cooling towers servicing high VOC heat exchangers.	(0075-18) I.5	H.11.g.iii	Current operations meet RACT, no further action warranted.

8.0	Fugitive emissions	VOCs	Low leak LDAR requirements of NSPS Subpart GGGa.	(0075-18) I.5	H.11.g.iv	Current operations meet RACT, no further action warranted.
16.0 - 18.0	Tanks	VOCs	Submerged fill operations, and tank degassing requirements - eventual compliance with NSPS Subpart Kb or MACT Subpart CC. Secondary seal installation on Tank 321 required.	(0075-18) II.B.9	H.11.g.vi & H.12.m.vi	Installation of secondary seal on Tank 321 by May 1, 2026. Required by SIP Section IX, Part H.32.j. All other current operations meet RACT, no further action warranted.
9.0	Wastewater System	VOCs	API separator unit with fixed cover; installation of closed vent system to carbon adsorption required.	(0075-18) I.5	H.12.m.vi	Installation of a closed vent system to carbon adsorption by December 31, 2025 in compliance with NSPS Subpart QQQ. Required by SIP Section IX, Part H.32.j.
11.0 & 12.0	Refinery Flares	NO _x	Evaluated through control of flare gases, not through individual pollutants, requirement to meet Subpart Ja for flares.	(0075-18) II.B.1.f	H.11.g.v & H.12.m.vi	Current operations meet RACT, no further action warranted.

19.0	Standby Emergency Engines	VOCs	Proper maintenance and operation, and compliance with applicable NSPS or MACT requirements.	(0075-18) I.5	H.12.m.vi	Current operations meet RACT, no further action warranted.
		NO _x				
15.0	K1 Compressors (natural gas engines)	VOCs	Catalytic converters, proper maintenance and operation, & refinery-wide NO _x limit	(0075-18) I.5 (0075-18) II.B.4.a, II.B.7.a, & II.B.7.c	H.12.m.ii	Current operations meet RACT, no further action warranted.
		NO _x				
N/A	Refinery General Approach	NO _x	Refinery-wide NO _x limit.	(0075-18) II.B.1.g & II.B.7.a	H.12.m.ii	Current operations meet RACT, no further action warranted.

1

2 4.12.5 Conclusion of RACT Implementation

3 The RACT analysis determined that all emission units/activities currently meet all RACT
 4 requirements, and all other existing controls and emissions limitations are considered RACT for the
 5 Marathon Refinery. The evaluations showed that the following control options are technically feasible:

- 6 • Installation of selective catalytic reduction (SCR) that meets a NO_x emission rate of 5 ppm on the
 7 Cogeneration Turbines
- 8 • Installation of a secondary seal on Tank 321
- 9 • Installation of a closed vent system controlled by carbon adsorption on the Wastewater System

10 The UDAQ has determined that these controls are necessary for the NWF NAA to demonstrate
 11 attainment of the 2015 8-hour ozone NAAQS as expeditiously as practicable. While the financial
 12 feasibility of the identified controls may be beyond previously established RACT thresholds, the CAA
 13 provides states with “discretion to require beyond-RACT reductions from any source” if those reductions
 14 are necessary to “demonstrate attainment as expeditiously as practicable”. ⁶⁶

15 No other additional add-on controls or limitations are technically or economically feasible options at
 16 this time. The installation of SCR on the Cogeneration Turbines will control total emissions from these
 17 two turbines by approximately 68.7%. The installation of SCR will result in an annual emission reduction
 18 of 68.78 tpy of NO_x. The SCR shall be installed and operational by October 1, 2028. The installation of a
 19 secondary seal on Tank 321 will result in 2.30 TPY of VOC emission reductions. The secondary seal shall
 20 be installed and operational by May 1, 2026. The installation of a closed vent system with carbon

⁶⁶ 80 FR 12279 & 83 FR 62998

1 adsorption on the Wastewater System is a planned refinery modification that shall be installed and
2 operational by December 31, 2025, and result in approximately 10 TPY of VOC emission reductions.

3 All requirements for the Cogeneration Turbines, Tank 321, and the Wastewater System are
4 incorporated into SIP Section IX, Part H.32.j. No additional RACT measures were identified, and all other
5 identified RACT determinations are already being implemented.

6 *4.13 Utah Municipal Power Agency West Valley Power Plant*

7 **4.13.1 Introduction**

8 This section specifically serves as an evaluation of Utah Municipal Power Agency (UMPA) West
9 Valley Power Plant (WVPP). In addition to past BACT reports, UMPA submitted an additional RACT
10 analysis for evaluation January 31, 2023, with supporting information submitted March 1, 2023. Specific
11 conditions for this SIP revision for UMPA WVPP can be found in Section IX, Part H.32.l.

12 **4.13.2 Facility Process Summary**

13 UMPA operates the WVPP in West Valley City. The WVPP is a natural gas-fired electric
14 generating plant consisting of 5 natural gas simple cycle turbines. Each turbine has a power output rated
15 at 43.4 MW and is equipped with water injection, evaporative spray mist inlet air cooling, selective
16 catalytic reduction catalyst, and CO oxidation catalyst. The primary purpose of the plant is to produce
17 electricity for sale via the utility power distribution system to meet the demands of the Salt Lake Valley
18 service area.

19 **4.13.3 Facility Baseline Actual Emissions and Current PTE**

20 The baseline and current PTE from the WVPP processes and equipment are summarized in Table
21 42. The 2017 actual emissions were used as the baseline emissions. The current PTE values for the WVPP
22 were established by the most recent active AOs issued to the source.

23 • AO DAQE-282-02 issued April 18, 2002 (282-02)

24
25 *Table 42: West Valley Power Plant Facility-Wide Emissions*

UMPA West Valley Power Plant Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	10.09	162.06
VOC	1.47	18.33

26 **4.13.4 RACT Analysis**

27 The RACT evaluations were performed using data from UMPA WVPP, AOs and supporting
28 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
29 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
30 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
31 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
32 NO_x and VOCs are provided in Table 43.

1

2 Table 43: Utah Municipal Power Agency West Valley Power Plant

Utah Municipal Power Agency West Valley Power Plant						Comments	
RACT Section # ⁶⁷	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability			
				AO Conditions	PM _{2.5} SIP Conditions		
4.1 & 4.2	Combustion Turbines	NO _x	SCR, water/steam injection and maintenance of NO _x emissions at or below 5 ppmv for each turbine.	(282-02) #10, #17	H.12.o.i, ii, iii, iv	Current operations meet RACT, no further action warranted.	
4.2		VOCs	Good combustion practices and oxidation catalysts.	(282-02) #14, #19	No		
PM _{2.5} BACT TSD 5.0 ⁶⁸	Startup/Shutdown at Combustion Turbines	NO _x	BACT determination: limitation of hours of operation for startup/shutdown to limit NO _x , alternative operating scenarios included.	(282-02) #19	No	No additional RACT submitted . Current operations meet RACT, no further action warranted .	

3 4.13.5 Conclusion of RACT Implementation

4 The emission units/activities currently meet all RACT requirements, and the existing controls
 5 and emissions limitations are considered RACT for the UMPA WVPP. RACT evaluations showed that
 6 additional add-on controls or limitations are not technically or economically feasible options at this time.
 7 No additional RACT measures were identified, and all RACT determinations are already being

⁶⁷ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-002084.pdf>

⁶⁸ <https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2018-006862.pdf>

1 implemented. Therefore, there are no additional implementation schedules or requirements for the
2 UMPA WVPP as required by this SIP revision.

3 *4.14 University of Utah*

4 **4.14.1 Introduction**

5 This section specifically serves as an evaluation of the University of Utah (U of U). In addition to
6 past BACT reports, the U of U submitted an additional RACT analysis for evaluation January 31, 2023.
7 Specific conditions for this SIP revision for the U of U can be found in Section IX, Part H.32.m.

8 **4.14.2 Facility Process Summary**

9 The U of U is a higher education institution in Salt Lake City. The U of U campus consists of
10 several different types of buildings and facilities, including classroom buildings, hospitals and clinics,
11 research facilities, and housing. The emission sources at the U of U are primarily boilers, comfort heating
12 equipment, emergency generator engines, and miscellaneous small VOC sources. Industrial high
13 temperature boilers that provide hot water for distribution heating systems are located in the two main
14 heating plants on campus: the Upper Campus High Temperature Water Plant (UCHTWP) and the Lower
15 Campus High Temperature Water Plant (LCHTWP). A cogeneration turbine with waste heat recovery unit
16 is also located at the LCHTWP.

17 **4.14.3 Facility Baseline Actual Emissions and Current PTE**

18 The baseline and current PTE from the U of U processes and equipment are summarized in Table
19 44. The 2017 actual emissions were used as the baseline emissions. The current PTE values for the U of
20 U were established by the most recent active AOs issued to the source.

21 • AO DAQE-AN103540030-22 issued December 22, 2022 (0030-22)

22

23

24

25 *Table 44: University of Utah Facility-Wide Emissions*

University of Utah Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	41.65	126.50
VOC	8.13	13.53

26 **4.14.4 RACT Analysis**

27 The RACT evaluations were performed using data from the U of U, AOs and supporting
28 documentation, and Utah SIP Section IX, Parts H.11 and H.12. Various resources were evaluated to
29 identify all existing and potential controls and emission rates, including EPA's RBLC; technical
30 documents, EPA fact sheets, applicable CTGs, and other applicable literature; state and federal
31 regulations; and other state SIPS. The RACT determinations for each emission unit or activity emitting
32 NO_x and VOCs are provided in Table 45.

University of Utah						
RACT Section # ⁶⁹	Emission Unit/Activity	Pollutant	RACT Determination	Enforceability		Comments
				AO Conditions	PM _{2.5} SIP Conditions	
4.0	Building 302 UCHWTP Boilers	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0030-22) I.5	H.12.p.iv.	Current operations meet RACT, no further action warranted.
		NO _x	Boilers limited to back-up/peaking boilers with natural gas limitations and FGR.	(0030-22) II.B.1.b		
5.0	Building 303 LCHWTP Boilers	NO _x	Boiler 4 required to be decommissioned and replaced by Boiler 9, use of ULNB (9ppmv) on Boiler 9, & use of LNBs and FGR (9 ppmv) for boilers 6 and 7.	(0030-22) II.b.2.a	H.12.p.i., H.12.p.ii., & H.12.p.iii.	Current operations meet RACT, no further action warranted.
		VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0030-22) I.5	No	
6.0	Building 303 LCHWTP Cogeneration Plant	NO _x	SoLoNO _x burners and compliance with NSPS Subpart KKKK.	(0030-22) II.B.2.a	No	Current operations meet RACT, no further action warranted.

⁶⁹ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001487.pdf>

		VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0030-22) I.5		
7.0	Dual Fuel Boilers	NO _x	LNBs on various boilers; the use of specialized mixing heads and mixing assemblies.	(0030-22) I.5 & II.B.3.a	H.12.p.v.	Current operations meet RACT, no further action warranted.
		VOCs	Use of pipeline quality natural gas with diesel fuel as backup, good combustion practices, good design, & proper operation.	(0030-22) I.5	No	
8.0	Backup Diesel Boiler	NO _x	Meet a NO _x emission rate of 30 ppm.	(0030-22) I.5 & II.B.3.a	No	Current operations meet RACT, no further action warranted.
		VOCs	Use of diesel fuel, good combustion practices, good design, & proper operation.	(0030-22) I.5	No	
9.0	Small Boilers	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0030-22) II.B.1.b & II.B.3.a	No	Current operations meet RACT, no further action warranted.
		NO _x	LNBs on various boilers.	(0030-22) II.B.3.c	H.12.p.v	
10.0	Diesel Emergency Generator Engines	VOCs	Proper maintenance and operation, and compliance with applicable	(0030-22) I.5	No	Current operations meet RACT, no further action warranted.

			NSPS or MACT requirements.			
11.0	Natural Gas Emergency Generator Engines	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, proper operation, and compliance with applicable NSPS or MACT requirements.	(0030-22) I.5	No	Current operations meet RACT, no further action warranted.
		NO _x				
12.0	Paint Booth and Parts Washer	VOCs	Good housekeeping practices, routine inspections, & compliance with R307-351.	(0030-22) I.5	No	Current operations meet RACT, no further action warranted.
12.0	Fuel Storage Tanks	VOCs	Good operating and maintenance practices.	(0030-22) I.5	No	Current operations meet RACT, no further action warranted.
N/A	Ethylene Oxide Sterilizer	VOCs	Preparing to decommission.	(0030-22) I.5	No	Current operations meet RACT, no further action warranted.

1 **4.14.5 Conclusion of RACT Implementation**

2 The emission units/activities currently meet all RACT requirements, and the existing controls
 3 and emissions limitations are considered RACT for the U of U. RACT evaluations showed that additional
 4 add-on controls or limitations are not technically or economically feasible options at this time. No
 5 additional RACT measures were identified, and all RACT determinations are already being implemented.
 6 Therefore, there are no additional implementation schedules or requirements for the U of U as required
 7 by this SIP revision.

8 *4.15 US Magnesium LLC*

9 **4.15.1 Introduction**

10 This section specifically serves as an evaluation of US Magnesium LLC (US Magnesium) RACT.
 11 UDAQ identified US Magnesium as a major stationary source with the potential to impact the ozone
 12 formation in the NWF NAA. The UDAQ required US Magnesium to submit a RACT analysis under CAA
 13 172(c)(6) Other Measures for all major stationary sources located outside a NAA but impacting the NAA,

1 which applied to one source. US Magnesium submitted a NO_x-specific RACT analysis for evaluation May
2 17, 2021, with a supporting VOC-specific RACT analysis submitted May 20, 2022, and an updated VOC-
3 specific RACT analysis submitted January 31, 2023. Specific conditions for this SIP revision for US
4 Magnesium can be found in Section IX, Part H.32.k. While US Magnesium was included in the RACT
5 process, the emissions from this facility were not included in the point source inventories found in
6 section 3 of this SIP revision as the facility was located outside of the NAA.

7 **4.15.2 Facility Process Summary**

8 US Magnesium operates a primary magnesium production facility at its Rowley plant located in
9 Tooele County. US Magnesium produces magnesium metal from the waters of the Great Salt Lake, using
10 a system of solar evaporation ponds to create a brine solution. This brine solution is purified and dried
11 to a powder in spray dryers. The powder is melted and further purified in the melt reactor before going
12 through an electrolytic process to separate magnesium metal from chlorine. The magnesium is then
13 refined and/or alloyed and cast into molds. The separated chlorine is combusted in the chlorine
14 reduction burner and converted into hydrochloric acid, which is removed through a scrubber train. The
15 chlorine generated at the electrolytic cells is collected and piped to the chlorine plant. The on-site
16 lithium carbonate plant recovers lithium from cell salt created through the magnesium plant production.

17 **4.15.3 Facility Baseline Actual Emissions and Current PTE**

18 The baseline and current PTE from the US Magnesium processes and equipment are
19 summarized in Table 46. The 2017 actual emissions were used as the baseline emissions. The current
20 PTE values for US Magnesium were established by the most recent active AOs issued to the source.

21 • AO DAQE-AN107160050-20 issued April 20, 2020 (0050-20)

22
23
24
25
26 *Table 46: US Magnesium LLC Facility-Wide Emissions*

US Magnesium LLC Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	1,061.59	1,260.99
VOC	660.26	894.25

27 **4.15.4 RACT Analysis**

28 The RACT evaluations were performed using data from US Magnesium, AOs, and supporting
29 documentation. Various resources were evaluated to identify all existing and potential controls and
30 emission rates, including EPA's RBLC; technical documents, EPA fact sheets, applicable CTGs, and other
31 applicable literature; state and federal regulations; other state SIPS; and UDAQ's Appendix A – PM_{2.5}
32 serious SIP BACT for Small Sources. The RACT determinations for each emission unit or activity emitting
33 NO_x and VOCs are provided in Table 47.

34
35 *Table 47: US Magnesium RACT Determination*

US Magnesium LLC					
RACT Section # ⁷⁰	Emission Unit/Activity	Pollutant	RACT Determination	AO Conditions	Comments
5.1	Turbines and Duct Burners	VOCs	Use of pipeline quality natural gas with fuel oil as backup, good combustion practices, good design, & proper operation.	(0050-20) I.4	Current operations meet RACT, no further action warranted.
		NO _x	Compliance with a plant-wide natural gas consumption limit.	(0050-20) II.B.1.b	
5.2	Chlorine Reduction Burner	NO _x	Compliance with a plant-wide natural gas consumption limit.	(0050-20) II.B.1.b	Current operations meet RACT, no further action warranted.
		VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0050-20) I.4	
5.3	Riley Boiler	NO _x	Compliance with a plant-wide natural gas consumption limit. Installation of flue gas recirculation required by	(0050-20) II.B.1.b	Current operations meet RACT, no further action warranted.

⁷⁰ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001863.pdf>

			January 1, 2028 under SIP Section IX, Part H.23.g.		
		VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0050-20) I.4	
5.5	Hydrochloric Acid Plant Burner	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0050-20) I.4	Current operations meet RACT, no further action warranted.
		NO _x	Compliance with a plant-wide natural gas consumption limit.	(0050-20) II.B.1.b	
5.4	Diesel Engines	VOCs	Proper maintenance and operation, compliance with applicable MACT requirements, and compliance with a horsepower-hour operational limitation.	(0050-20) I.4 & II.B.4.b	Current operations meet RACT, no further action warranted.
		NO _x			

5.6	Casting House	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0050-20) I.4	Current operations meet RACT, no further action warranted.
		NO _x	Compliance with a plant-wide natural gas consumption limit.	(0050-20) II.B.1.b	
5.7	Lithium Carbonate Plant Boilers & Burners	VOCs	Use of pipeline quality natural gas, good combustion practices, good design, & proper operation.	(0050-20) I.4	Current operations meet RACT, no further action warranted.
		NO _x	ULNBs on boilers and LNBs on burners; compliance with a plant-wide natural gas consumption limit.	(0050-20) II.B.1.b & II.B.12.d	
VOC RACT⁷¹	Boron Plant	VOCs	Installation of a steam stripper and RTO system that will achieve 98% control efficiency by October 1, 2024.	N/A	Installation of a steam stripper and RTO system by October 1, 2024, required by SIP Section IX, Part H.32.k.

⁷¹ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001495.pdf>

Small Source BACT⁷²	Fuel Storage Tanks	VOCs	Proper maintenance and operation.	(0050-20) I.4	Current operations meet RACT, no further action warranted.
Small Source BACT	Paint Booths	VOCs	Good operating practices and compliance with consumption and VOC limitations.	(0050-20) I.4, II.B.11.a, & II.B.11.d	Current operations meet RACT, no further action warranted.

1

2 **4.15.5 Conclusion of RACT Implementation**

3 The UDAQ determined that the emission units/activities currently meet all RACT requirements,
 4 and all other existing controls and emissions limitations are considered RACT for US Magnesium.
 5 However, RACT evaluations showed that the installation of a steam stripper in series with a regenerative
 6 thermal oxidizer (RTO) to control VOC emissions from the Boron Plant Process Wastewater Ponds is
 7 technically feasible.

8 The UDAQ has determined that these controls are necessary for the NWF NAA to demonstrate
 9 attainment of the 2015 8-hour ozone NAAQS as expeditiously as practicable. While the financial
 10 feasibility of the identified controls may be beyond previously established RACT thresholds, the CAA
 11 provides states with “discretion to require beyond-RACT reductions from any source” if those reductions
 12 are necessary to “demonstrate attainment as expeditiously as practicable”. ⁷³

13 The installation of a steam stripper with RTO on the Boron Plant Process Wastewater Ponds will
 14 control emissions from this process by approximately 98% resulting in 161.70 tpy of VOC emissions
 15 reductions. The steam stripper with RTO shall be installed and operational by October 1, 2024. All
 16 requirements for the Boron Plant are incorporated into SIP Section IX, Part H.32.k. No other additional
 17 RACT measures were identified, and all other RACT determinations are already being implemented.

18 *4.16 Chevron Salt Lake Marketing Terminal*

19 **4.16.1 Introduction**

20 This section specifically serves as an evaluation of Chevron Salt Lake Marketing Terminal
 21 (Chevron Terminal). The emissions units at the Chevron Terminal were not included in the PM_{2.5} serious
 22 SIP. At that time, UDAQ considered the Chevron Terminal as a separate source from the Chevron
 23 Refinery. However, recent permitting actions have since established that the Chevron Terminal and
 24 Chevron Refinery are considered one stationary source. Therefore, UDAQ requested a RACT analysis for
 25 the emission units at the Chevron Terminal. Chevron Terminal submitted a RACT analysis for evaluation

⁷² <https://documents.deq.utah.gov/air-quality/pm25-serious-sip/DAQ-2018-007161.pdf>

⁷³ 80 FR 12279 & 83 FR 62998

1 March 30, 2021, with supporting information submitted January 4, 2023. Specific conditions applicable
2 for this SIP revision for Chevron Terminal can be found in Section IX, Part H.32.b.

3 **4.16.2 Facility Process Summary**

4 The Chevron Terminal is a bulk gasoline terminal, which receives product by pipeline from the
5 Chevron Refinery, as well as ethanol and additives from outside vendors by truck and railcar. Products
6 are dispensed through the primary truck loading rack to cargo tank trucks where the product is
7 delivered to gasoline dispensing facilities. Storage tanks at the site store gasoline, ethanol, Transmix,
8 diesel fuel, water, additives, hydraulic fluid, motor oil, and jet fuel. Ethanol and other additives are
9 blended in line with refined products at the truck loading rack.

10 **4.16.3 Facility Baseline Actual Emissions and Current PTE**

11 The baseline and current PTE from Chevron Terminal processes and equipment are summarized
12 in Table 48. The 2017 actual emissions were used as the baseline emissions. The current PTE values for
13 Chevron Terminal were established by the most recent active AOs issued to the source.

14 • AO DAQE-AN105560017-15 issued May 18, 2015 (0017-15)

15 *Table 48: Chevron Salt Lake Marketing Terminal Facility-Wide Emissions*

Chevron Salt Lake Marketing Terminal Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	N/A	N/A
VOC	13.64	33.60

16 **4.16.4 RACT Analysis**

17 The RACT evaluations were performed using data from Chevron Terminal, AOs, and supporting
18 documentation. Various resources were evaluated to identify all existing and potential controls and
19 emission rates, including EPA's RBLC; technical documents, EPA fact sheets, applicable CTGs, and other
20 applicable literature; state and federal regulations; and other state SIPS. The RACT determinations for
21 each emission unit or activity emitting NO_x and VOCs are provided in Table 49.

22
23 *Table 49: Chevron Salt Lake Marketing Terminal*

Chevron Salt Lake Marketing Terminal					
RACT Section # ⁷⁴	Emission Unit/Activity	Pollutant	RACT Determination	AO Conditions	Comments
2.2.1	Transport Loading Rack	VOCs	Vapor recovery unit with carbon adsorption in compliance with MACT Subpart R.	(0017-15) II.B.1.b & II.B.1.c	Current operations meet RACT, no further action warranted.

74 <https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2022-011292.pdf>

2.2.3	Fugitive Emissions	VOCs	LDAR in accordance with MACT Subpart R and NSPS Subparts XX and Kb.	(0017-15) I.5	
2.2.1	Specialty Rack	VOCs	Bottom loading with good work practice standards.	(0017-15) I.5 & II.B.1.c	Current operations meet RACT, no further action warranted.
2.2.2	Storage Tanks	VOCs	Top-submerged or bottom loading of tanks; good design methods and operating procedures; and compliance with applicable NSPS Subpart Kb requirements.	(0017-15) II.B.1.c	Current operations meet RACT, no further action warranted.

1 4.16.5 Conclusion of RACT Implementation

2 The emission units/activities currently meet all RACT requirements, and the existing controls
 3 and emissions limitations are considered RACT for the Chevron Terminal. RACT evaluations showed that
 4 additional add-on controls or limitations are not technically or economically feasible options at this time.
 5 No additional RACT measures were identified, and all RACT determinations are already being
 6 implemented. Therefore, there are no additional implementation schedules or requirements for the
 7 Chevron Terminal as required by this SIP revision.

8 4.17 Holly Energy Partners Woods Cross Terminal

9 4.17.1 Introduction

10 This section specifically serves as an evaluation of Holly Energy Partners Terminal (Holly
 11 Terminal). The emissions units at the Holly Terminal were not included in the PM_{2.5} serious SIP. At that
 12 time, UDAQ considered the Holly Terminal as a separate source from the main refinery. However, recent

1 permitting actions have since established that the Holly Terminal and Woods Cross Refinery are
2 considered one stationary source. Therefore, UDAQ requested a RACT analysis for the emission units at
3 the Holly Terminal. Holly Terminal submitted a RACT analysis for evaluation February 12, 2021. Specific
4 conditions applicable to this SIP revision for Holly Terminal can be found in Section IX, Part H.32.e.

5 **4.17.2 Facility Process Summary**

6 The Holly Terminal is a petroleum products loading facility located in Woods Cross. The terminal
7 consists of a loading rack and a soil remediation system. The bulk terminal is used by the Holly Terminal
8 to load gasoline and diesel products into tanker trucks. The Holly Terminal receives gasoline, diesel, and
9 jet fuel via pipeline from the HF Sinclair Woods Cross Refinery. The petroleum products are loaded into
10 tanker trucks for offsite transportation. The Holly Terminal doesn't have aboveground storage tanks.

11 **4.17.3 Facility Baseline Actual Emissions and Current PTE**

12 The baseline and current PTE from the Holly Terminal processes and equipment are summarized
13 in Table 50. The 2017 actual emissions were used as the baseline emissions. The current PTE values for
14 the Holly Terminal were established by the most recent active AOs issued to the source.

15 • AO DAQE-AN101230023B-07 issued October 17, 2007 (0023B-07)
16 • AO DAQE-AN101230034-10 issued November 18, 2010 (0034-10)

17 *Table 50: Holly Energy Partners Woods Cross Terminal Facility-Wide Emissions*

Holly Energy Partners Woods Cross Terminal Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	0.32	2.53
VOC	2.14	9.13

18
19 **4.17.4 RACT Analysis**

20 The RACT evaluations were performed using data from Holly Terminal, AOs, and supporting
21 documentation. Various resources were evaluated to identify all existing and potential controls and
22 emission rates, including EPA's RBLC; technical documents, EPA fact sheets, applicable CTGs, and other
23 applicable literature; state and federal regulations; and other state SIPS. The RACT determinations for
24 each emission unit or activity emitting NO_x and VOCs are provided in Table 51.

25
26 *Table 51: Holly Energy Partners Woods Cross Terminal*

Holly Energy Partners Woods Cross Terminal					
RACT Section # ⁷⁵	Emission Unit/Activity	Pollutant	RACT Determination	AO Conditions	Comments

75 <https://documents.deq.utah.gov/air-quality/planning/air-quality-policy/DAQ-2022-011295.pdf>

5.1	Transport Loading Rack	VOCs	Vapor recovery unit with carbon adsorption in compliance with MACT Subpart CC; vapor combustion unit backup.	(0023B-07) #7, #9, & #16	Current operations meet RACT, no further action warranted.
5.2	Fugitive Emissions	VOCs	LDAR required by NSPS Subpart VVa.	(0023B-07) #12	Current operations meet RACT, no further action warranted.
5.3	Soil Remediation System	VOCs	Thermal/catalytic oxidizer.	(0034-10) I.5; II.B.1.b	Current operations meet RACT, no further action warranted.

1
2

3 **4.17.5 Conclusion of RACT Implementation**

4 The emission units/activities currently meet all RACT requirements, and the existing controls
5 and emissions limitations are considered RACT for the Holly Terminal. RACT evaluations showed that
6 additional add-on controls or limitations are not technically or economically feasible options at this time.
7 No additional RACT measures were identified, and all RACT determinations are already being
8 implemented. Therefore, there are no additional implementation schedules or requirements for the
9 Holly Terminal as required by this SIP revision.

10 **4.18 Tesoro Logistics Operations LLC Truck Loading Rack and Remote Tank Farm**

11 **4.18.1 Introduction**

12 This section specifically serves as an evaluation of Tesoro Logistics Operations LLC Truck Loading
13 Rack and Remote Tank Farm (Tesoro TLR). The emissions units at the Tesoro TLR were not included in
14 the PM_{2.5} serious SIP. At that time, UDAQ considered the Tesoro TLR as a separate source from the main
15 refinery. However, recent permitting actions have since established that the Tesoro TLR and Marathon

1 Refinery are considered one stationary source. Therefore, UDAQ requested a RACT analysis for the
2 emission units at the Tesoro TLR. Tesoro TLR submitted a RACT analysis for evaluation March 31, 2021,
3 with an updated RACT analysis submitted January 31, 2023. Specific conditions applicable to this SIP
4 revision for Tesoro TLR can be found in Section IX, Part H.32.j.

5 **4.18.2 Facility Process Summary**

6 The Tesoro TLR is a bulk gasoline terminal, which receives products from the Marathon Refinery.
7 Products are dispensed through the primary truck loading rack to cargo tank trucks where the product is
8 delivered to gasoline dispensing facilities. Storage tanks at the site store gasoline, diesel fuel, kerosene,
9 heavy oils, and fuel additives.

10 **4.18.3 Facility Baseline Actual Emissions and Current PTE**

11 The baseline and current PTE from the Tesoro TLR processes and equipment are summarized in
12 Table 52. The 2017 actual emissions were used as the baseline emissions. The current PTE values for the
13 Tesoro TLR were established by the most recent active AOs issued to the source.

14 • AO DAQE-AN156590008-18 issued March 12, 2018 (0008-18)

15 *Table 52: Tesoro Logistics Operations LLC TLR and RTF Facility-Wide Emissions*

Tesoro Logistics Operations LLC TLR and RTF Facility Emissions		
Pollutant	Baseline Emissions (TPY)	PTE (TPY)
NO _x	N/A	N/A
VOC	18.24	107.92

16 **4.18.4 RACT Analysis**

17 The RACT evaluations were performed using data from Tesoro TLR, AOs, and supporting
18 documentation. Various resources were evaluated to identify all existing and potential controls and
19 emission rates, including EPA's RBLC; technical documents, EPA fact sheets, applicable CTGs, and other
20 applicable literature; state and federal regulations; and other state SIPS. The RACT determinations for
21 each emission unit or activity emitting NO_x and VOCs are provided in Table 53.

22
23 *Table 53: Tesoro Logistics Operations LLC TLR and RTF*

Tesoro Logistics Operations LLC Truck Loading Rack and Remote Tank Farm					
RACT Section # ⁷⁶	Emission Unit/Activity	Pollutant	RACT Determination	AO Conditions	Comments

⁷⁶ <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001507.pdf>

5.1	Transport Loading Rack	VOCs	Vapor recovery unit with carbon adsorption in compliance with MACT Subpart CC.	(0008-18) II.B.1.l	Current operations meet RACT, no further action warranted.
4.1	Fugitive Emissions	VOCs	Enhanced LDAR required by NSPS Subpart GGGa and maintenance vent monitoring.	(0008-18) I.7	Current operations meet RACT, no further action warranted.
6.1	Fixed Roof Tanks	VOCs	Good design methods and operating procedures; closed vent system to a carbon adsorber on OWS Tank.	(0008-18) I.7; II.B.1.c - II.B.1.k	Current operations meet RACT, no further action warranted.
7.1	Internal Floating Roof Tanks	VOCs	Good design methods and operating procedures; compliance with applicable NSPS Subpart Kb requirements; and tank degassing requirements.	(0008-18) I.7; II.B.1.c - II.B.1.k	Current operations meet RACT, no further action warranted.

1 4.18.5 Conclusion of RACT Implementation

2 The emission units/activities currently meet all RACT requirements, and the existing controls
3 and emissions limitations are considered RACT for the Tesoro TLR. RACT evaluations showed that
4 additional add-on controls or limitations are not technically or economically feasible options at this time.
5 No additional RACT measures were identified, and all RACT determinations are already being
6 implemented. Therefore, there are no additional implementation schedules or requirements for the
7 Tesoro TLR as required by this SIP revision.

8 4.19 CTG and ACT

9 For all sources located within the NWF NAA examined as part of this RACT analysis, any
10 applicable CTGs or ACTs were found to have been implemented to the relevant source through existing
11 AOs or SIP conditions. Any published CTG or ACT not enacted within the NAA boundary results from the
12 fact that the NWF does not have sources in which those CTGs are applicable. Details regarding this
13 analysis and additional information about source specific CTG and ACT applicability can be found in the
14 CTG VOC Source Categories Analysis TSD.⁷⁷

15 Thus, the UDAQ conducted no further RACT analysis for CTG source categories not included in
16 AOs or SIP conditions as there are not sources subject to those CTGs within the NWF NAA. Therefore,
17 this SIP revision has met the CTG requirements as required under CAA Section 182(b)(2).

18 4.20 RACT Conclusions

19 Upon completion of RACT analysis for each of the major industrial sources located within the
20 NWF NAA, or nearby in the case of US Magnesium, the UDAQ has concluded that the controls identified
21 in Table 54, with the corresponding emission limitations included in Utah SIP Section IX, Part H.31 and
22 H.32, are necessary for the NWF NAA to demonstrate attainment of the 2015 8-hour ozone NAAQS as
23 expeditiously as practicable. While the financial feasibility of some of these controls may be beyond
24 previously established RACT thresholds, the CAA provides states with “discretion to require beyond-
25 RACT reductions from any source” if those reductions are necessary to “demonstrate attainment as
26 expeditiously as practicable”. ⁷⁸ The precedent for the requirement of “beyond-RACT” controls for an
27 ozone NAA demonstrating attainment at the earliest achievable date has been previously established in
28 2001,⁷⁹ and further upheld in 2009.⁸⁰

29 The implementation timeline of controls identified in Table 54 are beyond the implementation
30 deadline of January 1, 2023⁸¹ and therefore will not count towards RFP under this SIP revision. However,
31 the state of Utah has ongoing obligations under Section 182 of the CAA to demonstrate attainment of
32 the NAAQS. The timing of compliance for states meeting statutory deadlines established in the CAA does
33 not impact or nullify those obligations for future SIP revisions. Thus, a state submitting a SIP revision
34 late, or meeting 182(b)(2) requirements late, does not negate the obligations imposed by the CAA. As a
35 result, the UDAQ has determined that the implementation of the controls identified in Table 54 are

⁷⁷ NWF CTG VOC Source Categories Analysis: <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-005467.pdf>

⁷⁸ 80 FR 12279 & 83 FR 62998

⁷⁹ 66 FR 26914

⁸⁰ 74 FR 1927

⁸¹ 87 Fed. Reg. 60,897.

1 required to be implemented on the most expeditiously practicable timelines to comply with these
2 ongoing CAA obligations.

3 While the controls identified in Table 54 have been determined to be beyond-RACT, the UDAQ
4 has concluded that these controls meet the definition of reasonable when considering their cost
5 effectiveness for controls considered beyond-RACT. This determination was made when examining
6 three variables that impact what constitutes reasonable including: 1) the regulatory landscape of the
7 NWF NAA (i.e. availability of control options), 2) other NAA determination of cost thresholds, 3)
8 appropriate adjustments for inflationary and other price pressures.

9 First, as noted in sections 5 and 7 of this SIP revision, Utah has previously implemented an
10 extensive array of emission reduction strategies at the BACT threshold while the state worked to
11 address wintertime PM_{2.5} pollution. These emission reductions target the same precursor emissions for
12 ozone, i.e. NO_x and VOCs. As a result, there are exceedingly few control options available for the State to
13 implement at this time in the regulatory landscape of the NWF. In essence, the supply of available
14 controls is exceptionally low, while the demand to implement controls to comply with CAA
15 requirements is high. This same economic reality—what is considered a reasonable cost in one area will
16 be different than another area based on supply and demand—is seen in a wide array of economic
17 activities, such as housing. Therefore, it is reasonable to conclude that an appropriate cost threshold for
18 controls in the NWF NAA would be higher than that seen in an area with greater control options
19 available to it. This same reasoning follows that a reasonable cost threshold would be more similar to a
20 cost threshold seen in an NAA with fewer control options available. Further, a recent analysis conducted
21 by the UDAQ examining the cost effectiveness of emissions reduced from incentive programs identified
22 a similar scenario, with the cost to reduce emissions increasing as a result of previously implemented
23 incentive programs. In short, as programs (incentive or regulatory) reduce emissions from older, dirtier
24 equipment, the remaining pool of emissions sources are relatively cleaner, and thus the emission
25 reductions are more expensive per ton of pollutant removed.

26 Second, the UDAQ compared and contrasted the RACT cost thresholds with a number of other
27 NAAs, and compared cost thresholds for both RACT and BACT implemented controls. While many
28 contrasting NAAs that have recently implemented RACT determined an appropriate cost thresholds
29 between \$5,000 - \$10,000 per ton of pollutant removed,⁸² these areas are doing so with a wider array of
30 emission reduction strategies available to them. In contrast, the UDAQ examined BACT cost thresholds
31 in areas with more similar regulatory frameworks in place to see what the higher end of cost
32 effectiveness could be considered reasonable. The Division found instances of BACT cost thresholds near
33 \$43,000 per ton of VOC and \$41,000 per ton of NO_x emission reductions.⁸³ While these higher end
34 estimates are considered BACT, and thus represent a more stringent standard, the Division has
35 concluded that, given the existing regulatory framework in place in the NWF and the similarities
36 between these higher cost threshold NAAs, that a RACT cost threshold of approximately \$10,000 per ton
37 of pollutant removed below that reported on the high end is reasonable for the NWF. The controls
38 outlined in Table 54 all fall near or below this threshold. Additionally, the UDAQ identified instances in
39 which a cost threshold of \$10,000 was determined reasonable for Regional Haze SIPs.⁸⁴ It's worth noting
40 that Regional Haze SIPs are developed to meet visibility standards, not health-based standards as in this

⁸² Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Reasonably Available Control Technology Determinations for Case-by-Case Sources Under the 1997 and 2008 8-Hour Ozone National Ambient Air Quality Standards, 85 Fed. Reg. 66,484, 66,486 (Oct. 20, 2020) (examples of benchmarks from several other states examined by Pennsylvania).

⁸³ 2022 South Coast Air Quality Management District BACT Maximum Cost Effectiveness Values.

⁸⁴ Oregon Regional Haze State Implementation Plan, for the period 2018 – 2028, available at <https://www.oregon.gov/deq/rulemaking/Pages/rhsip2028.aspx>.

1 moderate ozone SIP. The Division believes that a reasonable threshold for a control used to protect
2 human health should be considerably higher than that determined reasonable for protecting visibility.

3 Lastly, the UDAQ also considered inflationary forces when determining a reasonable cost-
4 effectiveness threshold. Since 2000, the United States has seen a cumulative price increase associated
5 with inflationary pressures of 77.18%.⁸⁵ Similar upward price pressures have been observed in other
6 parts of the economy that impact the price of pollution controls. For example, the building cost index for
7 construction for nonresidential buildings over the same period cited for inflation above (2000 – 2023)
8 has risen from ~50 to just over 130—a 160% increase.⁸⁶ If inflationary pressures are not taken into
9 consideration over time when determining reasonable cost-effectiveness thresholds, the ever-increasing
10 costs associated with building and installing controls would result in a diminished ability for responsible
11 air agencies to identify and require effective controls. These same inflationary economic forces have
12 been realized elsewhere in the regulatory world, resulting in an increase in the statutory civil monetary
13 penalties for violations as enforced by the EPA for the CAA violations rising from \$25,000 in 1991 to
14 \$55,808 in 2023 for each day of continued noncompliance.

15 When all three of these factors (existing regulatory framework, similar NAA thresholds, and
16 inflationary pressures) are taken together, the UDAQ has determined that the controls outlined in Table
17 54 are reasonable for an area in which beyond-RACT controls are necessary to attain the standard.⁸⁷ A
18 SIP is intended to be a plan that matches the unique characteristics of each NAA, which is why the
19 responsible air agency has primacy to develop and implement the plan it determines best meets the
20 unique challenges of its air shed. When considering appropriate cost thresholds for a NAA, it is
21 important to recognize that the cost effectiveness for controls for that air shed will also be unique to the
22 NAA in question.

23
24 *Table 54: Controls identified by RACT analysis for the NWF NAA.*

Source	Control	Part H Reference	Implementation Timeline	Emission Reductions
Tesoro Refining & Marketing Company LLC Marathon Refinery	NO _x emission limits on cogeneration turbines with heat recovery steam generation CG1 and CG2	XI.H.32.j.b	October 1, 2028	68.78 tpy NO _x
Tesoro Refining & Marketing Company LLC Marathon Refinery	Replacement of wastewater API separator and DAF unit with a closed vent to carbon adsorption controls	XI.H.32.j. d	December 31, 2025	10.0 tpy VOCs
Tesoro Refining & Marketing Company LLC	Secondary seal installation on Tank 321	XI.H.32.j.c	May 1, 2026	2.30 tpy VOCs

⁸⁵ Bureau of Labor Statistics Consumer Price Index (CPI), available at <https://www.bls.gov/cpi/>.

⁸⁶ Construction Analytics, Construction Inflation 2023, available at <https://edzarenski.com/2022/12/20/construction-inflation-2023/>.

⁸⁷ 42 U.S.C § 7545(d)(1); 40 CFR § 19.4.

Marathon Refinery				
US Magnesium LLC	Steam stripper in series with RTO	XI.H.32.k	October 1, 2024	161.70 tpy VOCs

1 Based on all available data including the examination of past submitted BACT reports, newly
 2 submitted RACT analyses, and by requiring the implementation of “beyond-RACT” controls as identified
 3 in Table 54, the NWF NAA has met all RACT criteria as required under CAA Section 182(b)(2) for this SIP
 4 revision. Furthermore, the implementation of technologically feasible “beyond-RACT” controls
 5 demonstrates not only completion of RACT requirements, but that the area will demonstrate attainment
 6 as expeditiously as practicable.
 7

8 4.21 Nonattainment New Source Review (NNSR)

9 NNSR is a CAA permitting program which requires industrial facilities to install modern pollution
 10 control equipment when they are built, or when making a change that increases emissions significantly.
 11 The purpose of an NNSR program is to protect public health and the environment, even as new
 12 industrial facilities are built, by ensuring that air quality does not worsen in the NAA and air quality is not
 13 significantly degraded. This is accomplished through preconstruction permitting.

14 Utah Administrative Rule R307-403; Permits: New and Modified Sources in Nonattainment and
 15 Maintenance Areas,⁸⁸ implements federal NAA permitting programs for major sources as required by 40
 16 CFR § 51.165 and contains new source review provisions for some non-major sources in the ozone
 17 NAs. Rule R307-403 is applicable any new major stationary source or major modification that is major
 18 for the pollutant or precursor pollutant for which the area is designated nonattainment if the stationary
 19 source or modification is located anywhere in the designated NAA. This includes requirements that a
 20 major stationary source in the NWF NAA obtain a ratio of total actual emission reductions of VOCs
 21 compared to the emission increase of VOCs of at least 1.15:1 prior to commencement of operations and
 22 permitting by the UDAQ. EPA determined that rule R307-403 meets the requirement for nonattainment
 23 new source review under 40 CFR § 51.1314⁸⁹ on February 02, 2022⁹⁰ Therefore, this SIP revision
 24 adequately addresses the CAA NAA requirements for NO_x and VOC emission offsets.

⁸⁸ Utah Admin. Code r. R307-403.

⁸⁹ 40 CFR § 51.1314 New source review requirements.

⁹⁰ Approval and Promulgation of Implementation Plans; Utah; Emissions Statement Rule and Nonattainment New Source Review Requirements for the 2015 8-Hour Ozone National Ambient Air Quality Standard for the Uinta Basin, Northern Wasatch Front and Southern Wasatch Front NAs, 87 Fed. Reg. 5,435 (Feb. 1, 2022).

1 Chapter 5 - Reasonably Available Control Measures (RACM) Analysis

2 5.1 Overview

3 CAA section 172(c)(1) requires states to implement all RACM as expeditiously as practicable,
4 including RACT, to meet both RFP requirements and to demonstrate attainment of the NAAQS. The CAA
5 requires RACM to be implemented for point, area, non-road, and on-road sources categories to meet
6 the attainment standard.

7 The general approach to the RACM analysis is to evaluate control measures that have been
8 implemented at the federal level, in other states and other local air districts and, if reasonable and
9 practicable, to implement the controls to help the area attain the ozone standard. A RACM analysis
10 determines potential control measures for each source category by considering the following
11 requirements:

- 12 • technological feasibility of the control measure,
- 13 • economic feasibility of the control measure,
- 14 • if the control measure would cause substantial widespread and long-term adverse impacts,
- 15 • if the control measure is absurd, unenforceable, or impracticable, and
- 16 • if the control measure can advance the attainment date by at least one year.

17 UDAQ conducted a RACM analysis by analyzing the following materials:

- 18 • EPA guidance documents and regulations including:
 - 19 ○ CTG,
 - 20 ○ ACT,
 - 21 ○ Ozone Transport Commission model rules.
- 22 • A comparison of existing Utah administrative rules to other EPA SIP-approved rules of the three
23 western air districts that were moderate nonattainment for the 2008 ozone standard. The
24 rationale for this comparison is that the selected air districts have already implemented ozone
25 controls approved by EPA. The three air districts are Imperial County, CA, Mariposa County, CA,
26 and Phoenix-Mesa (Maricopa County), AZ. These NAAs were selected for comparison since they
27 have comparable climatic conditions to those experienced in the NWF NAA during summer and
28 similar industrial activities present in the NWF NAA. Each area has served as a basis for RACT
29 and RACM comparisons for other ozone NAAs, hence emission reduction strategies adopted in
30 these areas serve as a base for many other current ozone NAAs.
- 31 • Lastly, an evaluation of newly identified technological and economically feasible controls, or if
32 enhancement of existing controls were available.

33 The RACM analysis for the NWF NAA examined control measures for all potential VOC and NO_x
34 emission sources. As part of this analysis, UDAQ reviewed existing Utah administrative rules, many of
35 which were implemented as part of the Salt Lake PM_{2.5} serious SIP and were developed under the
36 regulatory guidelines of best available control measures (BACM) which allow for more stringent
37 measures to be implemented than those conforming to RACM. The rules adopted under the BACM
38 approach for state efforts to address PM_{2.5} pollution include 24 VOC-related administrative rules, which
39 are identified in Table 55. Furthermore, as the implementation rules under PM_{2.5} allow for the
40 implementation of emission reduction strategies beyond the attainment dates, the VOC emission

1 reduction rules implemented during the PM_{2.5} SIP were not constrained by timelines and further
2 contribute to the exhaustive list of existing regulations in the NWF NAA. As the requirements for BACM
3 are significantly more stringent than for RACM, the majority of this analyses concluded that current
4 control measures are as, or more stringent than, the requirements for the moderate ozone SIP.

5

6 *Table 55: Existing area source VOC rules in the NWF NAA⁹¹*

Rule	Name
R307-211	Emission Standards: Emission Controls for Existing Municipal Solid Waste Landfills
R307-230	NO _x Emission Limits for Natural Gas-Fired Water Heaters
R307-303	Commercial Cooking
R307-304	Industrial Solvent Use
R307-328	Gasoline Transfer and Storage
R307-335	Degreasing
R307-341	Cutback Asphalt
R307-342	Adhesive and Sealants
R307-343	Emission Standards for Wood Furniture Manufacturing Operations
R307-344	Paper, Film & Foil Coating
R307-345	Fabric & Vinyl Coating
R307-346	Metal Furniture Surface Coating
R307-347	Large Appliance Surface Coating
R307-348	Magnet Wire Coating
R307-349	Flat Wood Panel Coating
R307-350	Miscellaneous Metal Parts & Products Coating
R307-351	Graphic Arts
R307-352	Metal Containers, Closure & Coil Coating
R307-353	Plastic Parts Coating
R307-354	Auto Body Refinishing
R307-355	Control of Emissions from Aerospace Manufacturing & Rework Facilities
R307-356	Appliance Pilot Light
R307-357	Consumer Products
R307-361	Architectural Coatings

7 *5.2 RACM Analysis*

8 To evaluate the VOC and NO_x sources in the NWF NAA, UDAQ first evaluated the 2017 baseline
9 emission inventory described in section 3, examining emission categories with the highest emissions
10 contributions first, then proceeding to examine smaller emission categories, in an attempt to identify
11 the most impactful strategies first. Thus, Tables 56 and 57, which overview the results of UDAQ's RACM
12 analysis, are presented in descending order of the magnitude of emission category, as is the
13 corresponding TSD for this analysis.⁹² Next, the UDAQ identified control techniques currently in place for

⁹¹ All these rules are found in the Utah Administrative Code.

⁹² Northern Wasatch Front Area Source Reasonable Available Control Measures (RACM) Analysis for Ozone Control. Technical Supporting Document (TSD). <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001246.pdf>

1 source categories and determine if existing controls and rules are up to date with federal guidance and
 2 other states moderate ozone NAA rules.

3

4 *Table 56: VOC RACM Assessment Summary*

Source Category	Utah Existing Rules/Statute and Federal Rules	Comments
Solvent, Consumer/commercial Use Products	R307-357 Consumer Products	R307-357 is the most current OTC model rule, no further action warranted
Solvent, Graphic Arts	R307-351 Graphic Arts	UDAQ worked closely with the national printing trade association to derive a BACM rule that would be in line with printing rules found in the most stringent California air districts. No further analysis warranted.
Surface Coating, Industrial Maintenance*	Surface coating rules R307-343,344, 345,346, 347,348,349,350,352,353,354 and 355. Surface Coatings, Traffic Markings – R307-361 Architectural Coatings	Most current control strategies for surface coating and deemed to be BACM by UDAQ. R307-361 is the most current OTC model rule and deemed to be BACM by UDAQ.
Chemical Stripper	R307-304 Solvent Cleaning R307-335 Degreasing	UDAQ created the new rule R307-304 by removing sections of R307-335, in which the applicability was dramatically lowered, and a low vapor pressure solvent option was added. UDAQ determined that R307-304 was BACM. No further analysis warranted.
Surface Coatings, Architectural	R307-361 Architectural Coatings	R307-361 is the most current OTC model rule, no further action warranted
Gas Pipelines	40 CFR 49 Subtitle B	U.S. Dept. of Transportation is responsible for pipeline safety and spill prevention. No further action warranted.
Asphalt	R307-341 Cutback Asphalt	Imperial and Maricopa counties require lower VOC limits which were not considered in this evaluation for safety reasons. Reducing the VOC content requires the asphalt to be heated at a higher temperature leading to possible flashing and increase fuel usage negating any VOC reductions.
Industrial Bakery		UDAQ issued a proposed rule for public comment in 2016. Commenters submitted documentation that the estimated cost would be at least \$19,000/ton, requiring double-walled stainless-steel stack plus catalytic

		oxidation of ethanol. High capital cost would require a rule with high applicability threshold that would preclude regulating most bakeries that comprise these emissions. No further action warranted.
Residential & Commercial Portable Gas Cans Evaporation/Spillage etc.	40 CFR Part 59, Subpart F, Control of Evap. Emission from New & In-use Portable Fuel Containers	No further action warranted
Gas Under Ground Storage Tank		DAQ enforces Federal UST regulation. No further action warranted.
Waste Disposal, Treatment, and Recovery; Composting;100% Green Waste	R315-312 Recycling and Composting Facility Standards	Composting operations are managed by the Utah Solid Waste Division. R315-312 includes facility and material management requirements to reduce air, soil and groundwater impairment. The 3 comparative air districts do not have air quality rules for compost operations. No further action warranted.
Leaking Underground Storage Tanks	Title 19 Chapter 6 Part 4, Underground Storage Tank Act	UDEQ enforces the EPA UST regulation, no further action warranted
Pesticide Application, Commercial/Consumer (FIFRA)	R307-357 Consumer Products	R307-357 is the most current OTC model rule, no further action warranted
Fuel Gas/Gasohol Bulk Plants	R307-328 Gasoline Transfer and Storage	Maricopa County has additional EPA SIP rules for gasoline transfer and storage based upon federal stage 1 vapor recovery guidance. An evaluation of Maricopa County's rules with Utah's determined that no additional control technique would be beneficial, and our current rules associated with these processes were determined to be BACM.
Landfills	R307-221 Emission Standards: Emission Controls for Existing Municipal Solid Waste Landfills	No further action warranted.
Combustion, Natural Gas, Residential	R307-356 Appliance Pilot Light	R307-356 prohibits appliance from utilizing a pilot light thereby reducing VOC's. No further action warranted.

Gas Stage 1	R307-328 Gasoline Transfer and Storage	Refer to discussion in section 5.2.1
Commercial Cooking		Researchers in California have been unable to identify cost effective technology for this emission source. Known control measures have a high capitol cost (>\$50k) and demanding maintenance such that the removal cost would likely exceed \$20K/ton. Prohibitive cost would shutter most sources. No further action warranted.
Livestock Production		According to local USDA representatives, most Utah producers use National Resource Service best management practices to protect soil, water and air. No further action warranted.
Sewer Treatment in Publicly Owned Treatment Works (POTW)	Clean Water Act: all POTW's have to report to EPA VOC concentrations in discharges.	All major POTW's meet Best Available Technology, no further action warranted.
Consumer and Commercial, Miscellaneous Products	R307-357 Consumer Products	R307-357 is the most current OTC model rule, no further action warranted
Fuel, Jet, Stage 1 (Storage)	Regulated under 40 CFR Subpart Kb	Not technically feasible for jet fuel due to low vapor pressure (0.125 psi). No further action warranted.
Fires, Structural		Uncontrollable, no further action warranted.
Backyard BBQ		Statutory Exemption, no further action warranted.
Dairy and Beef Cattle Composite		According to local USDA representative, most Utah producers use national conservation best management practices.
Gas Tank Truck Transport	R307-328 Gasoline Transfer and Storage	Refer to discussion in section 5.2.1
Solvent, Dry Cleaning		Solvent dry cleaners use no transfer machines that eliminate vapor loss during transfer from washing to drying. Additional built-in controls include refrigerated condensers. Some units also include built-in stills

		to further recover vapors. No further controls would be feasible. No further analysis warranted.
Poultry		According to the Utah Farm Bureau, operations apply best management practices to maintain healthy stock.
Fuel, Jet, Stage 2 (Dispensing)	Regulated under 40 CFR Subpart CC or Subpart R	Not technically feasible for jet fuel due to low vapor pressure (0.125 psi). No further action warranted.
Commercial Cooking - Conveyorized Charbroiling	R307-303 Commercial Cooking	R307-303 requires all units to utilize catalytic oxidizers. UDAQ and a nonprofit environmental group worked together to fund and install catalysts in all units in the Wasatch Front. No further action warranted.
Industrial Boiler Liquid Propane Gas (LPG)		No known control measures. Source may require permit with conditions under R307-401.
LPG Fuel		No known control measures exist, no further action warranted.
Fires, Vehicle		Uncontrollable, no further action warranted.
Combustion, Natural Gas, Industrial Boilers and IC Engines		No known control measures exist. Source may require permit conditions under air quality permitting R307-401-4(3) requiring low-NO _x burners.
Commercial/institutional wood Fuels		There are no reasonably cost-effective control strategies for this de minimis emission. No further action warranted.
Residential Oil Fuel		No known control exists, no further action warranted.
Cremation, Human and animal		Catalytic oxidizer control cost would readily exceed \$15k/ton, an unreasonable cost for a de minimis emission. No further action warranted.
Commercial/institutional Kerosene Combustion		No known control, no further action warranted.
Aircraft/Rocket Engine Firing and Testing		Uncontrollable event for aircraft maintenance/testing (no rocket engine). No further action warranted.

Solvents; Hot Mix Asphalt	NEW Administrative Rule: R307-313; VOC and Blue Smoke Controls for Hot Mix Asphalt Plants	The UDAQ has identified blue smoke controls reducing VOC emissions associated with blue smoke from Hot Mix Asphalt plants being RACM. As a result, the Utah Air Quality Board has adopted Utah Administrative Rule R307-313 to fulfill this requirement.
----------------------------------	--	--

1 *Surface Coating, Industrial Maintenance: EPA has aggregated coatings of the following surfaces: wood
 2 furniture, paper, film, foil, fabric, vinyl, metal furniture, large appliances, magnet wire, wood panel,
 3 metal parts, metal containers, plastic parts, autobody and aerospace parts.

4

5 *Table 57: NO_x RACM Assessment Summary*

Source Category	Utah Existing Rules/Statute and Federal Rules	Comments
Combustion, Natural Gas	R307-356 Appliance Pilot Light.	Prohibits the sale of appliance pilot lights (with the exception of water heaters) after January 1, 2014. A Canadian study determined that a gas fireplace pilot light accounts for 48% of the annualized gas usage for the appliance. Reduced gas consumption translates to a reduction in PM _{2.5} , VOC, NO _x , SO _x and NH ₃ . We are not aware of other comparable rules.
	R307-230 NO _x Emission Limits for Natural Gas-Fired Water Heaters	Ultra-low NO _x water heaters reduce emissions to 10 ng/Joule for residential units and slightly higher limits for commercial units. R307-230 is consistent with the most stringent California rules. No further action warranted.
	PROPOSED: R307-315 & R307-316	The UDAQ has identified ultra-low NO _x burners (9 ppmv) as being RACM in most instances when applied to replacement of end-of-life equipment or replacement burners. Some instances, particularly for high MMBtu units, may exceed RACM requirements and require regulatory flexibility. UDAQ is proposing the adoption of administrative rules R307-315 and R307-316 to fulfill this RACM requirement.
Combustion, Natural Gas, Commercial & Institutional Boilers and IC Engines		May be subject to air quality permitting. R307-401-4(3) may apply requiring low-NO _x burners.

Industrial Boiler LPG		May be subject to air quality permitting depending on size of emission sources.
Combustion, Industrial, Distillate Oil, All IC Engines		May be subject to air quality permitting depending on size of emission sources.
Combustion, Commercial, Institutional LPG		No known control.
Combustion, Industrial, Distillate Oil, All Boilers		May be subject to air quality permitting. R307-401-4(3) may apply requiring low-NO _x burners depending on the size of emission source.
Residential LPG Fuel		No known control.
Combustion, Natural Gas, Industrial Boilers and IC Engines		May be subject to air quality permitting. R307-401-4(3) may apply requiring low-NO _x burners.
Commercial, institutional wood Fuels		There are no reasonably cost-effective control strategies for this de minimis emission. No further action warranted.
Backyard BBQ		Statutory Exemption, no further action warranted.
Structural fires		Uncontrollable
Residential Oil Fuel		No known control, no further action warranted.
Waste Disposal, Open Burning, Yard Waste and Household Waste	R307-202, General Burning regulates yard waste burning by permit and prohibits household waste burning by homeowners.	No further action warranted.
Cremation, Human and animal		Catalytic oxidizer control cost would readily exceed \$15k/ton, an unreasonable cost for a de minimis emission. No further action warranted.
Combustion, Kerosene		No known control, no further action warranted.
Aircraft/Rocket Engine Firing and Testing		Uncontrolled event for aircraft maintenance/testing (no rocket engine). No further action warranted.
Motor vehicle fires		Uncontrollable.

1 *Table 58: RACM Identified Control Strategies*

Source Category	New or Proposed Administrative Rules	Comments
Combustion, Natural Gas	Proposed: R307-315; NO_x Emission Controls for Natural Gas-Fired Boilers 2.0-5.0 MMBtu R307-316; NO_x Emission Controls for Natural Gas-fired Boiler greater than 5.0 MMBtu	The UDAQ has identified ultra-low NO _x burners (9 ppmv) as being RACM in most instances when applied to replacement of end-of-life equipment or replacement burners. Some instances, particularly for high MMBtu units, may exceed previously established RACM thresholds and require regulatory flexibility. UDAQ is proposing the adoption of administrative rules R307-315 and R307-316 to fulfill this RACM requirement.
Solvents; Hot Mix Asphalt	Utah Administrative: R307-313; VOC and Blue Smoke Controls for Hot Mix Asphalt Plants	The UDAQ has identified blue smoke controls reducing VOC emissions associated with blue smoke from Hot Mix Asphalt plants being RACM. As a result, the Utah Air Quality Board has adopted Utah Administrative Rule R307-313 to fulfill this requirement.

2 *5.3 RACM Analysis Conclusion*

3 The evaluation of existing Utah administrative rules, EPA issued CTGs, ACTs, and OTC rules, as
4 well as similar western counties with moderate ozone NAAs determined that the NWF NAA has adopted
5 an expansive list of both VOC and NO_x emission reduction rules for area sources. Through this process,
6 and in parallel with UDAQ working groups, two additional control techniques were identified as RACM
7 that will result in the reduction of NO_x emissions from natural gas boiler as well as VOC emission
8 reduction from hot mix asphalt facilities (Table 58). These controls were determined to be reasonable
9 and will help the NAA reach attainment as expeditiously as practicable. As a result, the UDAQ has
10 adopted administrative rule R307-313; VOC and Blue Smoke Controls for Hot Mix Asphalt Plants as a
11 RACM strategy to reduce VOC emissions. Additionally, the UDAQ has adopted administrative rules R307-
12 315; NO_x Emission Controls for Natural Gas-Fired Boilers 2.0-5.0 MMBtu and R307-316: NO_x Emission
13 Controls for Natural Gas-fired Boiler greater than 5.0 MMBtu. These reduction strategies, and their
14 implementation timelines, are discussed further in section 7. The UDAQ has determined that the NWF
15 NAA has met RACM requirements with the RACM analysis and the implementation of the two new
16 control strategies.

17 Beyond the RACM controls identified for natural gas-fired boilers and hot mix asphalt facilities,
18 the UDAQ has identified that the application of in-use limitations for small non-road engines,
19 particularly those used in lawn and garden operations, are likely to be reasonable in scope and could
20 result in significant emission reductions of both VOCs and NO_x. Section 209 of the CAA prohibits states
21 from regulating mobile sources in certain ways,⁹³ with section 209(e) specifically preempting states from
22 regulating emissions from non-road sources. While section 209 does prohibit a state from regulating

93 42 U.S.C. § 7543

1 mobile source emissions, the prohibition is not absolute. In particular, section 209(d) allows states to
2 impose restrictions on when or where these engines can be operated (i.e., “in use” restrictions),
3 including for source covered under 209(e). Thus, the UDAQ has identified that states are not preempted
4 from implementing meaningful emission reduction strategies covering non-road mobile sources through
5 in-use requirements. The UDAQ plans to develop and implement policies that address emissions from
6 these sources as the NAA works towards demonstrating attainment as expeditiously as possible.
7 However, the scope of implementing a policy that covers such a large amount of small and distributed
8 sources like non-road engines requires more time than allotted for in this SIP revision. The UDAQ
9 intends to develop and implement a policy aimed at reducing VOC emissions from these sources in
10 subsequent SIP revisions.

11

12

1 Chapter 6 – Inspection and Maintenance (I/M) Program

2 *6.1 Overview of I/M Programs*

3 The transportation sector is a major source of both NO_x and VOCs in and around the NWF NAA.
4 Although modern vehicles (1996 and newer) emit far less pollution than older vehicles due to improved
5 emission reduction technologies, these reductions depend on the on-board emission control systems
6 being adequately maintained and operating. If not properly maintained, vehicles will not perform as
7 originally designed, resulting in increased emissions. Malfunctions in emission control technologies can
8 cause emissions to increase substantially beyond federal vehicle standards, with even minor
9 malfunctions resulting in increased emissions. Therefore, identifying and repairing malfunctioning
10 vehicles is imperative to reducing vehicle-related emissions in NAAs.

11 Vehicle I/M programs require mandatory and periodic testing of on-road motor vehicles for
12 compliance with emission standards, and the repair of vehicles that do not meet standards. These tests
13 are designed to determine whether a vehicle's emission controls are functioning properly, and whether
14 emissions levels are acceptable. The goal of an I/M program is to identify and repair high-emitting
15 vehicles to improve air quality in areas not attaining the NAAQS. EPA sets vehicle emission standards to
16 protect public health, however, these regulations do not guarantee proper operation and maintenance
17 of a vehicle's emission controls over its lifetime. State and local governments implement I/M programs
18 to identify high-emitting vehicles and notify owners and operators to have these vehicles repaired. Once
19 repaired, vehicles must be retested to verify their emissions are within the standards. The 1990
20 amendments to the CAA mandated I/M programs for ozone and CO NAAs based on criteria such as air
21 quality status, population, and/or geographic location.

22 In parallel with CAA requirements, Utah Code requires that, if identified as necessary to attain or
23 maintain any NAAQS, a county must create an I/M program as authorized by the Utah Air Quality Board
24 to formally establish those requirements for county I/M programs after obtaining agreement from the
25 affected counties.⁹⁴ Similarly, Utah Code also allows any county with an established I/M program to
26 subject individual motor vehicles to I/M testing at times other than the annual inspection.⁹⁵

27 As a result of the NWF NAA's previous designation as marginal nonattainment, as well as a CO
28 NAA that overlaps portions of the NWF NAA, under CAA Section 182(a) and Section 187, Utah was
29 previously required to implement and maintain an I/M program in the most populated counties in the
30 NWF NAA including: Davis, Salt Lake, and Weber Counties. Beyond the NWF NAA, Utah was also
31 required to implement an I/M program in the SWF NAA, which includes Utah County, to the south of the
32 NWF NAA (figure 1). These programs are required to be at least as effective as the EPA's Basic
33 Performance Standard.⁹⁶

34 *6.2 Federal Requirements*

35 I/M programs are mandatory under CAA Section 182 for ozone NAAs. These programs may be
36 removed if the state can demonstrate that the program is no longer needed. However, the I/M program
37 would still be retained in the SIP as a contingency control measure, which would be triggered if the area

⁹⁴ Utah Code Section 41-6a-1642 & Utah Code Ann. § 19-2-104(1)(g).

⁹⁵ Utah Code Section 41-6a-1642

⁹⁶ 40 CFR § 51.352

1 ever exceeds the applicable NAAQS.⁹⁷ Additionally, states have the flexibility to develop their own I/M
2 programs based on local conditions, if the state can show that impacted areas will continue to meet air
3 quality standards.

4 There are two performance levels of any I/M program—basic or enhanced. Basic I/M programs
5 are a requirement for moderate ozone NAAAs⁹⁸ which requires testing for light-duty cars for any
6 urbanized population over 200,000 residents.⁹⁹ An enhanced I/M program is required for serious,
7 severe, and extreme ozone NAAAs¹⁰⁰ with urbanized populations over 200,000. An enhanced I/M
8 program requires inspection of both light duty cars and light duty trucks.¹⁰¹ As a moderate NAA, the
9 NWF is only required to demonstrate that its existing I/M programs meet the basic I/M criteria. Since all
10 counties in the NWF NAA with populations over 200,000 have existing programs, no new I/M programs
11 are required as part of this SIP revision.

12 *6.3 I/M Testing*

13 There are three types of I/M testing that can be performed on vehicles:

14

- 15 • Visual Inspections: These inspections discourage tampering by checking for the presence of
16 certain required emission control parts such as catalytic converters.
- 17 • Tailpipe Testing: This inspection consists of measuring the exhaust emissions when a vehicle is
18 idle or under certain engine loads. This inspection is typically for models made in 1995 and
19 older.
- 20 • On-Board Diagnostics (OBD): Vehicles made in 1996 or later have been equipped with OBD
21 computerized systems. These systems continuously monitor emission control systems and will
22 activate the “check engine” light if a diagnostic trouble code is detected concerning the vehicle’s
23 emission controls.

24 *6.4 Utah I/M Program History and General Authority*

25 I/M programs were adopted in the early 1980’s in Utah as a required strategy to attain both the
26 ozone and CO NAAQS.¹⁰² These programs have played a critical role in reducing emissions that
27 contribute to ozone and CO and have been highly effective in improving air quality in urbanized parts of
28 the state. Utah’s I/M programs are initially authorized in Utah Code Section 41-6-163.61, which was
29 enacted during the First Special Session of the Utah legislature in 1983.¹⁰³ I/M programs were initially
30 implemented in Davis and Salt Lake counties in 1984, by Utah County in 1986, and by Weber County in
31 1990. In 1994, Utah Code was amended to authorize the implementation of I/M programs stricter than
32 minimum federal requirements in counties where it is necessary to attain or maintain a NAAQS.¹⁰⁴

⁹⁷ 40 CFR § 51.905 (A)(4)(i).

⁹⁸ CAA Section 182(b)(4), 42 U.S.C. § 7511a(b)(4).

⁹⁹ 40 CFR § 51.350(a)(4).

¹⁰⁰ CAA Section 182(c)(3), 42 U.S.C. § 7511a(c)(3).

¹⁰¹ 40 CFR § 51.350(7) and (8).

¹⁰² Davis, Salt Lake, Utah, and Weber counties are required to have I/M programs under Section 182(b)(4) and/or Section 187(a)(4) of the CAA.

¹⁰³ This section has been renumbered as section 41-6a-1642 by Laws 2005, c. 2, § 216, eff. Feb. 2, 2005.

¹⁰⁴ 1994 Utah Code.

1 This section of the Utah Code required preference be given to a decentralized program to the
2 extent that a decentralized program would attain and maintain ambient air quality standards and would
3 meet federal requirements. Thus, I/M programs in Utah are implemented at the county level, and not
4 directly by the state of Utah. Utah Code also required affected counties and the Utah Air Quality Board
5 to give preference to the most cost-effective means to achieve and maintain the maximum benefit
6 regarding air quality standards, and to meet federal air quality requirements related to motor vehicles.
7 The Utah legislature indicated preference for a reasonable phase-out period for replacement of air
8 pollution test equipment made obsolete by program in accordance with applicable federal
9 requirements, and if such a phase-out does not otherwise interfere with attainment of ambient air
10 quality standards.

11 By January 1, 2002, OBD inspections and OBD-related repairs were required as a routine
12 component of Utah I/M programs on model year 1996 and newer light-duty vehicles and light-duty
13 trucks equipped with certified OBD systems. The federal performance standard requires repair of
14 malfunctions or system deterioration identified by or affecting OBD systems. In addition, in 2002, the
15 Utah State Legislature amended the Utah Code to allow for biannual inspection of cars six years old or
16 newer.¹⁰⁵ This provision is applicable to the extent allowed under the current SIP for each county within
17 the NAA. Meaning the state would need to determine if the I/M programs in counties within the NAA
18 would need to have their testing frequency modified to comply with NAAQS standards. The state would
19 then work with local health departments to alter their requirements.

20 Most recently, in 2005 the Utah State Legislature renumbered and amended Utah Code to allow
21 counties with an I/M program to require college students and employees who park a motor vehicle on
22 college or university campus that is not registered in a county subject to I/M provisions to provide proof
23 of compliance with an emission inspection.¹⁰⁶

24 *6.5 UDAQ Evaluation of Current I/M Program*

25 I/M programs in Utah are currently using OBD and tailpipe testing. However, I/M programs rely
26 mostly on OBD testing because most of the fleet is equipped with OBD systems, but there are still some
27 tailpipe tests being performed. Details on Utah existing I/M programs, relevant county ordinances and
28 regulations, network types and enforceability can be found in the applicable I/M TSD.¹⁰⁷

29 In an effort to evaluate if existing I/M programs in the NWF NAA meet the requirements of a
30 moderate NAA, the UDAQ conducted basic performance standard modeling to show how the existing
31 I/M programs of Davis, Salt Lake, and Weber counties meet the applicable performance standard for a
32 basic I/M Program for the summer of 2023. 2023 was chosen as the analysis year to be consistent with
33 the year used for this modeling demonstration. This evaluation used the same MOVES modeling
34 assumptions used to develop the on-road mobile source 2023 projection inventory for the NWF NAA
35 covering Davis, Salt Lake, Weber, and Utah counties.¹⁰⁸ Utah County provides reciprocity testing and,
36 given the proximity of Utah County to the NWF, its I/M program was included in the analysis. Tooele
37 County was not included in this analysis since the area does not meet the population threshold of
38 200,000 or more residents in which an I/M program is required.¹⁰⁹

¹⁰⁵ Utah Code Section 41-6-163.6

¹⁰⁶ Utah Code Section 41-6a-1642

¹⁰⁷ NWF Inspection and Maintenance (I/M) Program; 2015 Ozone NAAQS Moderate Ozone SIP, TSD

¹⁰⁸ 2023 EXISTING BASIC INSPECTION AND MAINTENANCE PERFORMANCE STANDARD MODELING TECHNICAL SUPPORT DOCUMENT:
<https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001726.pdf>

¹⁰⁹ 40 CFR § 51.350(a)(2) and (a)(3).

1 The performance standard compares the modeling results of the existing program and
2 performance standard benchmark for a basic program for 2023. For a basic I/M program, if the
3 proposed/existing program achieves the same or lower emissions levels for VOC and NO_x as the
4 performance standard benchmark program, then the proposed/existing program is considered to have
5 met the basic performance standard. Areas required to operate an I/M program as the result of being
6 classified (or reclassified) as moderate for an 8-hour ozone NAAQS must use the basic performance
7 standard, using the program design elements at 40 CFR § 51.352(e). Emission estimates are confined to
8 the EPA approved MOVES 3.0.3. This model produces emissions daily estimates for on-road vehicles by
9 providing emissions profiles for starts, exhaust, evaporative and hot soak conditions. Inputs include
10 speeds, vehicle fuel profiles and specifications, VMT, I/M profiles, VMT mix, vehicle age distributions,
11 and meteorological conditions. These inputs were chosen to meet EPA and Department of
12 Transportation guidance on updating local planning assumptions every 5 years.¹¹⁰

13 Compliance factors were compiled utilizing local 2017 I/M EPA data covering: Total Vehicles
14 tested, Total Failures, Waivers, and Failure Rate for the following testing procedures: Two Speed Idle,
15 OBD, and Gas Cap. The compliance data is from EPA prepared compliance data dated 2/21/2019. Since
16 this modeling exercise had been completed, 2020 I/M testing compliance factors have become available
17 (EPA prepared compliance data dated 8/12/2021)¹¹¹. The only difference between the 2017 I/M and
18 2020 I/M compliance factors is in Weber County for light duty trucks model years 1996-2007 creating a
19 difference of 1%. Results of this analysis including county specific I/M program details utilized within
20 MOVES 3.0.3 are included in the Table 59 to Table 62.¹¹²

22 *Table 59: 2023 Davis County Summer Basic Performance Modeling*

2023 Davis County Summer Basic Performance Modeling (Tons Per Day)		
	NO _x	VOC
Davis I/M	7.42	2.77
Basic I/M	7.55	2.91
Difference	0.14	0.13

23 *Table 60: 2023 Salt Lake Summer Basic Performance Modeling*

2023 Salt Lake County Summer Basic Performance Modeling (Tons Per Day)		
	NO _x	VOC
Salt Lake I/M	20.98	8.51
Basic I/M	21.42	8.94
Difference	0.44	0.43

24

¹¹⁰ EPA420-B-08-901 Dec 2008

¹¹¹ <https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-engines-and-equipment>

¹¹² Utah's 2023 Existing Basic Inspection and Maintenance Performance Standard Modeling Technical Support Document can be found on the NWF Moderate Ozone SIP TSD web page at <https://deq.utah.gov/air-quality/northern-wasatch-front-moderate-ozone-sip-technical-support-documentation#supporting-tsd>.

Table 61: 2023 Utah County Summer Basic Performance Modeling

2023 Utah County Summer Basic Performance Modeling (Tons Per Day)		
	NO _x	VOC
Utah I/M	10.39	3.37
Basic I/M	10.56	3.48
Difference	0.16	0.12

Table 62: 2023 Weber County Summer Basic Performance Modeling

2023 Weber County Summer Basic Performance Modeling (Tons Per Day)		
	NO _x	VOC
Weber I/M	5.87	2.12
Basic I/M	5.97	2.22
Difference	0.11	0.10

The analysis provided in this section, with the results highlighted in tables 59 – 62, indicates that the existing I/M programs currently in place in the NWF meet the CAA requirements for moderate ozone NAAAs.

6.6 Implementation of I/M Program in Tooele County

To determine if the implementation of an I/M program in Tooele County would provide significant benefit for the NWF NAA to demonstrate attainment of the NAAQS, UDAQ conducted an analysis of the effects of implementing an I/M program in Tooele County using MOVES parameters similar to those described in section 6.5. Tooele county has a relatively small population of approximately 76,000 residents, and only a portion of the total county is included within the boundary of the NWF NAA (Figure 1). Tooele county has not previously been required to implement an I/M program since they are below the population threshold of 200,000 residents.

The results of this analysis are shown in Table 63. Based on these results, the UDAQ has concluded that the emission reductions associated with implementing a Basic I/M program in Tooele County would yield minimal emission reductions. Thus, the UDAQ has decided not to implement an I/M program in Tooele County especially in light of the fact that the county does not meet the population requirements found in 40 CFR § 51.350(a)(3), and the associated emission reductions would be small. This determination does not exclude the possibility of an I/M program implemented in Tooele County at a later date.

1

Table 63: I/M Program Implementation Evaluation for Tooele County in 2023

	NO _x	VOC	VOC Refuel	NH ₃	PM _{2.5}	Vehicle Miles Traveled
No I/M Program	3.783	0.875	0.13	0.097	0.081	3,476,298
OBD I/M Program	3.74	0.833	0.13	0.097	0.081	3,476,298
Percentage Emission Reduction	-1.14%	-4.80%	0.00%	0.00%	0.00%	0.00%
TPD Emission Reduction	-0.043	-0.042	0	0	0	0

2

1 Chapter 7 – Reasonable Further Progress (RFP)

2 *7.1 Reasonable Further Progress*

3 CAA section 172(c)(2) requires ~~emission~~ reductions of ozone precursor emissions including NO_x
4 and/or VOCs, which is referred to as Reasonable Further Progress (RFP). Section 182(b)(1)(A) of the CAA
5 further details RFP requirements for moderate NAAs, which is a demonstrated 15% reduction
6 specifically for VOC emissions, known as Rate of Progress (ROP). [Since the NWF does not have a
7 previously approved ROP plan related to ozone, the state must meet the 182(b)(1)(A) requirements for
8 this moderate SIP.] The 2015 ozone implementation rule states, “Areas classified Moderate for the 2015
9 ozone NAAQS that had SIPs previously approved to meet the ROP requirements for the 1-hour, 1997 8-
10 hour or 2008 8-hour ozone NAAQS would be treated like areas covered under CAA section 172(c)(2)...
11 For the purposes of the 2015 ozone NAAQS, the EPA continues to interpret CAA section 172(c)(2) as
12 requiring Moderate areas with an approved SIP under the 1-hour ozone NAAQS or prior 8-hour ozone
13 NAAQS to achieve 15 percent ozone precursor (NO_x and/or VOC) emission reductions over the first 6
14 years after the RFP baseline year for the 2015 ozone NAAQS”.¹¹³

15 Given the substantial VOC emission reductions achieved under previous PM_{2.5} SIPs equivalent
16 to, or greater than, current RFP requirements,^{114,115} the state of Utah is pursuing compliance with RFP /
17 ROP for this SIP revision through both NO_x and VOC emission reductions under CAA Section 172(c)(2).
18 Therefore, the[The] RFP requirement for this SIP revision is to reduce [VOC]ozone precursor emissions
19 by 15% [within six years]relative to the VOC emissions of the established 2017 baseline year within six
20 years. The state must identify and implement emission reduction strategies equal to or greater than
21 15% of the 2017 baseline VOC inventory described in Section 3.2 (Table 7) by January 1, 2023. In order
22 for reductions to count towards RFP, they must occur at sources located within the boundary of the
23 NAA, and “have actually occurred”^{116[117]}, meaning they are quantifiable with strategies developed to
24 reduce emissions being enforceable.

25 Details regarding past SIP emission reductions of ozone precursor emissions, as well as meeting
26 current RFP requirements, are discussed in detail in Section 7.5.

27 *7.2 Methodology*

28 The methodology for determining compliance with CAA Section 182(b)(1)(A) RFP requirements
29 are as follows:

- 30 1) Develop an anthropogenic VOC baseline inventory (2017) for the NAA.
- 31 2) Develop an anthropogenic VOC projected inventory (2023) for the NAA that incorporates
32 anticipated emission reductions.

¹¹³ Implementation of the 2015 National Ambient Air Quality Standard for Ozone: Nonattainment Area State Implementation Plan Requirements, 83 Fed. Reg. 63,004 (December 6, 2018).

¹¹⁴ Utah State Implementation Plan Section IX, Part A.21: Control Measures for Area and Point Sources, Fine Particulate Matter, PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Adopted December 3, 2014.

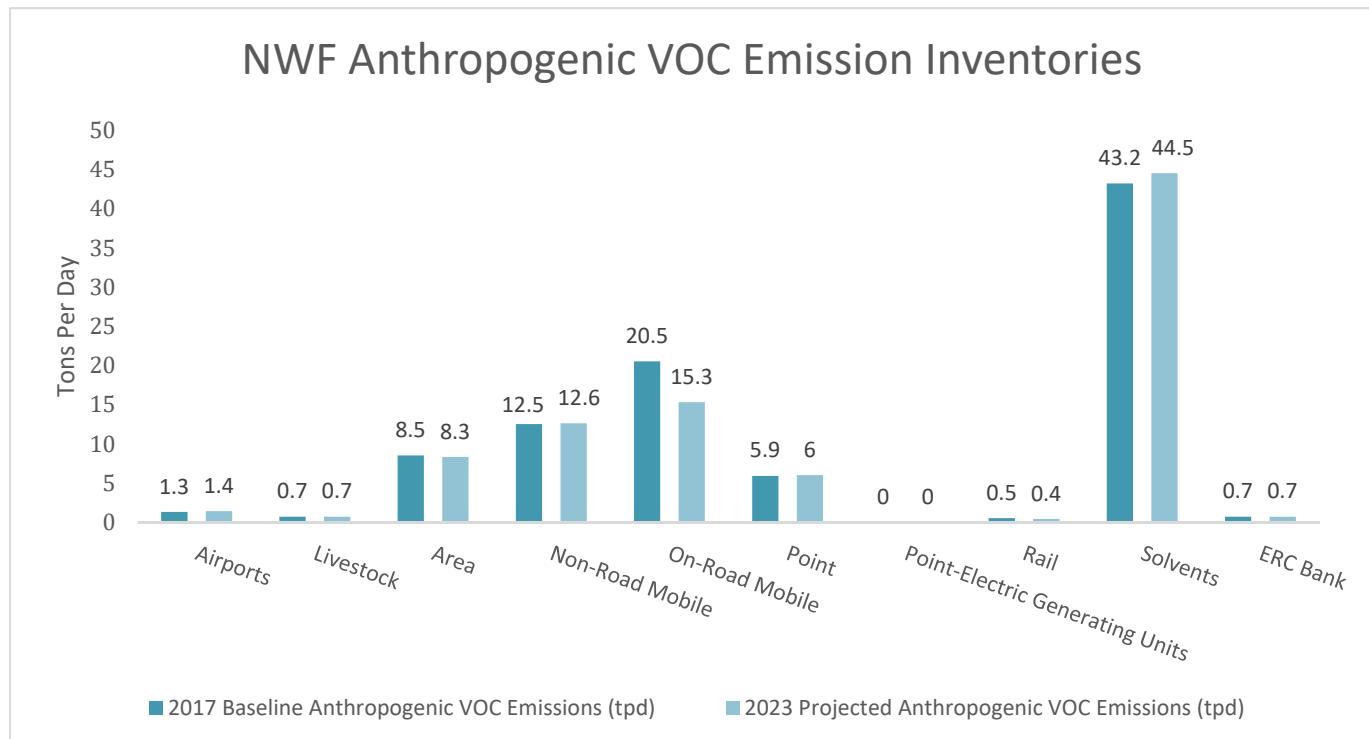
¹¹⁵ Utah State Implementation Plan Section IX, Part A.31: Control Measures for Area and Point Sources, Fine Particulate Matter, Serious Area PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Adopted January 2, 2019.

¹¹⁶ [117] 42 USC § 7511a(b)(1)(C).

1 3) Demonstrate that VOC emissions in the projected year inventory (2023) are at least 15% lower
 2 than the baseline (2017) (i.e., 2023 emissions – 2017 emissions \geq 15% of 2017 emissions) and
 3 meet the criteria described in Section 7.1.

4 Alternatively, if a state is pursuing compliance under Section 172(c)(2) of the CAA, the 15%
 5 emission reduction requirement identified in steps 1-3 serve as the NAA wide emission reduction
 6 requirement, however NO_x reductions can be substituted in place of VOC reductions. Beyond
 7 demonstrating the total 15% reduction requirement is fulfilled, a state must also show that the
 8 reductions in NO_x deliver an equivalent, or greater, improvement to air quality as would have been
 9 achieved had RFP been met through VOC reductions alone. This demonstration can include
 10 photochemical modeling analysis, as is discussed in sections 7.4.1.¹¹⁷ Lastly, the extent of the current
 11 NAA boundary needs to be considered. NO_x substitutions are only an available pathway in areas which
 12 overlap the same geographic extent in which the previously approved VOC reductions occur.

13 **7.3 RFP and Anthropogenic VOC Emission Reductions**


14 Table 64 shows anthropogenic VOC emission for the NWF NAA for the baseline year of 2017 and
 15 the projected year of 2023, as well as the change in emissions from 2017 compared to 2023 (i.e., 2017 –
 16 2023 VOC emissions). The total anthropogenic VOC emissions for the NWF NAA in 2017 account for 93.7
 17 tpd. As a result, the RFP requirement for the NWF NAA is 14.0 tpd reduction to achieve the 15%
 18 reduction.

19
 20 Table 64: Anthropogenic VOC Emission Reductions from 2017 to 2023 for the NWF

Source Sector	2017 Baseline Anthropogenic VOC Emissions (tpd)	2023 Projected Anthropogenic VOC Emissions (tpd)	Δ Anthropogenic VOC Emissions (tpd)	% Δ Anthropogenic VOC Emissions
Airports	1.3	1.4	0.2	15.4
Livestock	0.7	0.7	----	----
Area	8.5	8.3	-0.2	-2.4
Non-Road Mobile	12.5	12.6	0.1	0.8
On-Road Mobile	20.5	15.3	-5.2	-25.4
Point	5.9	6	0.1	1.7
Point-Electric Generating Units	0	0	----	----
Rail	0.5	0.4	-0.1	-20
Solvents	43.2	44.5	1.3	3.0
ERC Bank	0.7	0.7	----	----

¹¹⁷ NO_x Substitutions Guidance. U.S. EPA. December, 1993.
https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2_old/19931201_oaqs_nox_substitution_guidance.pdf

Total	93.7	90	-3.7	-3.9
1				
2				
3				

4 *Figure 4: NWF Anthropogenic VOC Emission Inventories*

5 As shown in Table 64 and Figure 4, there have been substantial VOC reductions in the on-road
6 mobile sector, resulting in 5.2 tpd of VOC reductions. These reductions are overwhelmingly due to
7 improvements in vehicle emission reduction technologies for personal automobiles and the introduction
8 of cleaner, tier 3 fuels, into the NAA. Other source sectors such as rail and area sources show small
9 emission reductions of 0.2 and 0.1 tpd, respectively.

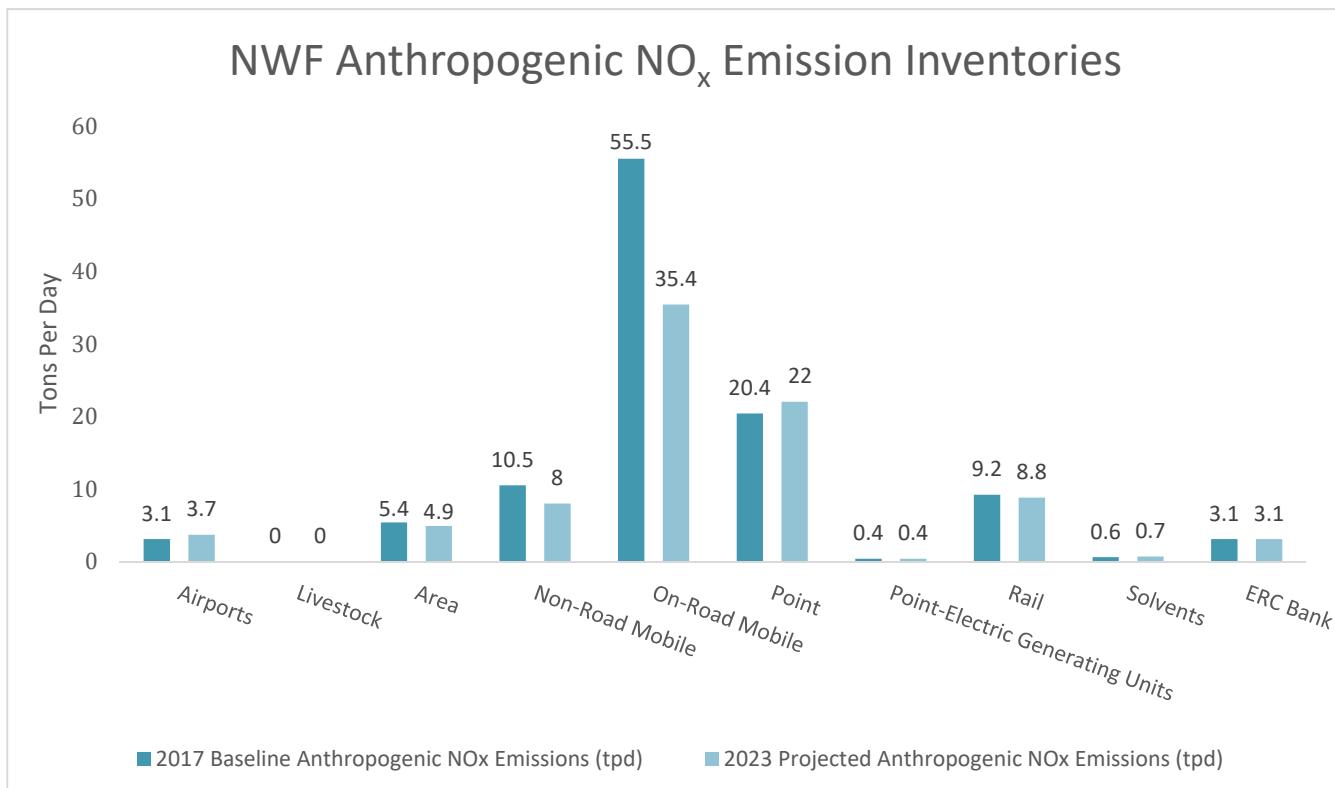
10 While the area has experienced emission reductions across multiple sectors, the area is also
11 experiencing rapid population growth, with Utah being the fastest growing state in the nation in 2022
12 and projected to add 2.2 million more residents by 2060.^{118[114]} As a result of this rapid population
13 growth, the NWF NAA has had emission increases in certain source sectors, including the non-road and
14 solvents sectors accounting for an added 0.2 tpd and 1.3 tpd, respectively.

15 The increased emissions in some source sectors that closely track population growth offset the
16 emission reductions in other sectors. As a result, the net total reductions of anthropogenic VOC
17 emissions in the NWF NAA are 3.7 tpd, accounting for a decrease of 3.9% of the baseline 2017
18 emissions. This means that the State of Utah still has 11.1% of its RFP requirements to fulfill, or 10.3 tpd
20 of additional emission reductions required to fulfill the CAA sections 172(c)(2) and 182(b)(1)(A)
20 requirements.

[114]¹¹⁸ Kem C. Gardner Policy Institute research and data, available at <https://gardner.utah.edu/utah-population-to-increase-by-2-2-million-people-through-2060/>

1 7.4 Anthropogenic NO_xEmissions

2 Table 65 shows anthropogenic NO_x emissions for the NWF NAA for the baseline year of 2017
3 and the projected year of 2023, as well as the change in emissions from 2017 compared to 2023 (i.e.,
4 2017 – 2023 NO_x emissions). NO_x emissions are not part of the ROP requirement for this moderate SIP;
5 however, the area has experienced significant NO_x reductions despite the substantial population
6 growth. While NO_x reductions do not count towards the CAA sections 172(c)(2) and 182(b)(1)(A)
7 requirements, these reductions have played an important role in the area progressing towards attaining
8 the standard as expeditiously as possible, which is further discussed in section 7.4.1.

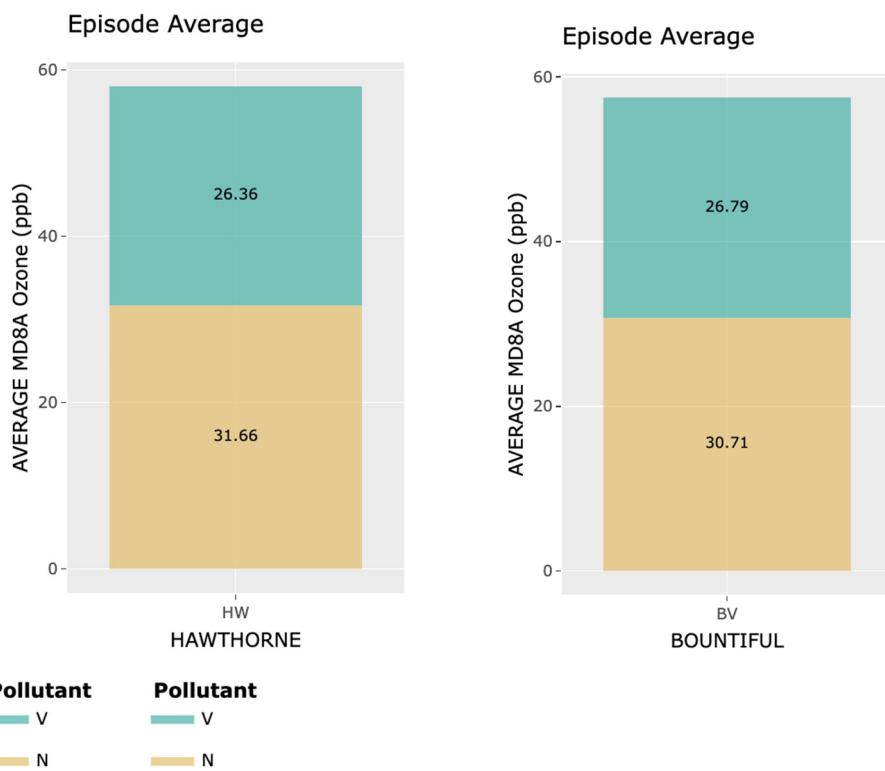

9

10 *Table 65: Anthropogenic NO_x Emission Reductions from 2017 to 2023 for the NWF*

Source Sector	2017 Baseline Anthropogenic NO _x Emissions (tpd)	2023 Projected Anthropogenic NO _x Emissions (tpd)	Δ Anthropogenic NO _x Emissions (tpd)	% Δ Anthropogenic NO _x Emissions
Airports	3.1	3.7	+0.6	19.4
Livestock	0	0.0	----	----
Area	5.4	4.9	-0.5	-9.3
Non-Road Mobile	10.5	8.0	-2.5	-23.8
On-Road Mobile	55.5	35.4	-20.1	-36.2
Point	20.4	22.0	+1.6	7.8
Point-Electric Generating Units	0.4	0.4	----	----
Rail	9.2	8.8	-0.5	-5.4
Solvents	0.6	0.7	+0.1	16.7
ERC Bank	3.1	3.1	----	----
Total	108.3	87.0	-21.3	-19.7

11

12

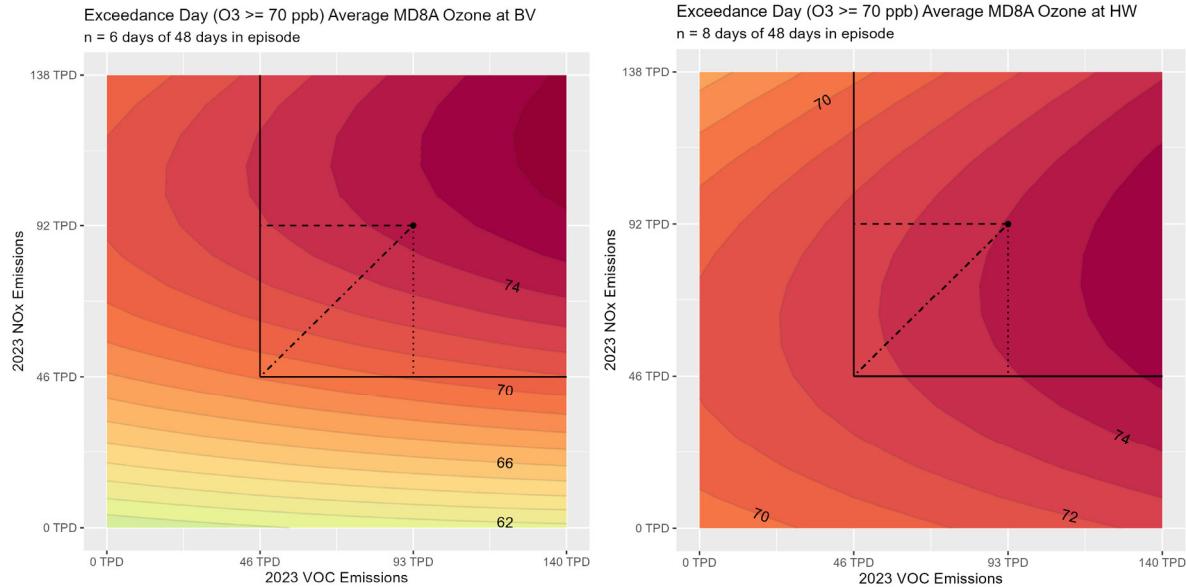

1 *Figure 5: NWF Anthropogenic NO_x Emission Inventories*

2 As shown in both Table 65 and Figure 5, the total anthropogenic NO_x emissions for the NWF
 3 NAA in 2017 account for 108.3 tpd, decreasing to 87.0 tpd in 2023, accounting for a 21.3 tpd reduction
 4 in daily NO_x emissions in this time period from 2017 to 2023. A substantial portion of these emission
 5 reductions, much like those observed in VOC emission reductions (Section 7.3), come from the on-road
 6 mobile sector because of continued improvements to vehicle engine standards and the introduction of
 7 cleaner burning fuels, resulting in 20.1 tpd of emission reductions relative to the baseline year. The NAA
 8 has also experienced NO_x reductions in other sectors including non-road mobile, rail and area sources,
 9 accounting for an additional 2.5, 0.5, and 0.5 tpd respectively. While some sectors have had small
 10 amounts of emission growth, such as airports, the majority of emission source sectors are showing
 11 reductions of anthropogenic NO_x emissions.

12 **7.4.1 Effectiveness of NO_x emission reductions in the NWF NAA**

13 Reductions in NO_x have been identified as an effective strategy in reducing ozone formation in
 14 the NWF NAA. A source apportionment modeling analysis conducted by the UDAQ using CAMx
 15 (Comprehensive Air Quality Model with Extensions) OSAT (Ozone Source Apportionment Tool) (section
 16 9.2) at the Hawthorne and Bountiful monitoring stations found that a little more than half of the
 17 modeled ozone at both monitoring sites is attributable to NO_x sources (Figure 6). Specifically, on
 18 average, 54% of the ozone is attributable to NO_x sources and 46% is attributable to VOC sources at the
 19 Hawthorne station. Similarly, 53% of the ozone is attributable to NO_x and 47% is attributable to VOCs at
 20 the Bountiful station. These results indicate that ozone at the controlling monitors in the NWF NAA is
 21 formed under both NO_x- and VOC-limited conditions, with a little more than half of the ozone formed
 22 under NO_x-limited conditions.

1 While the modeling results have some uncertainty, the findings are consistent with those from a
2 VOC/NO_x ratio analysis conducted by the UDAQ which utilized VOC measurements collected at the
3 Hawthorne monitoring site during the summer of 2021¹¹⁹^[445]. 8-hr time-integrated carbonyls
4 measurements and hourly Gas Chromatograph (GC) data with VOC concentrations weighted by their
5 Maximum Incremental Reactivity (MIR) (i.e. reactivity respective to ozone production/per unit VOC),
6 collected from June-August 2021, were used in this ratio analysis. Results showed that the area is in a
7 transitional regime, with controls on both VOCs and NO_x emissions as potentially effective strategies to
8 reduce ozone formation. These findings are consistent with the CAMX results reported in this section.
9


10
11
12
13 *Figure 6: NO_x-attributable (brown) and VOC-attributable (green) ozone at Hawthorne (left panel) and Bountiful (right)
14 monitoring stations on average over all days of the modeling episode.*

15 These findings support the UDAQ's conclusion that the implementation of NO_x reduction
16 controls as identified in section 4 (Table 54) as part of this SIP revision are necessary for the NWF NAA to
17 demonstrate attainment of the NAAQS as expeditiously as practicable.

18 The UDAQ also conducted a High-Order Decoupled Direct Method (HDDM) photochemical
19 analysis examining the predicted reductions in ozone concentrations for a given reduction of
20 anthropogenic NO_x or VOC emissions to further assess the effect of NO_x and VOC emission reductions
21 within the NAA. The resulting isopleth plots (Figure 7) shows that much of the NWF NAA is fairly
22 insensitive to VOC emission reductions, especially at the controlling monitor.
23

[445]¹¹⁹ https://harbor.weber.edu/Airqualityscience/docs/conferences/AQSfs-2022/AQSfs2022Posters/sghiatte_sci_4_sol_poster_2022.pdf

1 Figure 7: Average maximum daily 8-hour ozone isopleths representing NO_x and VOC reductions and the resulting predicted
 2 ozone concentrations at Bountiful (left) and Hawthorne (right) monitoring station. Analysis was conducted using CAMx version
 3 7.1 HDDM and demonstrates the sensitivity to NO_x reductions vs. VOC reductions at the two monitoring sites.

5 This analysis further identified that much of the NAA is more sensitive to NO_x reductions on
 6 exceedance days, however significant reductions of greater than 50% of NAA anthropogenic emissions
 7 would still be needed to attain 2015 8-hr ozone NAAQS. This analysis highlights that NO_x reductions play
 8 a critical role in Utah pursuing a reasonable pathway towards attaining the standard, with a NO_x heavy -
 9 limited VOC reduction pathway being the most beneficial pathway for the NWF NAA to improve
 10 summertime air quality. These results confirm the unique characteristics of the NWF NAA airshed and
 11 show that an equivalent reduction in NO_x emissions provides as great, or greater, of an improvement in
 12 air quality than VOC emission reduction alone. Therefore, the 21.5 tpd of NO_x reductions implemented
 13 as part of the moderate ozone SIP delivers a greater improvement to air quality than would have been
 14 seen with a 15% reduction of VOC emissions alone. As a result, the 25.0 tpd of ozone precursor
 15 emissions (NO_x + VOC) reductions documented in this SIP revision represents the best possible pathway
 16 for delivering the maximum improvement in air quality.

17 7.5 CAA Section 172(c)(2) and NO_x Substitutions

18 As discussed in Section 7.1, the 2015 ozone implementation rule states that a NAA designated as
 19 moderate that has implemented federally enforceable VOC emission reductions equal to or greater than
 20 the current 15% requirement from a previous ozone NAAQS SIP revision, are granted the opportunity to
 21 substitute a comparable amount of NO_x emission reductions under Section 172(c)(2), as long as those
 22 reductions deliver an equivalent improvement in air quality.¹²⁰ This section provides the necessary
 23 evidence to document past SIP-approved VOC reductions, as well as the benefits to air quality

¹²⁰ 83 Fed. Reg. at 63,004 ("Areas classified Moderate for the 2015 ozone NAAQS that had SIPs previously approved to meet the ROP [RFP] requirements for the 1-hour, 1997 8-hour or 2008 8-hour ozone NAAQS would be treated like areas covered under CAA section 172(c)(2)... the EPA continues to interpret CAA section 172(c)(2) as requiring Moderate areas with an approved SIP under the 1-hour ozone NAAQS or prior 8-hour ozone NAAQS to achieve 15 percent ozone precursor (NO_x and/or VOC) emission reductions.").

1 associated with NO_x reductions within the NWF NAA, demonstrating the requirements needed to
2 comply with CAA Section 172(c)(2) RFP requirements utilizing the substitution of NO_x emission
3 reductions in place of VOC reductions.

4 7.5.1 Past SIP Emission Reductions

5 As overviewed in Section 7.3 and shown in Table 66, the state of Utah has been able to account
6 for 3.7 tpd of VOC emission reductions from 2017 to 2023, leaving the state with 10.3 tpd of additional
7 VOC emission reductions required to fulfill Section 182(b)(1)(A) RFP requirements (i.e., VOC reductions
8 only). The state has simultaneously shown a 21.3 tpd reduction of NO_x emissions over the same six-year
9 period, representing 152% of the required RFP reductions. Combined, ozone precursor emissions were
10 reduced 25.0 tpd during the 6-year period of this SIP revision, representing 178% of the 14.0 tpd RFP
11 requirement. While the NO_x reductions in the NWF NAA during the moderate SIP timeline represent
12 considerable reductions and a significant step in attempts to improve air quality, they are small
13 compared to the substantial emission reductions through Utah's PM_{2.5} SIP which account for more than
14 a 250% emission reduction of both NO_x and VOCs independently relative to current RFP requirements.¹²¹

15 ¹²²

16 *Table 66: VOC and NO_x reduction in the NWF NAA through ozone and PM_{2.5} SIPs.*

	<u>RFP Requirements</u>	<u>2017 - 2023 moderate ozone SIP (% RFP)</u>	<u>2010 - 2020 PM_{2.5} SIP (% RFP)</u>
VOC (tpd reduced)	14.0 tpd	3.7 tpd (26%)	35.7 (255%)
NO _x (tpd reduced)	==	21.3 tpd (152%)	35.45 (254%)
Combined (tpd reduced)	==	25.0 tpd (178%)	

18 Furthermore, the state of Utah also implemented significant VOC reductions under the 1979 1-
19 hour ozone NAAQS, which resulted in 67.7 tpd of reductions.¹²³ However, as air quality subsequently
20 improved, the area was ultimately granted a clean data determination which resulted in the suspension
21 of RFP requirements.¹²⁴ Therefore, VOC emission reductions achieved under this standard were not
22 federally approved and therefore are not considered a previously approved RFP plan. As a result, the
23 state of Utah is relying on the VOC emission reductions implemented as part of its recent work to
24 address PM_{2.5} as it demonstrates compliance with current RFP requirements under Section 172(c)(2) of
25 the CAA.
26

27 Additionally, as the entirety of the NWF ozone NAA resides within the slightly larger Salt Lake
28 City PM_{2.5} NAA boundary, with nearly identical boundaries except for the inclusion of Box Elder County
29 to the north in the PM_{2.5} boundary, the past VOC reductions highlighted in Table 66 apply to the entire

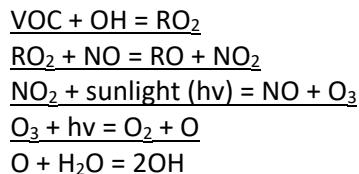
¹²¹ Utah State Implementation Plan Section IX, Part A.21: Control Measures for Area and Point Sources, Fine Particulate Matter, PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Adopted December 3, 2014.

¹²² Utah State Implementation Plan Section IX, Part A.31: Control Measures for Area and Point Sources, Fine Particulate Matter, Serious Area PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Adopted January 2, 2019.

¹²³ Utah State Implementation Plan Section IX, Part D: Control Measures for Area and Point Sources for Salt Lake and Davis Counties.

¹²⁴ Withdrawal of the Determination of Attainment of Ozone Standard for the Salt Lake and Davis Counties Ozone Nonattainment Area; Utah; and the Determination Regarding Applicability of Certain Reasonable Further Progress and Attainment Demonstration Requirements, 60 Fed. Reg. 36,723 (July 18, 1995).

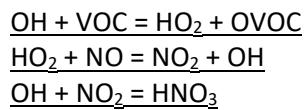
1 NWF ozone NAA. Therefore, a single RFP plan demonstrating compliance through the utilization of NO_x
2 substitutions is suitable for the NWF NAA as all areas of the current boundary can demonstrate past
3 applicable VOC reductions.


4 7.5.2 PM_{2.5} Chemistry and VOC Reductions

5 While northern Utah's PM_{2.5} air quality challenges are predominantly a wintertime issue, the
6 emission reductions implemented under these past SIPs to address PM_{2.5} pollution episodes were largely
7 adopted as year-round emission reduction strategies. As a result, the associated NO_x and VOC emission
8 reductions decrease both wintertime PM_{2.5} and serve to improve summertime ozone throughout the
9 NWF NAA. The interconnectedness of ozone and wintertime PM_{2.5} in the Wasatch Front is complex, but
10 breaks down into three essential components:

11

- 12 1. VOC emissions drive the daytime formation of ozone (O₃) in both the wintertime and
13 summertime which subsequently drives the availability of hydroxyl radicals (OH) within the
14 troposphere (equation 2):


15 Equation 2

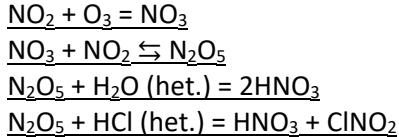
22

- 23 2. The presence of ozone as formed in the reactions above during the day drives the availability of
24 OH which subsequently acts as fuel for the daytime PM_{2.5} chemistry in which the NO_x-HO_x cycle
25 is responsible for the daytime production of ozone and nitric acid (HNO₃).¹²⁵ This cycle begins
26 when VOCs are oxidized by OH, generating HO₂ or RO₂ radicals (equation 3).

27 Equation 3

32

33 HNO₃ undergoes an acid-based reaction with gas phase ammonia (NH₄) to form particulate
34 ammonium nitrate (NH₄NO₃), the predominant secondary particulate compound found in
35 wintertime Persistent Cold Air Pool (PCAP) events in northern Utah.¹²⁶


36

¹²⁵ Womack, C. C., McDuffie, E. E., Edwards, P. M., Bares, R., de Gouw, J. A., Docherty, K. S., et al. (2019). An oddoxygen framework for wintertime ammonium nitrate aerosol pollution in urban areas: NO_x and VOC control as mitigation strategies. *Geophysical Research Letters*, 46, 4971–4979. <https://doi.org/10.1029/2019GL082028>.

¹²⁶ Kelly, K. E.; Kotchenruther, R.; Kuprov, R.; Silcox, G. D. Receptor model source attributions for Utah's Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol. *J. Air Waste Manage. Assoc.* 2013, 63 (5), 575–590.

1 3. Lastly, the presence of ozone plays a direct instigating (oxidative) force in the nighttime PM_{2.5}
2 chemistry as at night NO_x converts to particulate CINO₂ and HNO₃ through NO₃ and N₂O₅
3 (equation 4).¹²⁷

5 Equation 4

10 As with daytime chemistry, the resulting HNO₃ reacts with NH₃ to form particulate nitrate
11 NH₄NO₃, with NO₃, N₂O₅, and CINO₂ converted back to NO₂ and O₃ the following morning and further
12 contributing to daytime chemistry.

13 The importance of ozone in wintertime PM_{2.5} is reinforced by the fact that tropospheric ozone is
14 completely depleted during PCAP events (0.00 ppb) throughout the Wasatch Front, as ozone acts as a
15 fuel driving secondary particulate formation. Because of the important role ozone plays in both the
16 daytime and nighttime formation of PM_{2.5}, Utah's PM_{2.5} SIPs specifically targeted reductions of ozone
17 and its precursor emissions to limit the effectiveness of these pathways. Utah's most recent PM_{2.5} SIP
18 explains this interconnectedness of ozone and PM_{2.5} formation.¹²⁸ The explicit efforts to target the
19 formation of ozone, even during the wintertime, as well as the year-round nature of the emission
20 reduction policies implemented as part of these efforts, demonstrates why VOC emission reductions
21 achieved under a PM_{2.5} NAAQS SIP should be applied toward RFP compliance through NO_x substitutions
22 under CAA Section 172(c)(2) for this ozone SIP revision.

23 7.5.3 NO_x Effectiveness

24 As discussed in detail in section 7.4.1 and highlighted in Figure 7, the airshed of the NWF NAA is
25 more sensitive to reduction in NO_x than in VOCs, especially at the controlling monitor. As an example, a
26 50% reduction of VOCs at the Bountiful monitoring site (~46 tpd reduction) results in a 1-2 ppb decrease
27 in modeled 8-hour ozone concentrations. Conversely, the same 50% reduction in NO_x (also ~46 tpd
28 reduction) results in a 4-5 ppb decrease, approaching attainment of the standard at that location.
29 However, as demonstrated by the fact that the Hawthorne monitor is far less sensitive to NO_x
30 reductions than the Bountiful monitor, the ozone photochemistry in the NWF NAA is highly localized
31 with each monitoring location responding differently to NO_x and VOC reductions. Regardless of location,
32 however, all sites respond to paired VOC and NO_x reduction strategies well, further demonstrating that a
33 NO_x-heavy - limited VOC reduction pathway provides the most reasonable pathway to attainment.
34 Furthermore, these results demonstrate that NO_x emission reductions deliver an equivalent, or better,
35 improvement to air quality at the controlling monitor, especially when paired with the VOC reductions
36 documented in this SIP revision. Therefore, the 21.3 tpd NO_x emission reductions highlighted in Section

¹²⁷ Munkhbayar Baasandori, Sebastian W. Hoch, Ryan Bares, John C. Lin, Steven S. Brown, Dylan B. Millet, Randal Martin, Kerry Kelly, Kyle J. Zarzana, C. David Whiteman, William P. Dube, Gail Tonnesen, Isabel Cristina Jaramillo, and John Sohl. Environmental Science & Technology 2017 51 (11), 5941-5950. DOI: 10.1021/acs.est.6b06603.

¹²⁸ <https://documents.deq.utah.gov/air-quality/planning/technical-analysis/research/northern-utah-airpollution/utah-winter-fine-particulate-study/DAO-2018-004037.pdf> ("Aerosol chloride can also contribute to the formation of nitryl chloride (CINO₂), a source of radicals which act to enhance the daytime photochemical production of ozone and nitrate, both of which are important contributors to PM_{2.5} formation. This formation of CINO₂ is particularly active in the Salt Lake Valley, as shown by recent aircraft measurements (2017 Utah Winter Fine Particulate Study (UWFPS)).")

1 7.4 serve to not only fulfill the 14.0 tpd RFP requirement but also to deliver a greater overall benefit to
2 air quality than a 15% reduction in VOC emissions alone. Lastly, the NO_x and VOC emission reductions
3 combined in this SIP revision result in a total of 25.0 tpd, representing 178% of the RFP requirement
4 while delivering the most effective and reasonable pathway towards attaining the standard.

5 7.5.4 Conclusion

6 The significant VOC emission reductions implemented under past PM_{2.5} SIPs in the NWF fulfill
7 compliance with RFP requirements¹²⁹ by reducing both NO_x and VOC emissions, as allowed under
8 Section 172(c)(2) of the CAA. As a result, the RFP requirement for this SIP revision, calculated as 15% of
9 the 2017 VOC emission inventory, is a reduction of 14.0 tpd of NO_x and/or VOC emissions. From 2017 to
10 2023, the NWF NAA has seen a combined 25.0 tpd reduction of ozone precursor emissions, representing
11 178% of the RFP requirement. The combined NO_x and VOC emission reductions have also been
12 demonstrated to provide a greater improvement to air quality than a 15% reduction in VOC emissions
13 alone. The NWF NAA has met RFP requirements as a moderate NAA for the 2015 ozone NAAQS.

14

15 [7.5]7.6 Future SIP Emission Reductions

16 The UDAQ has identified several emission reduction strategies that, once fully implemented, will
17 result in the reduction of both VOC and NO_x emissions within the NWF NAA and count towards RFP
18 requirements. However, due to the short implementation timeframe afforded to states under this SIP
19 revision, paired with the added difficulty of finding viable VOC reduction strategies after the extensive
20 emission reductions associated with Utah's PM_{2.5} planning efforts, these strategies will not be fully
21 implemented by the implementation deadline of January 1, 2023^[146]^[130] and thus, will not count towards
22 RFP under the moderate SIP. Utah is working to have these strategies fully implemented prior to the
23 summer of 2026 in an effort to count these reductions towards RFP requirements during the state's
24 submission of a potential serious SIP for the same NAA. The UDAQ is simultaneously implementing NO_x
25 emission reductions both in anticipation of future SIP creditability as well as in an effort to demonstrate
26 attainment of the standard at the earliest achievable date.

27 [7.5.1]7.6.1 Hot Mix Asphalt; Utah Administrative Code Rule R307-313

28 The UDAQ has identified reducing VOC emissions associated with hot mix asphalt manufacturing
29 as a technologically viable and economically feasible control strategy. UDAQ has proposed R307-313
30 requiring hot mix asphalt (HMA) plants in the NAA to install emission capture and control devices to
31 reduce VOC and blue Smoke emissions associated with the production and loading of HMA and oil
32 storage tanks. Blue smoke is a visible emission generated during the production of HMA plants that
33 results from the process of mixing hot oil with aggregate which consists of oils heated to the point of
34 volatilization resulting in aerosols containing VOCs. Blue Smoke controls work to control both the visible
35 emissions and VOC emissions from HMA plants by capturing the emissions at various points of the
36 production process and routing these emissions through ducting to a destruction point, either using
37 filters and activated carbon, or through post-capture combustion. Emissions from the associated oil
38 tanks can be captured and reduced using similar technologies.

¹²⁹ 42 U.S.C. § 7511a(b)(1)(A)(i).

^[146]^[130] 87 Fed. Reg. 60,897.

1 The UDAQ identified 15 HMA plants operating in the NWF NAA as well as 48 oil tanks associated
2 with asphalt manufacturing at these plants. UDAQ estimates that the aggregated PTE emissions from
3 these activities result in a combined 0.34 tpd (125.32 tpy) of VOC emissions in the NAA, of which 0.26
4 tpd (95.63 tpy) would be reduced with the implementation of controls as required by R307-313. It is
5 important to note that these numbers are represented as PTE, and when applied to actual emissions
6 from the sources based on annual production the emission reductions will be lower. This difference
7 explains why associated inventoried emissions described in section 3 do not match those reported here,
8 and thus it is expected that the actual emission reductions will be lower as many facilities are permitted
9 to produce more asphalt per year than what is actually produced annually.

10 Administrative rule R307-313 was adopted by the Utah Air Quality Board on February 1, 2023.
11 However, the lead time for the engineering and installation of these controls, as well as the additional
12 testing and emission destruction verification required for the implementation of a novel emission
13 reduction strategy, mean that the emission reductions associated with this rule will not be creditable
14 under the moderate SIP timeline. As impacted facilities have until May 1, 2025 to install controls, these
15 emissions reductions are expected to be creditable for future SIP reductions.

16 [\[7.5-2\]7.6.2 Boilers; Utah Administrative Code Rules R307-315 and R307-316](#)

17 In an effort to reduce NO_x emissions in and around the NWF NAA, UDAQ has proposed the
18 adoption of R307-315; NO_x Emissions Controls for Natural Gas-Fired Boilers 2.0-5.0 MMBtu and R307-
19 316; NO_x Emission Controls for Natural Gas-Fired Boilers greater than 5.0 MMBtu. These rules both
20 implement an emission standard of 9ppmv for natural gas-fired boilers in the NAA in the effected
21 MMBtu ranges. In aggregate, these rules will apply to an estimated 2,136 boilers in the NAA which
22 combine to emit an estimated 8.55 tpd (3,122 tpy) of NO_x emissions. It is important to note that these
23 emission estimates are independent bottom-up estimates of the total potential emissions from boilers,
24 and were determined using different datasets and methods than those used in the development of the
25 inventories described in section 3. The UDAQ believes that these numbers are a more accurate
26 representation of actual emissions from boilers within the NAA. However, these numbers may be
27 different than those reported in section 3, and any future SIP credited emission reductions associated
28 with the implementation of these rules would rely instead on the numbers reported in the inventory.
29 The implementation of R307-315 and R307-316 has the potential to reduce 6.9 tpd (2,522 tpy) of these
30 combined emissions. However, R307-315 and R307-316 do not require the retrofit or replacement of
31 any boiler currently operating in the NAA, and instead require new boilers or burner replacements to
32 meet the 9ppmv standard. Thus, the implementation of this rule will take place over a long period of
33 time as the average lifespan of this equipment can be greater than 20 years.

34 Since the emission reductions from the implementation of R307-315 and R307-316 are targeted
35 at the reduction of NO_x emissions, the reductions associated with these rules will not count towards RFP
36 requirements for this SIP revision but are anticipated to be creditable for future SIP reductions.

37 [\[7.5-3\]7.6.3 US Magnesium LLC](#)

38 The UDAQ also examined major industrial point sources that contribute to the degradation of
39 the NWF NAA's airshed but are located outside of the existing boundary. This examination identified
40 one source that met this criteria, US Magnesium LLC, located in Tooele County on the southwestern
41 edge of the Great Salt Lake. This facility produces significant amounts of highly reactive precursor
42 emissions that contribute to both ozone and PM_{2.5} formation along the Wasatch Front.

43 US Magnesium LLC is the largest producer of primary magnesium in the US and operates the
44 Rowley Plant production facility on the western edge of the Great Salt Lake in Tooele County near the

1 NAA boundary. Here, water from the Great Salt Lake is evaporated to produce a brine solution that is
2 then purified and dried before going through a melt reactor and electrolytic process which separates
3 magnesium metal from chlorine. Byproducts of this industrial process include VOCs and NO_x, as well as
4 chlorine which is converted into hydrochloric acid. All of these byproducts contribute to ozone and
5 secondary particulate matter formation in the NWF NAA. In 2021, US Magnesium's permitted potential
6 to emit was 894 tpy of VOCs, 1,261 tpy of NO_x and 8,522 tpy of Hazardous Air Pollutants (HAPs). These
7 emissions make US Magnesium's Rowley plant one of the largest point sources of VOCs and NO_x in the
8 greater Wasatch Front and the largest point source of HAPs in Utah.

9 As a result of the magnitude of emissions and proximity to the NWF NAA boundary, UDAQ
10 required US Magnesium to perform a RACT analysis for VOC and NO_x emissions. As described in detail in
11 section 4.15, the RACT analysis submitted by US Magnesium identified that the installation of a steam
12 stripper and regenerative thermal oxidizer on the wastewater ponds at the boron plant would be
13 feasible. Once installed, this control will result in the reduction of 0.44 tpd (161.7 tpy) of VOC. However,
14 since the source is located outside of the current NAA (see section 1.4.2), and the timeline for the
15 installation of these controls are beyond what is statutorily required, these emission reductions are not
16 creditable towards RFP requirements but will be included as a contingency measure as discussed in
17 section 11.2.2.

18 [\[7.5-4\]7.6.4 Tesoro Refining & Marketing Company LLC Marathon Refinery](#)

19 As described in section 4.12, a RACT analysis submitted by Tesoro Refining & Marketing
20 Company LLC Marathon Refinery identified that the installation of selective catalytic reduction for
21 reducing NO_x emissions from the cogeneration turbines with heat recovery steam generation CG1 and
22 CG2 would be technologically feasible. As a result, these controls will be required to be installed by
23 October 1, 2028, in order for the NAA to demonstrate attainment of the standard as expeditiously as
24 practicable. The installation of these controls will result in an emission reduction of approximately 0.18
25 tpd (68.78 tpy) of NO_x once installed. Since the timeline for the installation of these controls is beyond
26 the implementation timeline for this SIP revision, and the controls will result in the reduction of NO_x
27 emissions and not VOC emissions, these emission reductions are not creditable towards RFP
28 requirements but are anticipated to be accounted for in subsequent SIP revisions.

29 In addition to the NO_x reductions associated with controls on CG1 and CG2, Tesoro Refining &
30 Marketing Company LLC Marathon Refinery will be required to install a secondary seal on Tank 321 and
31 replace the wastewater system API Separator and DAF unit with a closed vent to a carbon adsorption
32 control system. These controls, once installed, will result in reductions of VOC emissions by 0.006 tpd
33 (2.30 tpy) and 0.027 tpd (10.0 tpy) respectively. Thus, the combined VOC reductions associated with
34 these controls is expected to be .033 tpd (12.3 tpy).

35 [\[7.5-5\]7.6.5 Lawn and Garden Small Non-Road Engines](#)

36 As noted in section 5.3, the UDAQ has identified emission reduction policies aimed at reducing
37 VOCs and NO_x emissions from small non-road engines used in lawn and garden operations as being
38 reasonable. While there are some substantial limitations on the state in how emissions from these
39 sources can be regulated due to CAA Section 209 preemption, the implementation of in-use restrictions
40 for this class of equipment on ozone exceedance days, colloquially known as "mandatory action days,"
41 complies with Section 209 preemption while simultaneously allowing for significant VOC emission
42 reductions on days in which reductions are the most critical. The state has identified that the
43 implementation of a rule based on these criteria could net a VOC emission reduction of approximately

1 2.84 tpd throughout the NWF NAA, which would account for a significant portion of the state's
2 remaining RFP requirement. It is the intent of the UDAQ to introduce an administrative rule during
3 subsequent ozone state implementation planning efforts that aligns with reducing emissions from these
4 sources through mandatory action days restrictions.

5 7.7 RFP Conclusions

6 As described in section 7.5.4, this SIP revision demonstrates compliance with RFP requirements
7 for a moderate NAA under CAA section 172(c)(2) though the utilization of NO_x substitutions as allowed
8 for NAAs with previously approved SIPs demonstrating comparable past VOCs emissions reductions.

9

10

11

1 Chapter 8 - Attainment Demonstration and Weight of Evidence

2 *8.1 Background*

3 CAA Section 182(b)(1)(I) requires SIP revisions for moderate ozone NAAs to contain an
4 attainment demonstration, with the ozone implementation rule^[147]^[131] further specifying that an
5 approvable demonstration rely on a photochemical model, or another equivalent analytical method
6 determined to be at least as effective as that required for a serious NAA. For this SIP revision, the UDAQ
7 has developed a photochemical model following EPA guidance, with supplemental analyses to perform
8 the attainment demonstration modeling. In the previous sections of this SIP revision, ozone
9 concentrations have been reported using the unit ppm to be consistent with CAA and CFR (Code of
10 Federal Regulations) language. In this all subsequent sections (sections 8 – 12), the UDAQ will be
11 reporting ozone concentrations in the unit of parts per billion (ppb), in order to be consistent with
12 literature and EPA technical guidance.

13 The photochemical model developed for this SIP serves as a useful tool for projecting future
14 ozone concentrations, determining source regions that contribute to local ozone levels, and estimating
15 the impacts of emission source categories. This model also represents a significant step forward in
16 understanding the transport and formation of ozone throughout the NWF and the broader state of
17 Utah. Though the predictive ability of this model is scientifically sound and meets established
18 performance criteria, all models have inherent limitations since they are a simplified approximation of
19 complex real-world systems. Therefore, results presented from this modeling analysis should not be
20 considered the sole source of information relied upon when determining if a region will attain the 2015
21 ozone standard by the attainment date.

22 EPA's modeling guidance^[132]^[148] overviews supplemental analyses, termed "weight of evidence"
23 (WOE), that can be used to further support an attainment determination if the maximum MDA8 ozone
24 DV is close to the 70-ppb (0.070 ppm) standard at one or more monitoring sites. A WOE analysis is "a
25 totality of the circumstances approach, one that considers all available data to evaluate the
26 reasonableness of the modeled result which supplements those results."^[133]^[149] EPA's modeling guidance
27 outlines the basic types of analysis that could be included a part of a WOE analysis including:

28 • Additional modeling analyses,
29 • Analysis of trends in ambient air quality and/or emissions, and
30 • Additional unaccounted emission controls or reactions

31 The results of the UDAQ's photochemical modeling and WOE are presented in section 8.2.

[147]^[131] 83 FR 62998

[148]^[132] Modeling Guidance for Demonstrating Air Quality Goals for Ozone, PM_{2.5}, and Regional Haze: https://www.epa.gov/sites/default/files/2020-10/documents/o3-pm-rh-modeling_guidance-2018.pdf

[149]^[133] Environmental Defense Fund v. United States EPA, 369 F.3d 193, 198 (2d Cir. 204).

1 8.2 Photochemical Modeling Platform

2 The UDAQ conducted an air quality modeling analysis in support of the NWF NAA attainment
3 demonstration. Modeling was performed following EPA's modeling guidance¹³⁴^[120]. This modeling
4 platform includes emissions modeling, meteorological modeling, and photochemical modeling.
5 Photochemical modeling was conducted using the CAMxv7.1 model. Emissions inventories were
6 collected and processed through the Sparse Matrix Operating Kernel Emissions Model (SMOKE) version
7 4.8.1. With the exception of lightning NO_x and oceanic emissions, modeling was based on scripts and
8 data from EPA's 2016v2 modeling platform.¹³⁵^[121] Sea salt and lightning NO_x emissions were calculated
9 in CAMx by running the corresponding CAMx tools (oceanic_v4.2 and Inox_v1.1, respectively).
10 Meteorological fields for input into CAMx were produced using the Weather Research and Forecasting
11 (WRFv4.2) model. A detailed description of each of these models, their configuration, settings, and
12 performance are provided in their respective TSDs.¹³⁶^[122]

13 For this attainment demonstration, the period of June 15 - August 1, 2017, was selected as the
14 modeling episode, where June 15 - 25 corresponds to spin-up days. 2017 was also selected as the base
15 year for modeling and 2023 was selected as the future year with local emissions projected from the
16 2017 inventory as described in section 3. The modeling domain consisted of three nested grid domains
17 at 12/4/1.33 km. The 12 km domain covers the Western United States and is aligned with EPA's 12US1
18 domain, with the north-south extent of this domain matching the EPA's domain. The 4 km domain is
19 nested within the 12 km domain and covers the state of Utah as well as parts of neighboring states. The
20 1.33 km domain is nested within the 12/4 km domains and extends over the northern Wasatch Front
21 non-attainment area to provide higher resolution modeling within this area. The 12/4/1.33 km nested
22 grid modeling domain configuration is shown in Figure [7]8].

23

[120]134 Modeling Guidance for Demonstrating Air Quality Goals for Ozone, PM_{2.5}, and Regional Haze: https://www.epa.gov/sites/default/files/2020-10/documents/o3-pm-rh-modeling_guidance-2018.pdf

[121]135 EPA 2016v2 Emissions Modeling Platform TSD https://www.epa.gov/system/files/documents/2021-09/2016v2_emismod_tsd_september2021.pdf

[122]136 SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration: <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf> & Meteorological Modeling for Wasatch Front O3 SIP Technical Support Documentation and Model Performance Evaluation: <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001605.pdf>

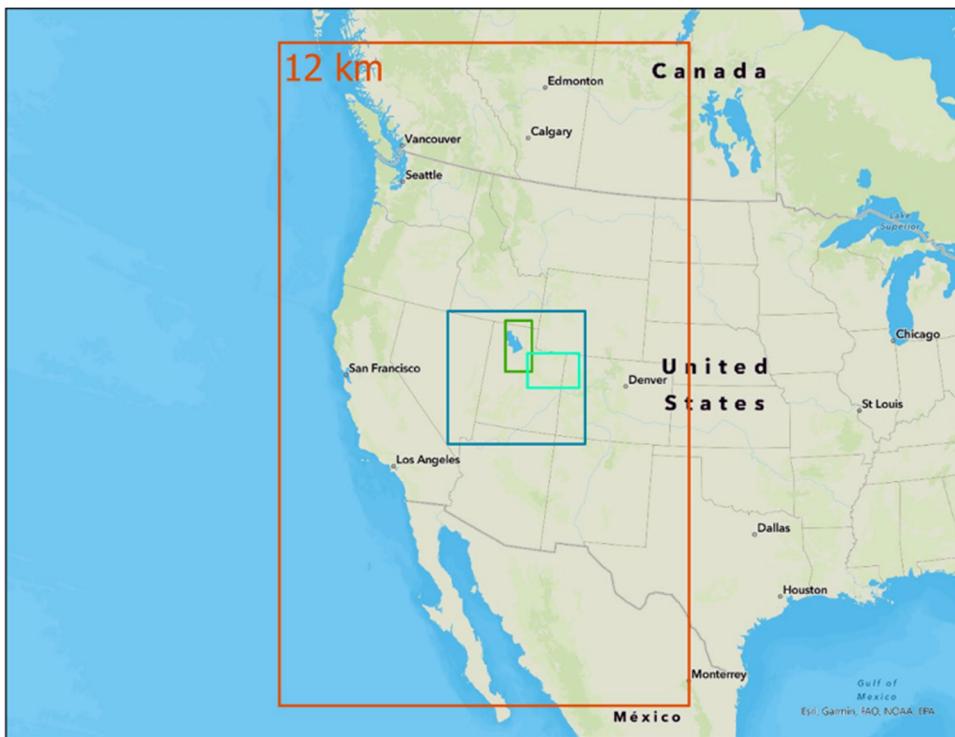


Figure [7]8: 12/4/1.33 km CAMx Modeling Domains

Time- and space-variable initial and boundary conditions (ICs and BCs, respectively) for the outermost domain (i.e., 12 km domain) were derived from GEOS-Chem global chemistry model outputs for 2017, with the modeling performed by Ramboll under contract with WESTAR.^{[137][123]} Following EPA guidance, the same GEOS-Chem-derived ICs and BCs for the 2017 base case were used for the 2023 future case. BCs and ICs for the 4 km domain, which was run in a two-way nested configuration with the 1.33 km domain, were extracted from the 3-D CAMx output concentration files for the 12 km domain. Concentrations were extracted along the lateral boundaries of the 4 km domain.

CB6r5h (version 6, revision 5 with halogens) gas-phase chemical mechanism, which includes halogens chemistry, was used for all simulations. At the request of the UDAQ, this mechanism was specifically developed and implemented by Ramboll, developer of CAMx, in a special version of CAMx v7.1 as a replacement for CB6r5 (version 6, revision 5). CB6r5h was developed to account for interactions between inorganic halogen species, ozone, VOCs, and NO_x, where reactions involving chlorine (Cl) and bromine (Br) were added to CB6r5. Halogens emissions are significant in the valley and play a significant role in PM and ozone formation in the NWF. An aircraft monitoring campaign conducted by the National Oceanic and Atmospheric Administration (NOAA) in winter 2017 indicated that US Magnesium, an industrial plant located on the southwest edge of the Great Salt Lake, emits large quantities of HCl and dihalogens (Cl₂, Br₂, BrCl), with the facility being the single largest halogen emission source in the US.^{[138][24]} Using a photochemical box model and a 3D chemical transport model, the investigators also showed that, while these halogens induce ozone depletion near the plant, they

[123][137] [1] https://views.cira.colostate.edu/docs/IWDW/Modeling/WRAP/2017/Ramboll_WESTAR_GEOS-Chem_Report_8Apr_2021.pdf

[124][138] C. C. Womack, W. S. Chace, S. Wang, M. Baasandorj, D. L. Fibiger, A. Franchin, L. Goldberger, C. Harkins, S. Jo, B. H. Lee, J. C. Lin, B. C. McDonald, E. E. McDuffie, A. M. Middlebrook, A. Moravek, J. G. Murphy, J. A. Neuman, J. A. Thornton, P. R. Veres, S. Brown. Midlatitude Ozone Depletion and Air Quality Impacts from Industrial Halogen Emissions in the Great Salt Lake Basin. *Environ. Sci. Technol.* 2023, 57, 5, 1870–1881.

1 lead to significant increases in the formation of particulate ammonium nitrate, PM_{2.5}, ozone, and other
2 oxidants in populated regions of the Salt Lake Valley located downwind of the plant. Regional PM_{2.5}
3 increases of 10%-25% were attributed to this single industrial halogen source. Given that the chemical
4 cycles leading to ozone and ammonium nitrate are linked¹³⁹^[125] implementing CB6r5h in our
5 summertime ozone modeling is increasingly important.

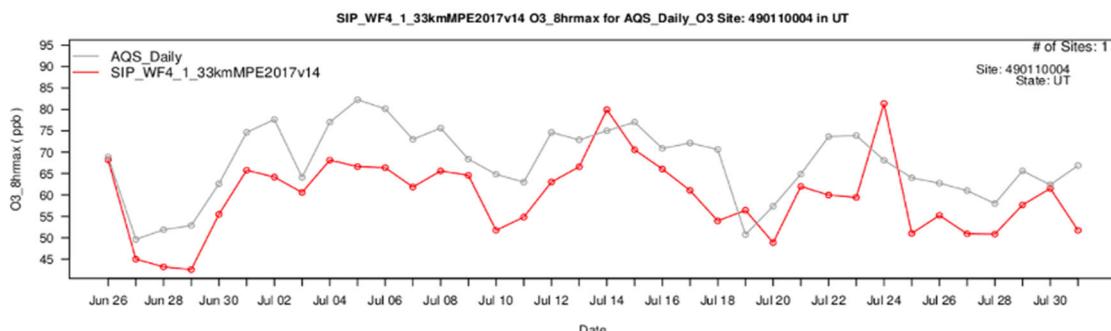
6 **8.2.1 Model Performance Evaluation (MPE)**

7 Model performance was evaluated by comparing the 2017 modeled ozone concentrations to
8 measured concentrations of ozone and ozone precursors, including NO_x, NO₂ and VOCs. The evaluation
9 was focused on results for the 1.33 km modeling domain and results for spin-up days are excluded from
10 this analysis. Results showed that the CAMx model performs well at simulating ozone at all sites within
11 the NWF NAA. While the model generally underestimates MDA8 ozone concentrations at the local
12 monitors, site-specific performance statistics are within established performance criteria. For all days of
13 the modeling episode, modeled MDA8 ozone concentrations are within established performance criteria
14 for Normalized Mean Bias (NMB), Normalized Mean Error (NME) and correlation coefficient (R). NMB
15 values for all sites are within the performance criteria of $\pm 15\%$ (Table [66]⁶⁷). Similarly, NME and R
16 values for all sites are within their respective performance criteria of $< 25\%$ and > 0.5 (Table [67]⁶⁸).
17 These performance statistics suggest that the model performs well at simulating MDA8 ozone
18 concentrations. On days with elevated ozone (observed MDA8 > 60 ppb), model performance was
19 overall acceptable with NME values falling within their performance thresholds at all sites ($< 25\%$) and
20 NMB performance threshold being slightly exceeded at one of the sampling sites (NMB of -15.86%)
21 (Table [67]⁶⁸). At some sites, the correlation coefficient R displayed some values below 0.5, which is
22 likely related to the model switching from an underprediction to an overestimation of MDA8 ozone on a
23 few days ($< 8\%$ of high ozone modeling days), which impacted the modeled ozone temporal trend.
24 These days were characterized by a variable cloud cover, which WRF did not simulate completely. More
25 details on this are provided in the CAMx MPE TSD.
26

27 *Table [66]⁶⁷: Performance statistics for MDA8 ozone on all days of the modeling episode. Results are shown for monitors in the*
28 *1.33 km modeling domain.*

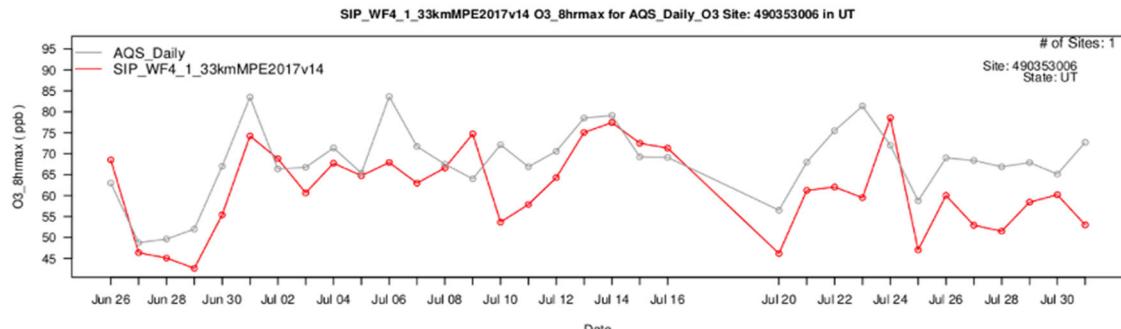
AQS Site ID	Site Name	NMB (%)	NME (%)	R
49-011-0004	Bountiful	-11.36	13.32	0.735
49-035-3006	Hawthorne	-9.75	12.48	0.653
49-035-3013	Herriman	-13.73	14.46	0.61
49-045-0004	Erda	-14.66	16.04	0.663
49-057-0002	Ogden	-10.51	12.8	0.652
49-057-1003	Harrisville	-14.12	14.56	0.763

29

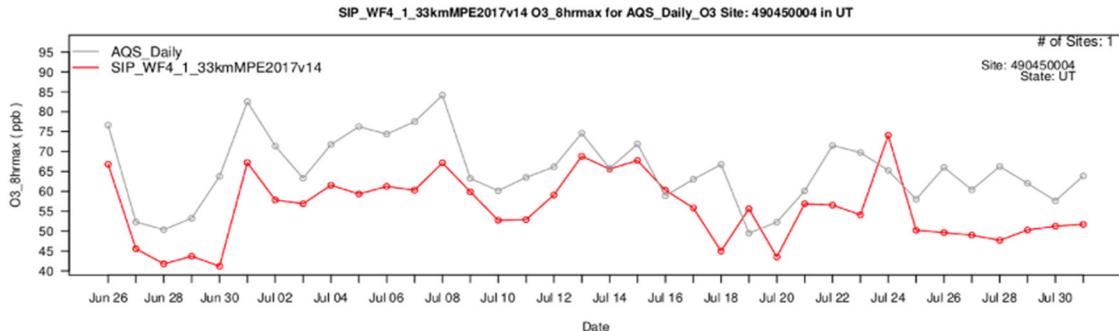

[125]¹³⁹ C.C. Womack, E.E. McDuffie, P.M. Edwards, R. Bares, J.A. de Gouw, K.S. Docherty, W.P. Dubé, D.L. Fibiger, A. Franchin, J.B. Gilman, L. Goldberger, B.H. Lee, J.C. Lin, R. Long, A.M. Middlebrook, D.B. Millet, A. Moravek, J.G. Murphy, P.K. Quinn, T.P. Riedel, J.M. Roberts, J.A. Thornton, L.C. Valin, P.R. Veres, A.R. Whitehill, R.J. Wild, C. Warneke, B. Yuan, M. Baasandorj, S.S. Brown, An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO x and VOC Control as Mitigation Strategies. *Geophys. Res. Lett.*, 46, 4971-4979 (2019).

1 Table [67][68]: Performance statistics for MDA8 ozone on high O3 days (observed MDA8 > 60 ppb). Results are shown for
 2 monitors in the 1.33 km modeling domain.

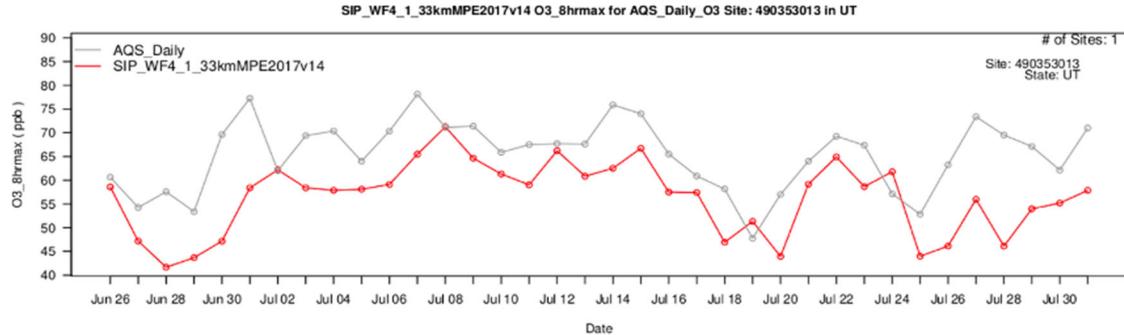
AQS Site ID	Site Name	NMB (%)	NME (%)	R
49-011-0004	Bountiful	-11.49	13.22	0.56
49-035-3006	Hawthorne	-9.12	12.22	0.276
49-035-3013	Herriman	-13.86	13.9	0.294
49-045-0004	Erda	-15.86	16.78	0.565
49-057-0002	Ogden	-10.16	12.46	0.318
49-057-1003	Harrisville	-14.02	14.57	0.586

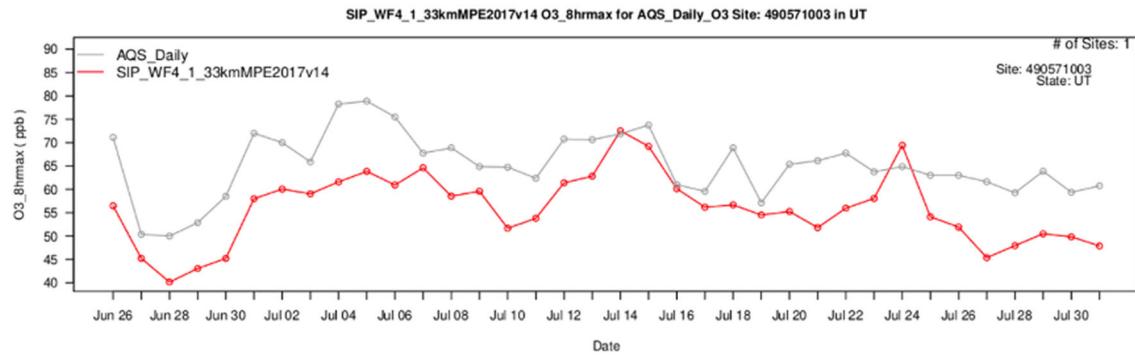

3
 4 Moreover, the model generally captures well the temporal variability of MDA8 ozone
 5 concentrations, with the timing of peak and low ozone values being well represented (Figure [8]9[9] to
 6 Figure [13][14][14]). The underestimation in modeled MDA8 ozone concentrations is likely primarily
 7 related to an underestimation in local emissions, rather than background emissions. Background ozone
 8 is well-replicated as indicated by the overall good agreement between modeled and observed MDA8
 9 ozone concentrations at Gothic Colorado, a high-altitude (10,000 ft) monitoring site in the Colorado
 10 Rockies that serves as a good indicator of mid-tropospheric air (Figure [14][15][15]).

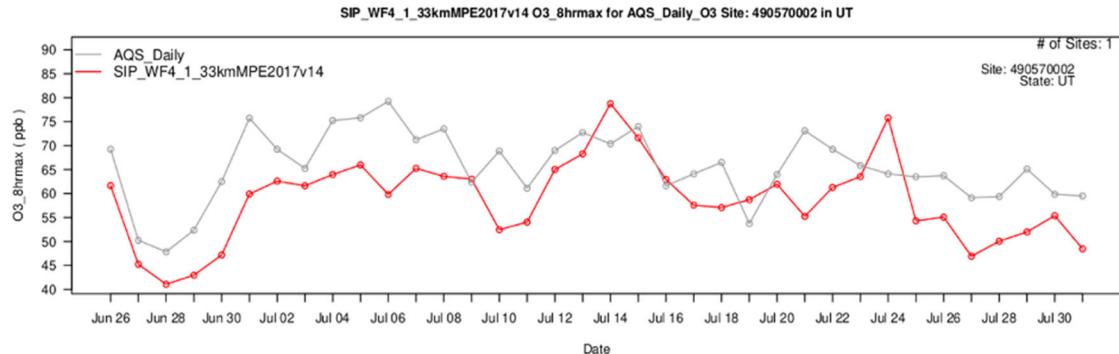
11 Overall, the model exhibited a level of agreement with measurements that has typically been
 12 achieved for US regulatory modeling for this region.^{[140][146]} These results provide confidence in the ability
 13 of the modeling platform to provide a reasonable projection of future year ozone concentrations and
 14 source contributions in the NWF NAA.

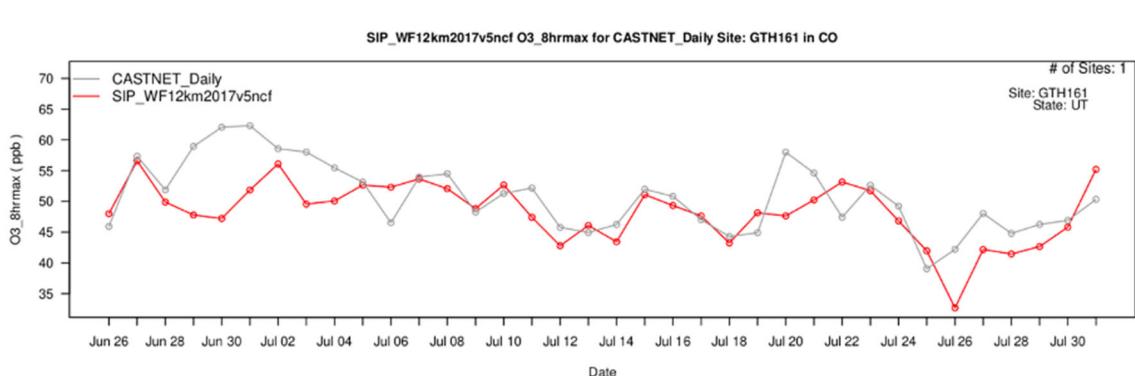


17 Figure [8]9: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone concentration
 18 (O3_8hrmax) at the Bountiful monitoring station.
 19


[126][140] https://www.epa.gov/system/files/documents/2022-03/qa-modeling-tsd_proposed-fip.pdf & Denver Metro/North Front Range 2017 8-Hour Ozone State Implementation Plan: 2011 Base Case Modeling and Model Performance Evaluation.
https://views.cira.colostate.edu/wiki/Attachments/Source%20Apportionment/Denver/Denver_2017SIP_MPE_Finalv1.pdf


1
2 *Figure [9]10: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone concentration*
3 *(O3_8hrmax) at the Hawthorne monitoring station.*


4
5 *Figure [10]11: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone concentration*
6 *(O3_8hrmax) at the Erda monitoring station.*


7
8 *Figure [11]12: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone concentration*
9 *(O3_8hrmax) at the Herriman monitoring station.*

1
2 *Figure [12]13: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone concentration*
3 *(O₃_8hrmax) at the Harrisville monitoring station.*

4
5 *Figure [13]14: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone concentration*
6 *(O₃_8hrmax) at the Ogden monitoring station.*

8
9 *Figure [14]15: Time series of observed (grey line) and modeled (red line) maximum daily 8-hr average ozone concentration*
10 *(O₃_8hrmax) at Gothic Colorado monitoring station.*

11 8.2.2 Determination of Future Year (2023) Design Values

12 The ozone predictions from the CAMx model simulations were used to project ambient ozone
13 DVs for the year 2023 following EPA's ozone modeling guidance for SIP demonstrations^{[141][127]}. Five-year
14 weighted average DVs centered on the base modeling year of 2017 were first calculated by averaging
15 ambient 8-hour ozone DVs for 2015-2017, 2016-2018, and 2017- 2019. The 5-year weighted average

[127]^[141] https://www.epa.gov/sites/default/files/2020-10/documents/o3-pm-rh-modeling_guidance-2018.pdf

1 DVs at each site were then projected to 2023 using the Software for Model Attainment Test Software –
2 Community Edition (SMAT-CE version 1.6).^{142[128]} This program predicts future year ozone DVs (FDV_i) for
3 each monitoring site within the NWF NAA by calculating site-specific relative response factors (RRF_i) and
4 scaling the 5-year weighted average base year ozone DV (BDV_i) at each site (i) using its corresponding
5 RRF_i .

6
7 *Equation [2]5*

8
$$FDV_i = RRF_i \times BDV_i$$

9
10 The RRF_i for each monitoring site corresponds to the fractional change in MDA8 ozone between
11 the base and future year. It is based on the average ozone on model-predicted “high” ozone days in a
12 3x3 grid cell array centered on the grid cell containing the monitor. Following EPA modeling guidance,
13 RRFs were calculated based on the highest 10 modeled ozone days in the base year simulation at each
14 monitoring site. Specifically, the RRF for an individual monitoring site is the ratio of the average MDA8
15 ozone concentration in the future year to the average MDA8 concentration in the 2017 base year. The
16 average values are calculated using MDA8 model predictions in the future year and in 2017 for the 10
17 highest days in the 2017 base year modeling. High ozone days correspond to days when modeled ozone
18 MDA8 concentration exceeds, or is or equal, to 60 ppb. For cases in which the base year model
19 simulation does not include 10 days with MDA8 ozone values ≥ 60 ppb at a site, all days with ozone \geq
20 60 ppb are used in the calculation, as long as there were at least 5 days that meet this criterion. At
21 monitor locations with less than 5 days with modeled 2017 base year ozone ≥ 60 ppb, no RRF or FDV is
22 calculated for the site and the monitor in question is not included in the analysis. A detailed description
23 of SMAT configuration is provided in the SMAT TSD.^{143[129]}

24 Following this approach, FDVs and RRFs were calculated for each monitoring site within the
25 NWF NAA, where FDV for Bountiful, Hawthorne and Herriman were based on an adjusted BDV (Table
26 [68]). BDV for Bountiful, Hawthorne and Herriman, which correspond to the three highest monitors in
27 the NAA, were adjusted to reflect DVs after exclusion of wildfire smoke-impacted ozone exceedance
28 values. In a separate technical document (“Analysis in Support of Exceptional Event Flagging and
29 Exclusion from Modeling for the Weight of Evidence Analysis”), the UDAQ determined that ozone
30 concentrations exceeding the 2015 ozone NAAQS on August 4, 2016, and September 2, 5 and 6 2017
31 qualify as wildfire smoke-impacted ozone exceedances. These events were excluded from the 2017 BDV
32 calculations for Hawthorne, Bountiful and Herriman. Excluding these events results in a decrease of 1.7-
33 2.0 ppb in the BDV and 2.0 ppb in the FDV for these sites (Table [68]69). Note that consistent with the
34 truncation and rounding procedures for the 8-hour ozone NAAQS, the projected DVs are truncated to
35 the first decimal place in units of ppb.

[128]¹⁴² <https://www.epa.gov/scram/photochemical-modeling-tools-udaq-ozone-sip-smat-ce-configuration-utah-division-air-quality-tsd>:
<https://documents.deq.utah.gov/air-quality/planning/DAO-2023-001838.pdf>

[129]¹⁴³ UDAQ Ozone SIP SMAT-CE Configuration Utah Division of Air Quality: <https://documents.deq.utah.gov/air-quality/planning/DAO-2023-001838.pdf>

1 *Table [68]69: Baseline design values (BDV), relative response factors (RRF), future design values (FDV) at Bountiful, Hawthorne*
 2 *and Herriman monitoring locations. DVs before and after exclusion of days impacted by wildfire smoke are shown.* indicates DV*
 3 *after removal of wildfire smoke-impacted ozone exceedance values.*

Flagged Data Not Excluded 3x3 grid-cell array Max Paired in Space							Flagged Data Excluded 3x3 grid-cell array Max Paired in Space			
Site	Site ID	County	BDV	RRF	FDV	Final FDV	BDV	RRF	FDV	Final FDV
Bountiful	490110004	Davis	76.7	0.9593	73.5	73	75*	0.9593	71.9*	71
Hawthorne	490353006	Salt Lake	76.7	0.9698	74.3	74	75*	0.9698	72.7*	72
Herriman	490353013	Salt Lake	76	0.9686	73.6	73	75*	0.9686	72.6*	72
Erda	490450004	Tooele	73	0.9673	70.6	70	73	0.9673	70.6	70
Harrisville	490571003	Weber	72.7	0.9676	70.3	70	72.7	0.9676	70.3	70

4

5 8.2.3 Model Attainment Test

6 Table [69]70 summarizes the finalized BDV, FDV and RRF at each monitoring site within the NWF
 7 NAA, where the BDV for Bountiful, Hawthorne and Herriman, are adjusted to reflect BDV after removal
 8 of ozone exceedance values impacted by wildfire smoke. Only sites that had an ozone monitor operating
 9 in the 5-year period (2015-2019) were used to calculate the 5-year weighted average ambient BDV and
 10 are currently still part of UDAQ air monitoring network were included in this analysis.

11 Results show that the FDV are projected to reach between 70 - 72 ppb by the attainment date
 12 across all sites in the non-attainment area, with the Hawthorne monitoring site projected to be the
 13 controlling monitor at 72 ppb. It is important to note the way in which ozone DVs are truncated to the
 14 lowest whole number when being calculated, a FDV of 70.9 ppb is needed to demonstrate attainment.
 15 Therefore, considering the range of projected FDV, monitoring sites that show nonattainment are all
 16 demonstrating FDV very near attaining the standard.
 17

18 *Table [69]70: Baseline design values (BDV), relative response factors (RRF), future design values (FDV) at monitors within the*
 19 *northern Wasatch Front ozone non-attainment area.*

3x3 grid-cell array Max Paired in Space						
Site	Site ID	County	BDV	RRF	FDV	Final FDV
Bountiful	490110004	Davis	75	0.9593	71.9	71
Hawthorne	490353006	Salt Lake	75	0.9698	72.7	72
Herriman	490353013	Salt Lake	75	0.9686	72.6	72
Erda	490450004	Tooele	73	0.9673	70.6	70
Harrisville	490571003	Weber	72.7	0.9676	70.3	70

1 8.3 Weight of Evidence (WOE)

2 8.3.1 Overview

3 While the modeled attainment demonstration described in section 8.1 (Table [69]70) indicates
4 that the MDA8 at the Hawthorne monitor will reduce to 72 ppb by the attainment date, slightly above
5 the 70.9 ppb required to demonstrate attainment, the UDAQ has implemented substantial additional
6 efforts to combat summertime ozone not accounted for during this modeling effort should be taken into
7 consideration when determining if the area is demonstrating attainment. In this section, as part of a
8 WOE approach¹⁴⁴^[130], the UDAQ will present an overview of additional efforts and analysis to provide
9 further insights into to be considered when determining if the area is demonstrating attainment.

10 8.3.2 Uncertainties in Modeling and Inventory

11 While the photochemical modeling results presented in section 8.1 meet EPA performance
12 metrics and represent a significant improvement in past efforts to model ozone in the NWF, there are
13 uncertainties in any modeling effort that may result in an overestimation in future predicted ozone
14 concentrations.

15 These uncertainties can result from a wide array of parameters involved in complex modeling
16 efforts, including the process of compiling the emission inventories modeling efforts rely on. For
17 instance, the mobile on-road sector of the inventory is estimated using models developed by the EPA
18 that have many versions EPA released over the years. Estimations of NO_x have differed significantly as
19 one model replaced the next, and changes in the vehicle fleets over time such as the electrification of
20 the mobile sector may be underrepresented (see section 8.3.4). Further, since SIPs are legally binding
21 documents and will be enforced in the event certain conditions are not met, emission reductions
22 associated with past SIP efforts have included conservative estimates of total reductions. Therefore,
23 emission reductions accounted for in inventories may underrepresent the full extent of real-world
24 reductions.

25 Additionally, for the development of the attainment demonstration included in this SIP revision,
26 the UDAQ relied on VOC emissions estimates within the solvent sector from an EPA supplied product.
27 This product, VCPy, has substantial benefits over past methods used in the quantification of emissions
28 within this category. However, some uncertainties remain in the emission estimates produced by VCPy
29 that could result in overestimations of VOC emissions within the NWF NAA. For instance, as described in
30 section 3.2.2, this SIP revision sourced its VOC emissions for the solvents sector from EPA's 2016v2
31 platform. EPA has subsequently released an updated version (2016v3) of this platform¹⁴⁵^[131] in which
32 EPA revised its estimated for Utah statewide VOC emissions as adjusted to account for "indoor usage
33 assumptions" as well as "control assumptions". These updates resulted in a statewide decrease of
34 estimated VOC emissions by 1,699 tpy. As these emissions are generally allocated in modeling based on
35 population metrics, and the NWF represents a significant proportion of Utah's population, it stands to
36 reason that the majority of the decrease in VOC emission from 2016v2 to 2016v3 would be observed in
37 the NWF NAA.

[130]¹⁴⁴ Modeling Guidance for Demonstrating Air Quality Goals for Ozone, PM_{2.5}, and Regional Haze

[131]¹⁴⁵ Technical Support Document (TSD): Preparation of Emissions Inventories for the 2016v3 North American Emissions Modeling Platform. U.S. EPA. January 2023

1 8.3.3 Background, Interstate, and International Transport

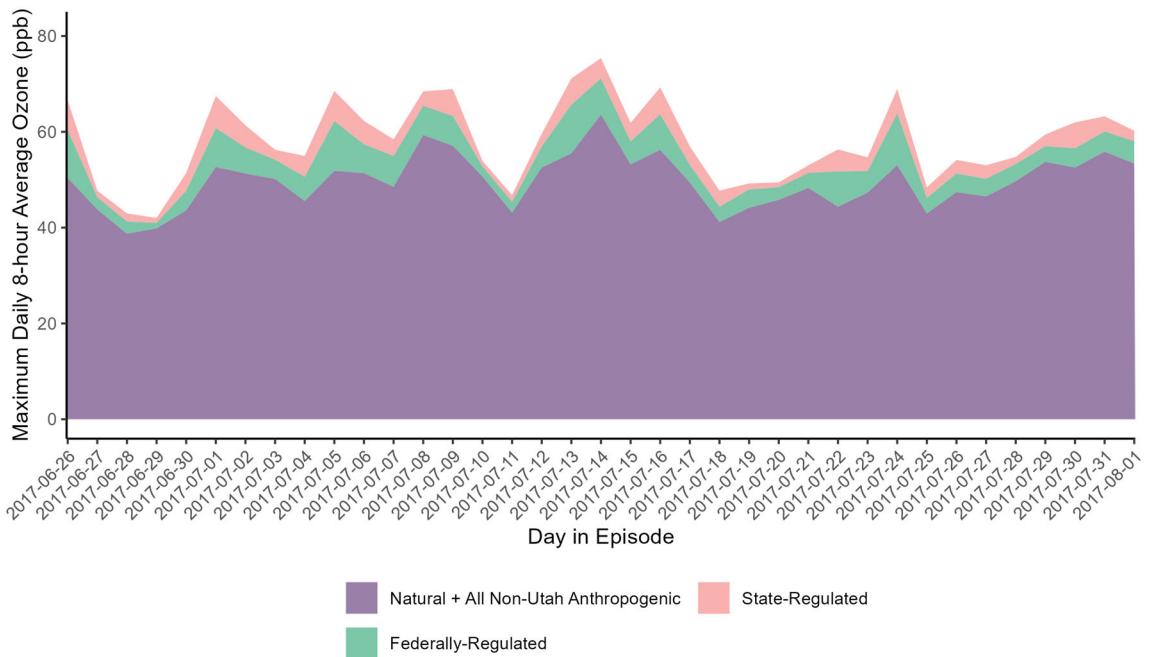
2 8.3.3.1 Background Ozone

3 The EPA identifies “background” ozone in the United States (USB) as ozone formed from sources
4 or processes other than anthropogenic emissions of NO_x, VOCs, methane (CH₄) and CO originating from
5 within the United States.¹⁴⁶^[132] This definition does not include intra or inter-state transport of ozone
6 impacting downwind areas, which are covered by other sections of the CAA including section
7 110(a)(2)(D). NAAs in the Intermountain West face significant and regionally specific challenges meeting
8 ozone standards especially as it relates to the amount of USB present.¹⁴⁷^[133] The region faces further
9 challenges due to the increasing instances of wildfire,¹⁴⁸^[134] significant regional and local biogenic
10 contributions,¹⁴⁹^[135] as well as the influence of internationally transported pollutants,¹⁵⁰^[136] all of which
11 contributing to a large proportion of ozone on any given day. These challenges are highlighted in
12 multiple analysis identifying significantly elevated USB ozone concentrations throughout the region
13 when compared to the eastern United States.¹⁵¹^[137]

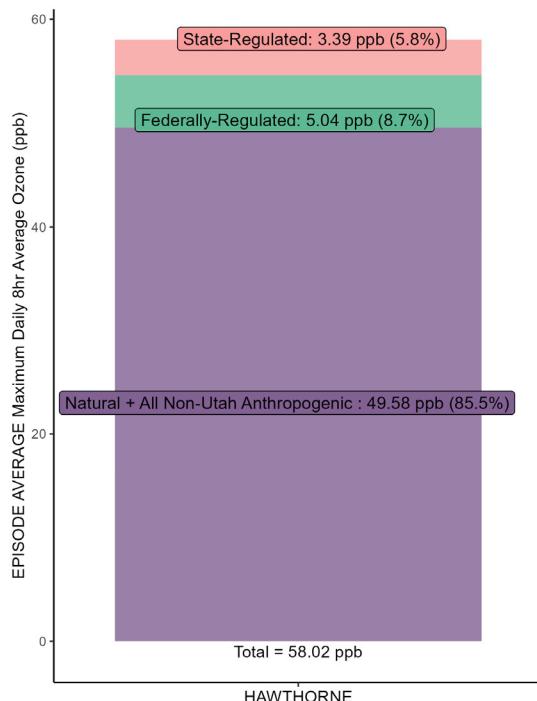
14 The substantial contribution of USB ozone impacting Utah’s total ozone concentrations and can
15 be seen at the remote sites located throughout the state, such as the monitoring sites located in
16 Escalante National Monument, or Bryce and Canyonlands National Parks. These sites are typically free of
17 impacts from localized anthropogenic emissions, and they regularly report 8-hour summertime ozone
18 concentrations above 0.050 ppm. Source apportionment modeling performed by the UDAQ (see section
19 9.2 for details) further found USB ozone concentrations (including interstate anthropogenic emissions)
20 along the Wasatch Front account for up to 85.5% of the ozone comprising the daily 8-hour
21 concentrations observed at the Hawthorne site (Figure [15]¹⁶[16] and Figure [16]¹⁷[17]), with the
22 remaining 14.5% attributable to Utah anthropogenic emissions.

23

[132]¹⁴⁶ Implementation of the 2015 Primary Ozone NAAQS: Issues Associated with Background Ozone”. USEPA, December 2015


[133]¹⁴⁷ Scientific Assessment of background ozone over the U.S.: Implications for air quality management

[134]¹⁴⁸ Buchholz, R.R., Park, M., Worden, H.M. et al. New seasonal pattern of pollution emerges from changing North American wildfires. *Nature Communications* 13, 2043 (2022). <https://doi.org/10.1038/s41467-022-29623-8>


[135]¹⁴⁹ EPA Webinar; Description and preliminary evaluation of BELD 6 and BEIS 4. ORD. Jesse O. Bash and Jeff Vukovich

[136]¹⁵⁰ Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.; Langford, A.O. et al. (2017), *J. Geophysics. Res. Atmos.*, 122, 1312-1337, doi:10.1002/2016JD025987

[137]¹⁵¹ Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.; Langford, A.O. et al. (2017), *J. Geophysics. Res. Atmos.*, 122, 1312-1337, doi:10.1002/2016JD025987 & Implementation of the 2015 Primary Ozone NAAQS: Issues Associated with Background Ozone; USEPA, December 2015

1
2 *Figure [15]16: Ozone Attributed to Domain-Wide Sources at Hawthorne as simulated 8-hour daily ozone concentrations along*
3 *the Wasatch Front.*

4
5 *Figure [16]17: Episode average of simulated 8-hour daily ozone concentrations at Hawthorne along the Wasatch Front.*

1 8.3.3.2 Interstate Transport

2 In 2022, as part of its ongoing efforts to model nationwide ozone and transport of precursor
3 emissions, the EPA released results from its updated North American Emission Modeling Platform
4 2016v2. This analysis identified the contributions from multiple upwind states for the modeled year of
5 2023 to ozone concentrations along the NWF NAA (Table [70]71).¹⁵²^[138] The states impacting the NWF
6 NAA include California, Nevada, Arizona, Idaho, Oregon, and Washington. The combined contributions
7 to counties in the NWF from these upwind states result in impacts ranging from 4.0 ppb to 4.91 ppb.
8 Given that the attainment demonstration described in section 8.2 identified the FDV of 72 ppb for Salt
9 Lake, and 71 ppb for Davis counties, the combined upwind contribution from western states accounts
10 for 6 - 7% of the total predicted ozone concentrations in the NWF NAA.

11 Table [70]71: 2023 contributions from upwind states to NWF NAA (ppb) as identified by EPA 2016v2 modeling

	Salt Lake	Davis	Weber
California	2.46	2.25	2.24
Nevada	0.89	0.86	0.58
Arizona	0.22	0.22	0.13
Idaho	0.55	0.37	0.57
Oregon	0.58	0.44	0.41
Washington	0.21	0.16	0.13
Total	4.91	4.30	4.06

13 Section 110(a)(2)(D)(i)(I) of the CAA, known as the “Good Neighbor” provision, requires states
14 with a contribution more than the EPA’s determined significance threshold to develop a SIP revision
15 with provisions to address contributions to downwind states. This threshold was set at 1% of the
16 NAAQS, or 0.7 ppb for the 2015 ozone NAAQS. Of the six states listed in Table [70]71, both California
17 and Nevada were identified by the EPA as contributing to Utah’s ability to attain or maintain the NAAQS
18 in a regulatorily significant way (≥ 0.7 ppb). On April 4, 2022, the EPA proposed a Federal
19 Implementation Plan (FIP) to address disapprovals or deficiencies in twenty-six states’ Good Neighbor
20 SIPs, including those of California and Nevada.¹⁵³^[139] The proposed FIP will require emission reductions
21 from an array of industrial activities including fossil fuel-fired power plants, natural gas pipeline
22 transportation, cement production, glass, iron and steel manufacturing, as well as reductions from
23 chemical, petroleum, and paper manufacturing processes. If the proposed FIP becomes final, emission
24 reductions covered under this rule will begin taking effect the summer of 2023, with full implementation
25 of emission reductions by summer 2026. Given that California and Nevada combine to generate upwind
26 contributions of 3.35 ppb of ozone to the NWF NAA, as these proposed controls take effect, they may
27 further aid in the NWF NAA’s ability to attain the standard by the attainment date.

29
30
31

[138]¹⁵² Federal Implementation Plan Addressing Regional Ozone Transport for the 2015 Ozone National Ambient Air Quality Standard, 87 Fed. Reg. 20,036 (April 6, 2022).

[139]¹⁵³ *Id.*

1 8.3.3.3 International Transport

2 The transport of ozone and its precursor emissions from international sources will be discussed
3 in depth in section 9 of this SIP revision. However, international contributions to ozone along the
4 Wasatch Front, much like interstate contributions described in section 8.3.3.2, plays an important role in
5 the area's observed ozone concentrations and the NWF NAA's ability to meet ozone health-based
6 standards. Thus, it is important to include a discussion of international contributions in a WOE analysis.

7 In short, emissions from international sources have long been shown to impact ozone
8 concentrations throughout the Intermountain West.¹⁵⁴^[140] These studies generally identified
9 international contributions in the range of 3 – 4 ppb, predominantly observed as contributing to USB
10 ozone conditions. International contributions tend to be relatively consistent throughout the spring and
11 summer seasons. The range of international contributions reported in these studies are similar in scale
12 to those seen from upwind states impacting the NWF NAA as described in section 8.3.3.2 and shown in
13 Table [70]⁷¹.

14 To examine international contributions to the NWF NAA, the UDAQ conducted source
15 apportionment modeling (see section 9.2 for details), in which international contributions were tagged.
16 The results of this exercise (Figure [17]¹⁸^[18] & Figure [18]¹⁹) identified a contribution of 6.2% of ozone
17 along the Wasatch Front attributable to international transport on non-exceedance days, with a similar
18 but slightly higher contribution identified during exceedance days of 6.7%. While the model
19 underestimates absolute ozone concentrations when compared to monitored values, and thus absolute
20 apportioned contributions should be considered with that limitation in mind, the reported
21 concentrations of international contributions range from 3.74 ppb over the episode and average, up to
22 4.5 ppb on the top 10 modeled exceedance days. This range is well in line with those reported in the
23 literature and is highly similar in scale when compared to inter-state transport contributions.

[140]¹⁵⁴ Langford, A.O., Alvarez, R.J., Brioude, J., Fine, R., Gustin, M.S., Lin, M.Y., Marchbanks, R.D., Pierce, R.B., Sandberg, S.P., Senff, C.J., Weickmann, A.M., Williams, E.J., 2017. Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southern U.S. *J. Geophysical Res. Atmos.*, 122, 1312-1337, doi:10.1002/2016JD025987 & Jaffe, D.A., O.R. Cooper, A.M. Fiore, B.H. Henderson, G.S. Tonnesen, A.G. Russell, D.K. Henze, A.O. Langford, M. Lin, T. Moore, 2018. Scientific assessment of background ozone over the U.S.: Implications for air quality management. *Elem. Sci. Anth.*, 6: 56. DOI: <https://doi.org/10.1525/elementa.309>.

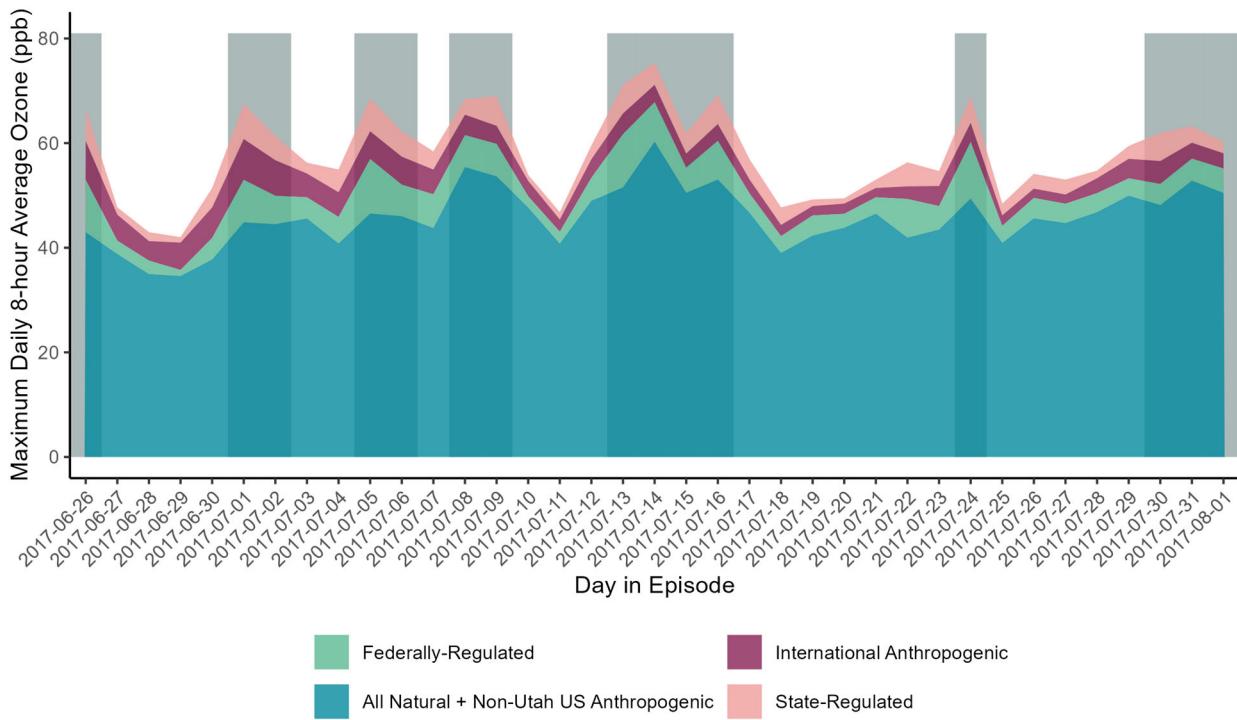


Figure [17]18: Ozone Attributed to Domain-Wide Sources

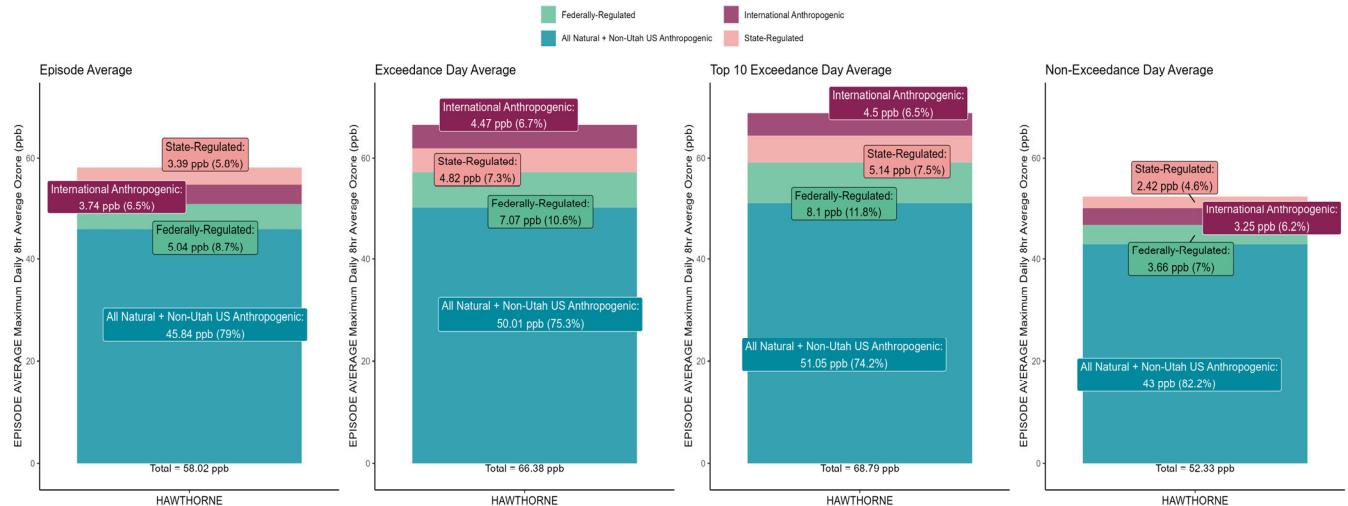


Figure [18]19: Domain-Wide OSAT exceedance vs. non-exceedance days

1 8.3.3.4 Federal vs. State Regulatory Authority

2 As noted in Utah's comments^[144] submitted to EPA on EPA's proposed FIP for interstate
3 transport,^[156] "A significant portion of states' total contribution to downwind areas include emissions
4 that states have limited regulatory authority and, in some cases, no regulatory authority at all, including
5 emissions that are federally regulated." These federally regulated emission sources include the mobile
6 sector, an area in which the state has significantly limited authority to regulate due to CAA section 209's
7 preemption. This is particularly relevant for anthropogenic NO_x emissions, which are dominated by the
8 mobile sector. For the NWF NAA, the emissions from federally regulated sources account for 55.96 tpd
9 (64%) of the total NAA NO_x inventory, and 29.8 tpd (33%) of the VOC inventory (section 3).

10 The discrepancy between regulatory authority can be further seen in Figures 15 – 18, where
11 federally regulated sources account for 59.7% of the ozone attributable to anthropogenic emissions,
12 while emissions under state authority account for the remaining 40.3% of ozone formation. As the state
13 of Utah strives to attain the NAAQS, it is doing so with limited authority to reduce a substantial portion
14 of the emissions contributing to the formation of ozone within the NAA.

15 8.3.4 Trends in Emissions

16 Trends in emission reductions along the Wasatch Front are presented in Table [71]^[72], providing
17 further evidence that the area is progressing towards attaining the standard by the attainment date. As
18 described in detail in section 3 and section 7 of this SIP revision, the NWF NAA has experienced
19 substantial emission reductions of both anthropogenic VOCs and NO_x during the corresponding years of
20 this implementation timeframe—2017 to 2023. During this time, NO_x emissions decreased by 21.3 tpd
21 and VOC emissions decreased by 3.7 tpd in large part due to improvements in the on-road mobile sector
22 and as a result of past SIP efforts.

23
24 Table [71]^[72]: NO_x and VOC reductions resulting from PM_{2.5} SIPs.

State Implementation Plan	Years	NO _x Reduction (tpd)	VOC Reductions (tpd)
*Salt Lake City Moderate PM_{2.5} SIP (2014) ^[157] [143]	2010 - 2015	24.86	27.57
*Salt Lake City Serious PM_{2.5} SIP (2019) ^[158] [144]	2016 - 2020	15.75	8.27
Total		40.61	35.84
* Includes portions of Box Elder County which is not included in NWF ozone NAA			

25
26 As shown in Table [71]^[72], past SIP efforts have resulted in significant reductions of NO_x and VOC
27 emissions along the Wasatch Front. Additionally, as described in detail in section 7.3 and section 7.4, the
28 areas have experienced significant decreases in both precursor pollutants as a result of improvements to
29 the mobile on-road sector associated with lower emissions from Tier 3 fuels and engines. Beyond the

[141]^[155] Docket ID No. EPA-HQ-OAR-2021-0668, Federal Implementation Plan Addressing Regional Ozone Transport for the 2015 Primary Ozone National Ambient Air Quality Standard. Comments Submitted by Utah Department of Environmental Quality (UDAQ). DAQP-055-22. June 21, 2022

[142]^[156] 87 Fed. Reg. 20,0036.

[143]^[157] Utah State Implementation Plan Section IX. Part A.21; Control Measures for Area and Point Sources, Fine Particulate Matter, PM_{2.5} SIP for the Salt Lake City, UT NAA

[144]^[158] Utah State Implementation Plan Section XI. Part A.31; Control Measures for Area and Point Sources, Fine Particulate Matter, Serious Area PM_{2.5} SIP for the Salt Lake City, UT NAA.

1 inventoried reductions, these reductions likely underestimate the full extent of emission reductions in
2 this sector since they fail to capture Utah's high adoption rate of zero emission vehicles (ZEV),
3 predominantly in the light duty sector. The growth of ZEV and electric-hybrid vehicles has grown 940.3%
4 and 101.6% respectively from 2015 – 2021 in the state of Utah.¹⁵⁹^[145] While the total proportion of ZEV
5 and electric-hybrid vehicles in Utah's fleet was still relatively low, at ~2.4% in 2021¹⁶⁰^[146], given the
6 growth rate of electric vehicle (EV) adoption in the state, and the fact that Utah is ranked fifth in the
7 nation for access to EV charging infrastructure per capita,¹⁶¹^[147] the percentage of Utah's on-road fleet is
8 likely to continue to shift towards ZEV and low emission vehicles which will further advance emission
9 reductions in this sector.

10 In addition to the potential underestimation in the electrification of the on-road mobile sector,
11 further market penetration of Tier 3 fuels is expected to continue. In 1970, the EPA set the first light-
12 duty vehicle emission standards. These standards have been updated over time with generations of the
13 standard termed Tier 1, Tier 2, and most recently, Tier 3. The Tier 2 and Tier 3 standards also included
14 sulfur standards for gasoline to help ensure that vehicle emissions control operates optimally. By 2025,
15 NO_x emission standards for light-duty vehicles will represent a 98% improvement from 1975 levels, with
16 sizable improvements for VOCs.

17 The UDAQ anticipates that the transition from Tier 2 and older vehicles to Tier 3 vehicles will
18 yield dramatic reductions in ozone precursor emissions. While MOVES modeling attempts to capture
19 these emissions reductions, and thus should be represented to some degree in emissions inventories
20 used for this SIP revision, it is important to note that Utah has taken significant additional steps to
21 ensure that the benefit of the Tier 3 vehicle and fuel standards is fully realized throughout the NWF NAA
22 and thus some emission reductions may be underestimated in this modeling demonstration.

23 Unlike many other metropolitan areas throughout the U.S., the NWF is served by the relatively
24 small number of refineries. Importantly, all but one of these refineries (Sinclair) are considered to be
25 "small volume" under the Tier 3 regulations¹⁶²^[148] – i.e., they produce less than 75,000 barrels per day.
26 Because of this, and due to the older age of facilities in the NWF, it may be more cost-effective for
27 operators to comply with Tier 3 regulations by upgrading their larger, or newer, refineries elsewhere
28 and using credits generated at these facilities and the averaging, banking, and trading provisions of the
29 Tier 3 rule to comply in Utah. This compliance structure would result in higher-sulfur gasoline being sold
30 throughout the NWF NAA, which would erode the benefits of Tier 3 fuels.

31 Although states are restricted from directly establishing new fuel requirements by the Energy
32 Policy Act of 2005, the State of Utah has used a combination of state-led pressure, public awareness
33 initiatives, and incentives in the form of tax credits, to encourage refineries to produce Tier 3 fuel
34 instead of using credits to comply, giving UDAQ greater confidence that the full benefits of the Tier 3
35 fuels will be realized locally. This is especially important in the early years of the Tier 3 program when
36 most of the emissions reduction benefits stem from using Tier 3 fuels in Tier 2 and older vehicles. In
37 particular, the WFRC found that the use of Tier 3 fuel in existing light-duty vehicles results in a NO_x
38 reduction of 14.5% and in a VOC reduction of 3.9% as compared with the same vehicles using Tier 2 fuel

[145]¹⁵⁹ Adoption of Electric and Alternative Fuel Vehicles. OFFICE OF LEGISLATIVE RESEARCH AND GENERAL COUNSEL; May 18, 2021: <https://le.utah.gov/interim/2021/pdf/00002047.pdf>

[146]¹⁶⁰ Adoption of Electric and Alternative Fuel Vehicles. OFFICE OF LEGISLATIVE RESEARCH AND GENERAL COUNSEL; May 18, 2021: <https://le.utah.gov/interim/2021/pdf/00002047.pdf>

[147]¹⁶¹ https://www.governing.com/next/new-data-shows-states-ith-highest-and-lowest-number-of-ev-charging-stations?utm_campaign=Newsletter%20-%20GOV%20-%20Daily&utm_medium=email&_hs_mi=235987835&_hsenc=p2ANqtz-VWjg_LxXqDi4qNgUMKfc7NQ8047DG-58ltMXtUweN0QB986ZcszciRfLxBQmqBB1mjcfUdxlrVMrh7tWVVucfX1yw&utm_content=235987835&utm_source=hs_email

[148]¹⁶² 81 FR 23641: Amendments Related to: Tier 3 Motor Vehicle Emission and Fuel Standards

1 (30 ppm sulfur).¹⁶³^[149] These dramatic benefits begin to accrue almost immediately after the first few
2 refueling cycles once the lower-sulfur fuel is available, making the State's efforts to bring these cleaner
3 burning fuels to the NWF NAA critical for reducing ozone precursor emissions and ultimately
4 demonstrating attainment of the NAAQS.

5 There are seven refineries that provide the majority of the fuel consumed within the NWF NAA.
6 Five of those refineries are located in the NWF NAA, while two additional facilities – the Sinclair
7 refineries in Sinclair and Casper, WY – are connected to the NWF via a product pipeline. Utah has
8 received public commitments from all but one of these refineries that the fuel provided along the
9 Wasatch Front meets the Tier 3 10-ppm sulfur average requirements. The last remaining refinery is
10 expected to make the full transition to Tier 3 fuels by 2024.¹⁶⁴^[150] As the last of Utah's refineries makes
11 the transition to refining and distributing the cleaner burning Tier 3 fuels, additional potentially
12 underestimated reductions in estimated on-road mobile emissions are possible.

13 In addition to potential underestimations of on-road emission reductions, the state of Utah has
14 taken steps to reduce emissions through improving the effectiveness of existing administrative rules. On
15 February 1, 2023, the Utah Air Quality Board adopted amendments to Utah Administrative Rule R307-
16 328; Gasoline Transfer and Storage. These amendments resulted in the addition of clarifying language to
17 the rule which requires all gasoline service stations to install pressure relief valves to underground
18 storage tanks. While the requirement for pressure relief valves was preexisting in R307-328, the
19 language did not adequately explain the requirements. The UDAQ had identified 266 underground
20 storage tanks located in the NWF NAA that either did not have, or could not be confirmed to have, the
21 required pressure relief valve. The resulting emission reductions from these amendments are not
22 represented in the inventory since the inventory assumed compliance with this requirement, however
23 these amendments will result in additional reductions of VOC emissions within the NWF NAA.

24 8.3.5 Unaccounted Controls and Emission Reductions

25 As described in section 7, emissions reductions that are creditable towards RFP, and thus
26 included in a subsequent attainment demonstration, emission reductions have strictly prescriptive
27 requirements attached. While the attainment demonstration in this SIP revision utilized inventories that
28 attempt to quantify emission reductions associated with past SIP work and improvements to the on-
29 road sector, the inventory does not account for emission reductions associated with non-RFP creditable
30 reductions. However, the state of Utah has multiple and extensive incentive and non-creditable
31 emission reduction programs that result in substantial emission reductions. As a result, the attainment
32 demonstration outlined in Section 8.2 does not fully account for ongoing emission reduction in, and
33 around, the NWF NAA. This section highlights these programs and, where possible, reports emission
34 reductions associated with these programs. Some of these programs include regions beyond the NWF
35 NAA, however being the most densely populated region in the State, a substantial portion of the
36 emission reductions highlighted in this section are targeted to areas within the NAA boundary.

37 38 8.3.5.1 Utah Clean Diesel Program (UCDP) and Diesel Emission Reduction Act (DERA)

39 Utah's Clean Diesel Program provides incentives to fleet owners to retire older vehicles and
40 replace them with newer vehicles that meet more stringent emission standards. The program began in

[149]¹⁶³ "Improved air quality through the use of Tier 3 fuels in Utah", Utah Clean Air Caucus, June 14, 2016

[150]¹⁶⁴ "Four Utah refineries now produce cleaner Tier 3 fuels, and the fifth says it will soon." Salt Lake Tribune. January 22, 2023:
<https://www.sltrib.com/renewable-energy/2023/01/22/four-utah-refineries-now-produce/>

1 2008 and will continue beyond this SIP revision and includes incentives available under the Diesel
2 Emission Reduction Act (DERA)¹⁶⁵^[151] and the National Clean Diesel (NCD) program. Table [72]⁷³
3 indicates the annual targeted number of vehicles included in the program and their estimated annual
4 and lifetime emission reductions for both NO_x and VOCs for the years associated with this SIP revision.
5

6 8.3.5.2 Volkswagen Settlement Funds

7 In 2016, Volkswagen (VW) entered into a settlement¹⁶⁶^[152] as a result of a lawsuit filed against
8 the company for defeating emission testing programs and engine certifications for its light-duty diesel
9 vehicles. The state of Utah was the beneficiary of this settlement and received \$35,177,506. The Utah
10 Department of Environmental Quality was designated as the lead agency to administer this funding,
11 which has been used to replace older class 4 – 8 freight trucks, school buses, shuttle and transit buses,
12 fund electrical vehicle supply equipment, and assist the Diesel Emissions Reduction Act (DERA) program
13 described in section 8.2.6.1. The results of this program are highlighted in Table [72]⁷³.

14 8.3.5.3 Vehicle Repair and Replacement Assistance Program (VRRAP)

15 In 2018 the EPA awarded the state of Utah with Targeted Air Shed Grant funding. Targeted Air
16 Shed Grants provide funds to reduce air pollution in the nation's NAAs with the highest levels of ozone
17 and PM_{2.5}. UDAQ application was for the development of a Vehicle Repair and Replacement Assistance
18 Program (VRRAP) for the Salt Lake PM_{2.5} NAA.

19 Through the VRRAP, low-income individuals with a vehicle that fails an emissions inspection are
20 offered funding assistance to either repair the vehicle or replace it with a newer, cleaner vehicle.
21 Qualifications for financial assistance are based on a matrix that considers the vehicle owner's
22 household income as a percent of the national income poverty level, the value of the repairs being done
23 on the vehicle, and the vehicle's mechanical life expectancy. The program is set up to augment and
24 improve the overall effectiveness of counties' I/M programs.

25 Since starting in 2020 the VRRAP has repaired 163 and replaced 48 vehicles. UDAQ expects
26 these activities to reduce emissions annually by 1.26 tons of Nonmethane Organic Gas (NMOG) and NO_x
27 and reduce lifetime emissions of NMOG and NO_x by 11.17 tons (Table [72]⁷³).

[151]¹⁶⁵ 42 U.S.C. §§ 16131 through 16137.

[152]¹⁶⁶ VOLKSWAGEN "CLEAN DIESEL" MARKETING, SALES PRACTICES, AND PRODUCTS LIABILITY LITIGATION. Case Number: MDL No. 2672 CRB (JSC)

1 Table [72]⁷³: Emission reductions associated with incentive programs in and around the NWF NAA. * VOC emission reductions
 2 not available. ** Combined NO_x and NMOC emission reductions

Year	Vehicles Replaced	NO _x Annual Reduction (tpy)	NO _x Lifetime Reduction (tpy)	VOC Annual Reduction (tpy)	VOC Lifetime Reduction (tpy)	Program
2017	95	35.77	144.19	8.68	12.77	DERA / NCD
2018	87	9.66	176.40	0.89	16.91	DERA / NCD
2019	60	20.91	62.73	1.04	3.12	DERA / NCD
2020	44	4.75	14.26	0.55	1.65	DERA / NCD
2021	59	7.2	26.34	0.66	2	DERA / NCD
2019 - Ongoing	78	23.49	10.34	*	*	VW Settlement
2020 - Ongoing	48	11.17**	1.26**	**	**	VRRAP
2022	13	1.54	4.62			NCD
Total	484	103.32	438.88	11.82	36.45	

3

4 8.3.5.4 Diesel I/M Programs

5 In 2018 the Utah State Legislature passed H.B. 101, which established a pilot program to require
 6 diesel vehicle emissions inspections in Utah County. This program was made permanent in 2021 when
 7 the Utah State Legislature passed S.B. 146. While diesel I/M programs have not historically been
 8 awarded SIP emissions reduction credit, UDAQ nevertheless anticipates additional NO_x and VOC
 9 emissions reductions from this program. Currently, all counties that are required to have an emission
 10 inspection program are required to have a diesel emissions program for vehicles model year 2007 or
 11 newer with a gross vehicle weight of 14,000 pounds or less (see 41-6a-1642(7)). Salt Lake and Davis
 12 Counties also require all diesel vehicles to go have an emission inspection.

13

14 8.3.5.5 Lawn & Garden Equipment Exchange Program

15 Beginning in 2015, as part of the Utah Clean Air Retrofit, Replacement, and Off-Road Technology
 16 (CARROT) program,¹⁶⁷^[153] the UDAQ has administered a lawn and garden exchange program aimed at
 17 replacing gas powered lawn and garden equipment with zero emission alternatives. This equipment
 18 includes lawn mowers and string trimmers but is expected to be expanded in the coming years to
 19 include a wider array of 2-stroke lawn and garden equipment. Since 2017, this program has replaced an
 20 estimated 6,638 pieces of summertime operated lawn and garden equipment resulting in an estimated
 21 reduction of 0.13 tpy of NO_x and 2.26 tpy of VOCs.

22

[153]¹⁶⁷ Utah Code Ann. §§ 19-2-201 through 19-2-204.

1 8.3.5.6 UCAIR Summer Education Program

2 The Utah Clean Air Partnership (UCAIR) is a statewide non-profit entity created to bring together
3 individuals, business, and communities to help improve Utah's air. In 2022, UCAIR received a grant from
4 the Utah Department of Environmental Quality to conduct an outreach and education campaign aimed
5 at educating Utah's population about summertime ozone pollution. The campaign ran from July 5
6 through September 11, 2022. During this time the campaign measured over 45 million unique
7 impressions through a combination of television (2.9 million), outdoor (27.68 million) and online (14.45
8 million) outlets. Post-campaign research identified that 92% of residents were concerned with the air
9 quality where they live during summer ozone season, with 99% of respondents familiar with personal
10 actions they can take to improve air quality.

11 8.3.5.7 UCAIR Personal Fuel Can Exchange Program

12 In addition to the education campaign discussed in section 8.3.5.6, UCAIR operates a Personal
13 Fuel Canister (PFC) exchange program, in which UCAIR collects and recycles old PFCs and replaces them
14 with EPA compliant canisters, which reduces VOC emissions associated with the evaporative loss of
15 gasoline. The program began targeting PFCs for replacement in 2019, and since that time has
16 successfully upgraded over 5,000 PFCs in Utah's NAAs.

17 8.3.5.8 UTA Free Fare Days

18 In 2019, Utah enacted H.B. 353: Reductions of Single Occupancy Vehicle Trip Pilot
19 Program.¹⁶⁸^[154] This bill designated the UDAQ as the lead agency in administering a program to make all
20 public transit free on days associated with poor air quality in an attempt to reduce emissions associated
21 with vehicle emissions. While much of this program was aimed at reducing emissions during Utah's
22 wintertime PM_{2.5} season, the program has been enacted during two separate periods of high
23 summertime ozone. These "free fare days" were August 12 - 13 of 2021, and September 1 - 2 of 2022.

24 8.3.5.9 Surge Teleworking

25 During the 2021 legislative session, Utah adopted S.B. 15: Workforce Solutions for Air Quality.
26 This bill encourages eligible State employees to telecommute on mandatory action days for air quality
27 and on other special circumstances to help decrease on-road emissions. This law covers an estimated
28 10,185 eligible state employees and contributes to reductions of NO_x and VOC emissions on ozone
29 exceedance days throughout the NAA.

30 8.3.5.10 Emission Reductions Beyond the NAA Boundary

31 On July 6, 2022, the Utah Air Quality Board adopted SIP revisions including Utah's Second
32 Implementation Period for Regional Haze¹⁶⁹^[155] and associated emission limits¹⁷⁰^[156]. The emission
33 reductions associated with these actions are broad and include the following measures: (1) requiring
34 flue gas recovery on boilers at US Magnesium by summer of 2028; (2) mandating a shutdown of units 1
35 and 2 at the Intermountain Generation Station by December of 2027; (3) imposing new plantwide NO_x
36 emission limits for the coal-fired Hunter and Huntington power plants that phase in between July of
37 2022 and January of 2028; and (4) making many existing permitted limits across the state federally
38 enforceable. While much of the emission reductions highlighted here are beyond the temporal scope of

[154]¹⁶⁸ *Id.* § 19-2a-104, repealed pursuant to § 63I-1-219, eff. July 1, 2022.

[155]¹⁶⁹ Utah State Implementation Plan. Section XX.A, Regional Haze

[156]¹⁷⁰ Utah State Implementation Plan, Emission Limits and Operating Practices. Section IX, Part H.21 and Part H.23

1 this SIP revision, occur outside of the NWF NAA, or make permanent emission reductions that have
2 already occurred, they serve to further demonstrate efforts by the state of Utah to reduce ozone
3 forming precursor emissions.

4

5 8.3.5.11 Science for Solutions Applied Research Grants

6 In 2018, UDAQ received an ongoing annual \$500,000 appropriation from the Utah State
7 Legislature specifically intended to fund applied air quality research projects. In response, the UDAQ
8 established the competitive Science for Solutions research grant program. Over the last five years,
9 successful grant applicants have submitted proposals targeting UDAQ's goals and priorities. In recent
10 years, UDAQ has placed a high emphasis on improving the understanding of summertime ozone
11 pollution throughout the NWF NAA.

12 An abbreviated list of applied research projects funded by the UDAQ's Science for Solutions
13 research grant are listed below. These projects focus on summertime ozone in the NWF NAA:

14

- 15 • **The Salt Lake Regional Smoke, Ozone and Aerosol Study (SAMOZA);** University of Washington
- 16 • **Improving Smoke Detection and Quantifying the Wildfire Smoke Impacts on Local Air Quality**
17 **Using Modeling and Machine Learning Techniques;** University of Utah
- 18 • **Improved Vegetation Data for the Biogenic Emission Inventory of Wasatch Front;** Ramboll US
19 Consulting
- 20 • **Impacts of the Great Salt Lake on Summer Ozone Concentrations Along the Wasatch Front;**
21 University of Utah
- 22 • **Development of a WRF-based Urban Canopy Model for the Greater Salt Lake City Area;**
23 Brigham Young University
- 24 • **Quantitative Attribution of Wildfires on Summertime Ozone Concentrations along the Wasatch**
25 **Front;** San Jose State University

26 These projects, along with others, were specifically funded to improve UDAQ's SIP model
27 performance and better inform state policy and rulemaking. Science for Solutions projects have already
28 made a difference in improving UDAQ's model performance. For example, these projects have improved
29 shortwave albedo in the CAMx model to realistically reflect salt-crust and playa surfaces around the
30 Great Salt Lake. UDAQ also learned more about the unique role of halogens in ozone formation in the
31 Salt Lake Valley. Motivated by this information, UDAQ funded the development of an enhanced
32 chemical mechanism (CB6r5h) that includes a broader range of halogen pathways to use in our air
33 quality modeling. These enhancements have led to demonstrable improvements in model performance.

34 Future projects will help UDAQ determine critical factors in summertime ozone formation.
35 Biogenic emissions are a large source of uncertainty in the region. Recent evaluations of BEIS/BELD have
36 shown that isoprene, a key reactive biogenic VOC, is largely underpredicted in regional modeling.
37 Through Science for Solutions, UDAQ is funding a comprehensive project to greatly improve inputs (e.g.,
38 leaf area index, tree species) to biogenic models using local information and high-resolution satellite
39 imagery. In addition, UDAQ is funding projects to better understand wildfire impact on ozone pollution.
40 These projects will not only enhance UDAQ's understanding of wildfire contributions to ozone
41 concentrations throughout the NWF NAA but will also improve the UDAQ's understanding of local
42 contributions.

1 *8.4 Conclusion*

2 Results of any modeled outcome will include some degree of uncertainties. As a result of these
3 uncertainties, it is important to consider additional factors within the range of those uncertainties and
4 consider factors beyond the scope of the analysis. The predicted FDV for ozone concentrations outlined
5 in section 8.2, paired with the additional WOE analysis, results in a strong case that this attainment
6 demonstration adequately demonstrates the NWF NAA attaining the 8-hour ozone NAAQS by the
7 attainment date of August 3, 2024.

8

9

1 Chapter 9 - 179B(a) Prospective Demonstration

2 9.1 Overview

3 Section 179B(a) of the CAA states that a SIP revision shall be approved by the EPA if the state
4 can demonstrate that the implementation plan is “adequate to attain and maintain the relevant national
5 ambient air quality standards... but for emissions emanating from outside of the United States.”¹⁷¹^[457] As
6 noted in the preambles of both the 2008¹⁷²^[458] and 2015¹⁷³^[459] ozone implementation rules, section
7 179B of the CAA does not prohibit non-international border states from submitting a demonstration.
8 However, as noted in EPA guidance,¹⁷⁴^[460] demonstrations from states that do not directly share an
9 international border will require additional technical rigor compared to international border areas.

10 Section 179B of the CAA has two mechanisms to demonstrate that international contributions
11 impact a NAA’s ability to attain or maintain a NAAQS. A state may demonstrate independent of a SIP
12 revision that a NAA would have attained the standard at a past attainment date but for the presence of
13 international emissions, known as a retrospective 179B(b) demonstration, and thus should not be
14 advanced in nonattainment classifications.¹⁷⁵^[461] Conversely, a state may demonstrate as part of a SIP
15 revision that a NAA will attain the standard by a future attainment date, but for the presence of
16 international emissions. This is known as a prospective 179B(a) demonstration.¹⁷⁶^[462]

17 There are also substantial differences in the outcomes of approved prospective and
18 retrospective 179B demonstrations. An approved retrospective 179B(b) acts to prevent a NAA from
19 being further redesignated to a more stringent nonattainment status. A prospective 179B(a) however,
20 acts as additional information used by the EPA in determining if a SIP modeling attainment
21 demonstration adequately demonstrates attainment by the attainment date, but for the presence of
22 international emissions. As a result, a NAA with an approved 179B(a) demonstration that subsequently
23 fails to attain the standard by the attainment date would not be prevented from a further
24 reclassification to a more stringent nonattainment status.

25 On May 28, 2021, the UDAQ submitted to the EPA for consideration a retrospective 179B(b)
26 demonstration for the NWF NAA¹⁷⁷^[463] for the marginal attainment date of August 3, 2021. In the
27 demonstration, UDAQ provided three separate analyses examining international contributions including
28 a synoptic weather analysis, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward
29 dispersion modeling, and photochemical modeling results performed by a third party showing that the
30 area would have attained the standard by the marginal attainment date, but for the presence of
31 international contributions.

32 Upon publication of the Determination of Attainment by the Attainment Date,¹⁷⁸^[464] the EPA
33 found Utah’s demonstration was not approvable and subsequently reclassified the area as a moderate

[457]¹⁷¹ 42 U.S.C. § 7509a(a)(2).

[458]¹⁷² Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan Requirements, 80 Fed. Reg. 12,264 (March 6, 2015).

[459]¹⁷³ Implementation of the 2015 National Ambient Air Quality Standards for Ozone: NAA State Implementation Plan Requirements, 83 Fed. Reg. 62,998 (Dec. 6, 2018). s

[460]¹⁷⁴ Guidance on the Preparation of Clean Air Act Section 179B Demonstrations for NAAs Affected by International Transport of Emissions (Dec. 2020) (179B Demonstrations Guidance).

[461]¹⁷⁵ 42 U.S.C. § 7509a(b)-(d); see also 179B Demonstrations Guidance at 15-18.

[462]¹⁷⁶ 42 U.S.C. § 7509a(a); see also 179B Demonstrations Guidance at 12-15.

[463]¹⁷⁷ Retrospective 179B(b) Demonstration for Utah’s Northern Wasatch Front Ozone NAA. May 28, 2021. DAQP-048-21

[464]¹⁷⁸ 87 Fed. Reg. 60,897.

1 NAA. The EPA cited four primary reasons for its disapproval¹⁷⁹^[465] including: (1) a lack of technical
2 information; (2) a divergence in interpretation of section 179B including the importance of the
3 proportion of local versus international contributions; (3) a failure to demonstrate sufficient
4 implementation of feasible emission reduction measures; and (4) the presence of a nearby NAA that
5 attained the standard despite the presence of international contributions.

6 In this section, the UDAQ will demonstrate attainment under Section 179B(a) prospectively,
7 using an updated and improved photochemical modeling, that the NWF NAA would attain the 2015 8-
8 hour ozone NAAQS by the attainment date of August 3, 2024, but for the presence of international
9 emissions. Further, UDAQ will utilize and expand on the wealth of technical information included in this
10 SIP revision to address each of EPA reasons for denying Utah's previous 179B(b) demonstration.

11 *9.2 Ozone Source Apportionment (OSAT) Modeling*

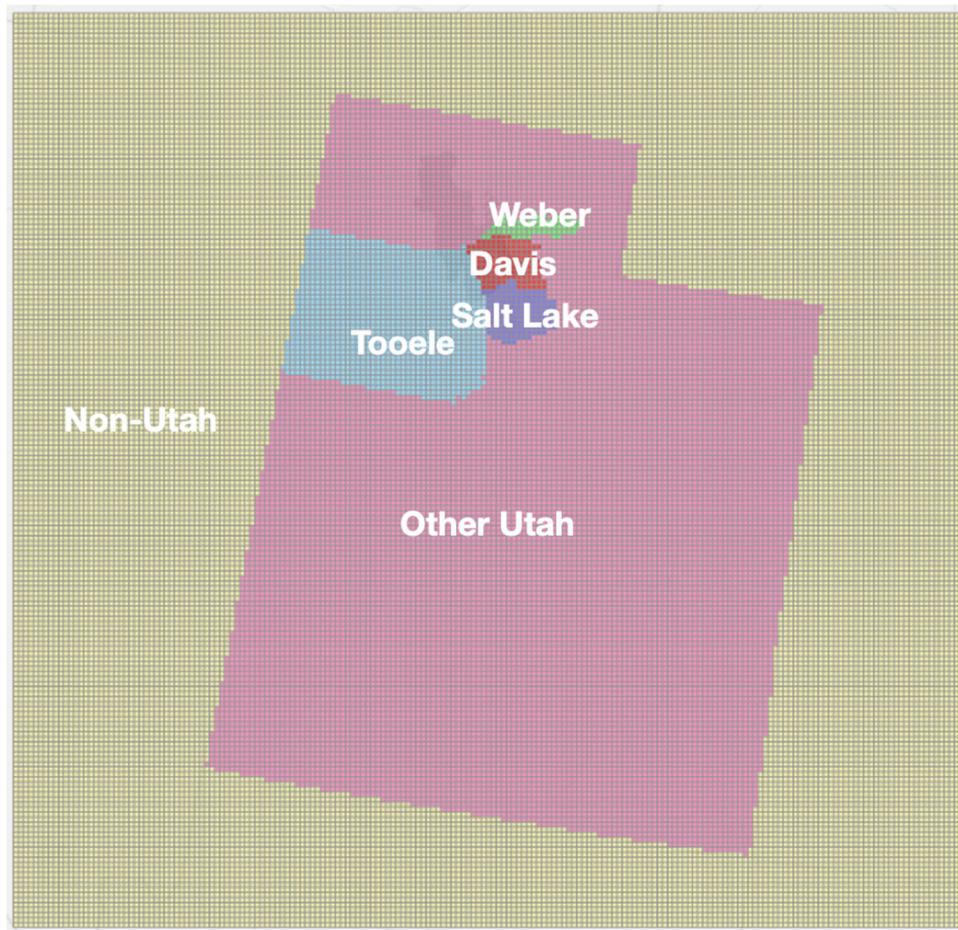
12 To determine the contribution of different source emission groups and regions to measured
13 ozone concentrations at individual monitoring sites within the NAA, OSAT modeling was performed
14 using emissions projected to 2023. Modeling was conducted using the OSAT tool in CAMx v7.1, which
15 was used for this SIP demonstration modeling as described in section 8. At the request of the UDAQ,
16 OSAT was integrated by Ramboll (developer of CAMx) with CB6r5h in a special version of CAMx v7.1.
17 CB6r5h (version 6, revision 5 with halogens) gas-phase chemical mechanism, which includes halogens
18 chemistry and was specifically developed by Ramboll for this SIP application, was used for all modeling
19 simulations. Source apportionment was conducted for the 4 and 1.33 km domains, where the two
20 domains were run in a two-way nested configuration. 2023 emission inputs were used for source
21 apportionment modeling.¹⁸⁰^[466] Meteorological fields, ozone column values and photolysis rates
22 remained unchanged from those used for the attainment demonstration modeling. Six geographic
23 source regions were used in the source apportionment modeling (Figure [19]20), where each county
24 within the NAA was considered as an individual region (Salt Lake, Davis, Weber, Tooele counties).
25 Counties within Utah but outside the NAA were considered as a single region (Other Utah). Regions
26 within the 4 km domain but outside the State of Utah were considered as a single region. 25 different
27 source emission sectors were considered for this OSAT simulation and tracer species that track ozone
28 formation from VOC and NO_x emissions from these source categories were tagged. Source groups that
29 were considered in OSAT included emissions from consumer solvents, on-road heavy duty mobile source
30 emissions, on-road light duty mobile source emissions, lawn and garden equipment emissions, point
31 source emissions, biogenic emissions, in addition to several other source emission sectors. A complete
32 list of these source emission groups is provided in Table 74 [

33 *Six geographic source regions were used in the source apportionment modeling (Figure [19]20), where each county within the*
34 *NAA was considered as an individual region (Salt Lake, Davis, Weber, Tooele counties). Counties within Utah but outside the*
35 *NAA were considered as a single region (Other Utah). Regions within the 4 km domain but outside the State of Utah were*
36 *considered as a single region. 25 different source emission sectors were considered for this OSAT simulation and tracer species*
37 *that track ozone formation from VOC and NO_x emissions from these source categories were tagged. Source groups that were*
38 *considered in OSAT included emissions from consumer solvents, on road heavy duty mobile source emissions, on road light duty*
39 *mobile source emissions, lawn and garden equipment emissions, point source emissions, biogenic emissions, in addition to*
40 *several other source emission sectors. A complete list of these source emission groups is provided in*

[165]¹⁷⁹ Technical Support Document (TSD): Northern Wasatch Front (NWF), Utah: Failure to Attain the 2015 Ozone National Ambient Air Quality Standard by the Attainment Date; Reclassification and Disapproval of International Emission Demonstration, Docket Id. No. EPA-HQ-OAR-2021-0742-0043 (Jan. 2022) (179B NWF TSD).

[166]¹⁸⁰ SMOKE Technical Support Documentation for NWF SIP Attainment Demonstration; <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001603.pdf>

1
2 **Table [73.]**


3 To determine the contribution of international anthropogenic source emissions to local ozone
4 concentrations, initial and boundary conditions (IC and BC) for the 4 km domain were also considered as
5 their own separate source groups. The contribution of international anthropogenic source emissions
6 was determined based on two CAMx simulations for the 12 km domain. These included a base (BASE)
7 simulation and a sensitivity (ZROW) simulation. The BASE case simulation included 2023 emissions from
8 all source emissions while the ZROW simulation included all 2023 emissions with the exception of non-
9 US anthropogenic emissions, leaving only US and global natural emissions. This ZROW simulation was
10 based on 2017 ZROW GEOS-Chem global chemistry model outputs, where all anthropogenic emissions
11 outside the US were set to zero¹⁸¹^[467].

12 Source-apportioned boundary and initial conditions for the 4 km domain were then derived
13 using CAMx “saicbc” tool and model outputs from the base and ZROW 12 km simulations. Using IC and
14 BC extracted from model outputs from the base and ZROW 12 km simulations, the tool was used to
15 generate two source apportionment IC and BC groups for the 4 km domain, where one group represents
16 international anthropogenic emissions, and one represents global natural and US emissions within the
17 12 km CAMx domain that are transported into the 4 km domain from the lateral boundaries.

18

[167]¹⁸¹ https://views.cira.colostate.edu/docs/IWDW/Modeling/WRAP/2017/Ramboll_WESTAR_GEOS-Chem_Report_8Apr_2021.pdf

1
2 *Figure [19]20: Map of source regions used in 2023 OSAT modeling for the 4 and 1.33 km domains. Each color represents a*
3 *different source region.*

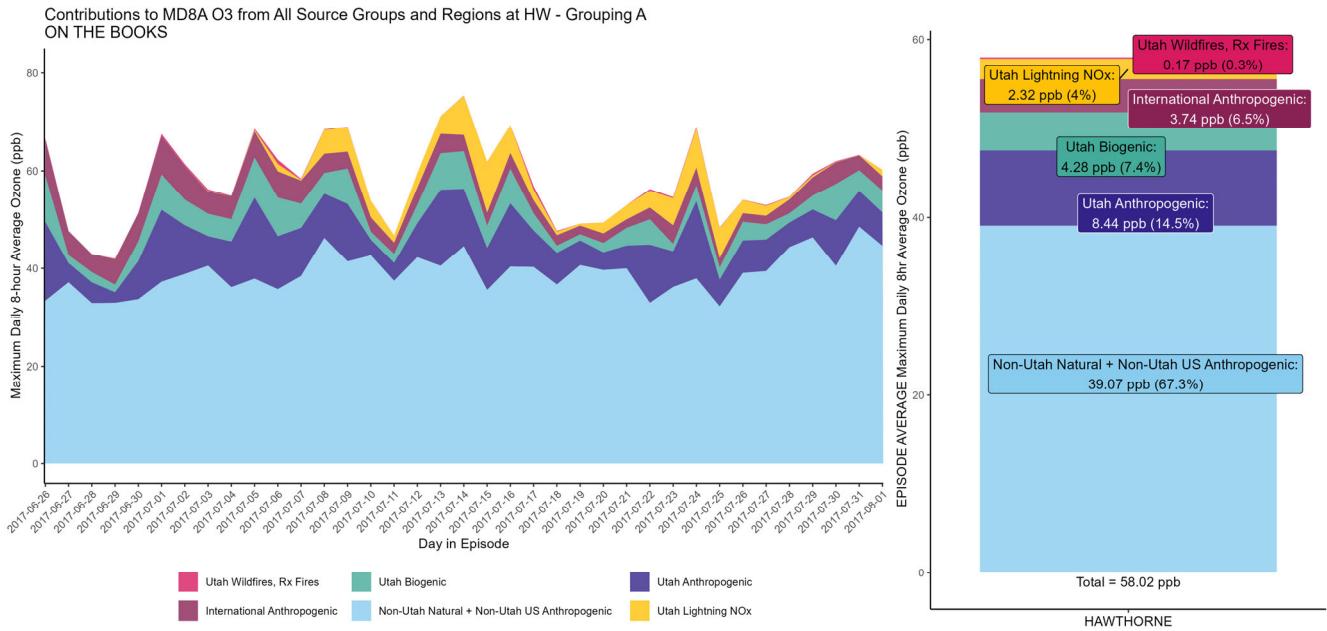
4
5 *Table [73]74: Emission source categories considered in 2023 OSAT modeling. *Only VOCs and NO_x tracer species from US*
6 *Magnesium are tagged.*

Source Group ID	Source Group	Description
1	Solvents: Consumer Products	All personal care and household cleaning products
2	Solvents: Other	Any non-personal care or household cleaning product solvents: Surface coatings, dry cleaning, asphalt paving, degreasing, etc.
3	Non-road: Lawn & Garden	All lawn & garden equipment: 2- & 4-stroke gasoline-powered mowers, trimmers, leaf blowers etc.

4	Non-road: Other	Any non-lawn & garden non-road equipment: construction equipment, aircraft ground support equipment
5, 7	On-road: Light Duty	Passenger vehicles
6, 8	On-road: Heavy Duty	Commercial trucks, haul trucks, buses, motor homes
9	Rail	
10	Biogenics	
11	EGUs	
12	Point Oil & Gas	
13	Nonpoint Oil & Gas	
14	Point: Other	All other point sources not specifically tagged
15	Point: US Magnesium*	all emissions associated with US Magnesium Rowley Plant (point source ID = 10716)
16	Point: Mine Trucks	Mobile Sources; Off-highway Vehicle Diesel; Construction and Mining Equipment; Off-highway Trucks
17	Wildfires, Prescribed Fires	
18	Agricultural Fires	
19	Lightning NO _x	
20	Airports	
21	ERC Bank	Emissions Reduction Credit bank
22	Fertilizer	
23	Livestock	
24	Nonpoint	
25	Area Fugitive Dust	
International Anthropogenic		Non-US anthropogenic emissions estimated based on 12 km base case and zero-out modeling simulations that use GEOS-Chem global model outputs
Global Natural + Non-Utah US Anthropogenic		Global natural emissions plus any US anthropogenic emissions that are transported into the 4km domain (California anthropogenic, etc.). These were estimated based on 12 km base case and zero-out modeling simulations that use GEOS-Chem global model outputs
Top Boundary Conditions		

1 Source group contributions to MDA8 ozone concentrations at each monitoring station and on
2 each day of the modeling episode were determined using modeled hourly contributions from each
3 source sector and region, where, for each group, contributions under “NO_x-limited” and “VOC-limited”
4 chemical regimes were combined to obtain the net contribution from each group. For each day and
5 monitoring station, hourly contributions were processed to calculate 8-hour average source group
6 contributions at each individual monitoring site, where the contribution values were calculated using
7 model predictions for the grid cell that includes the monitoring station. For each day and monitoring
8 station, 8-hr average contributions were then summed to calculate total 8-hr average ozone
9 concentrations for each source group and region. Maximum daily 8-hr average ozone concentrations
10 and their contributions were then determined based on these total 8-hr values.

11 *9.3 Ozone Source Apportionment Modeling Results*


12 Source apportionment modeling results showed that non-Utah natural and non-Utah US
13 anthropogenic emissions contribute to most of the ozone measured at the Hawthorne monitoring
14 station, which corresponds to the monitor with the highest predicted FDV, accounting for about 67%
15 (39.07 ppb) of its modeled maximum daily 8-hour ozone concentrations on average during the modeling
16 episode (Figure [20]21). Local anthropogenic and biogenic sources had smaller contributions, accounting
17 for nearly 14.5% (8.44 ppb) and 7.4% (4.28 ppb) of ozone at the same location, while international
18 anthropogenic emissions source contribution averaged 6.5% (3.74 ppb). The contributions for
19 background ozone (international anthropogenic emissions, global natural and US anthropogenic
20 emissions) are consistent with contributions reported for the Western US in other modeling
21 studies^{182[468]},^{183[469]},^{184[470]}. Contributions from other sources, such as wildfires, prescribed (Rx) fires,
22 lightning NO_x, were more minor (<= 4% at 2.3 ppb). Figures in this section represent a low bound of 8-
23 hour ozone source apportionment results and are subject to increase in future modeling.
24

[168]182 Denver Metro/North Front Range 2017 Ozone Source Apportionment Modeling. HYPERLINK "<https://views.cira.colostate.edu/wiki/wiki/9132/denver-metronorth-front-range-2017-ozone-source-apportionment-modeling>"<https://views.cira.colostate.edu/wiki/wiki/9132/denver-metronorth-front-range-2017-ozone-source-apportionment-modeling>

[169]183 2017 Denver Metro/North Front Range Moderate Area 8-Hour Ozone SIP. https://raqc.egnyte.com/dl/uJJfKleU67/FinalModerateOzoneSIP_2016-11-29.pdf

[170]184 Scientific assessment of background ozone over the U.S.: Implications for air quality management. <https://online.ucpress.edu/elementa/article/doi/10.1525/elementa.309/112835/Scientific-assessment-of-background-ozone-over-the>

1

2 *Figure 20-21: Source contributions by region and emission sector to 8-hour ozone concentration (ppb) at the Hawthorne*
 3 *monitoring station for each day of the modeling episode (left panel) and on average over all days of the modeling episode (right*
 4 *panel). Results are based on 2023 OSAT model outputs for the 1.33 km modeling domain and spin-up days are excluded.*

5 These source contributions displayed some differences across exceedance, top 10 exceedance
 6 and non-exceedance days (Figure 20-21). Compared to contributions on non-exceedance days, the
 7 contributions from local anthropogenic and biogenic source emissions are greater on exceedance
 8 (modeled MDA8 ozone ≥ 60 ppb) and top 10 exceedance days, on average, consistent with
 9 expectations [Table 21] Figure 22. Ozone exceedance days are characterized by an upper-level high
 10 pressure system that brings warm temperatures, lack of frontal passage, low surface winds and
 11 increased solar radiation; all of which are conducive to the build-up of ozone and its precursors. The
 12 contribution of international anthropogenic emissions to average ozone also increased on exceedance
 13 days compared to non-exceedance days, but the increase was not as significant as that determined for
 14 local anthropogenic and biogenic source emissions. Their contribution estimate increased from 3.25 ppb
 15 (6.2%) on non-exceedance days to 4.47 ppb (6.7%) on exceedance days. A similar increase is also noted
 16 for background natural and US anthropogenic emissions. The upper-level ridge on exceedance days can
 17 increase background concentrations within the ridge, where the complex topography of the region can
 18 enhance vertical transport and recapture of ozone from aloft.^{185[174]}

19

[174]¹⁸⁵ Reddy, P. J., & Pfister, G. (2016). Meteorological factors contributing to the interannual variability of midsummer surface ozone in Colorado, Utah, and other western U.S. states. *Journal Of Geophysical Research-Atmospheres*, 121, 2434-2456. doi:10.1002/2015JD023840.

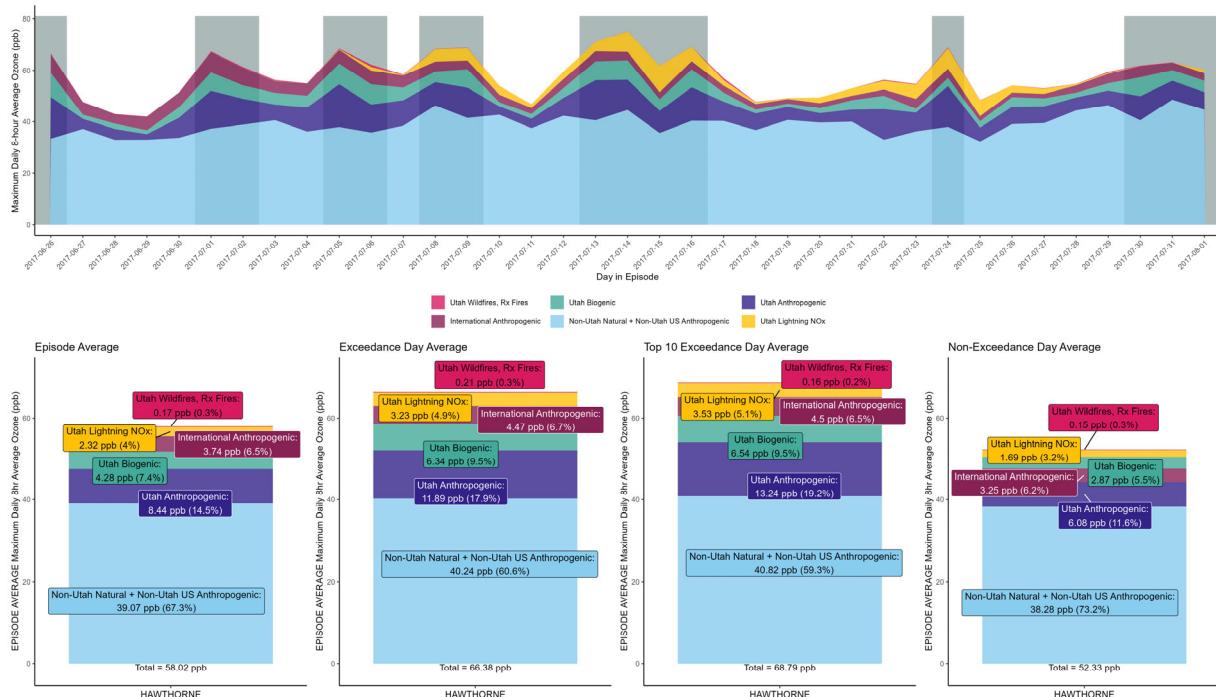


Figure [24]22: Source contributions by region and emission sector ozone concentration (ppb) at the Hawthorne monitoring station for each day of the modeling episode (upper panel) and on average over all days of the modeling episode, exceedance days, top 10 exceedance days and non-exceedance days (lower panel). Results are based on 2023 OSAT model outputs for the 1.33 km modeling domain and spin-up days are excluded.

9.4 Future Design Values after Removal of Contributions from International Anthropogenic Emissions

Overall, the source apportionment modeling results show that background ozone emission sources, contribute to the majority of the ozone measured along the Wasatch Front, accounting for about 66% of modeled ozone concentrations, on average on modeled top 10 exceedance days. This includes 59.3% (40.82 ppb) contribution from natural and US anthropogenic emissions outside Utah and 6.5% (4.5 ppb) contribution from international anthropogenic emission sources. Using the source contribution estimate for international anthropogenic emissions, the projected FDV were adjusted to reflect what the FDV would be but for the presence of international emissions. For each site, FDV were adjusted by subtracting the OSAT source contribution estimate for international anthropogenic emissions (IAE) from the FDV calculated in the attainment demonstration (section 8).

Average source contribution estimate for international anthropogenic emissions on top 10 exceedance days were used for this calculation. For cases in which the model simulation does not include 10 days with MDA8 ozone values ≥ 60 ppb at a site, all days with MDA8 O₃ values ≥ 60 ppb are used in the calculation. Given that the model does well at simulating background ozone (section 8.2[[, Table 69](#)]), subtracting the OSAT source contribution estimate for international anthropogenic emissions from the FDV calculated in the attainment demonstration is considered adequate. This approach is shown in equation [3][6](#). Moreover, since the model tended to be biased low for local ozone production, this approach is more adequate than a scaling technique where the FDV at each monitoring site is scaled by

1 the relative modeled changes in ozone between a 2023 baseline and a 2023 sensitivity modeling scenario
2 that includes emissions from all sources except for international anthropogenic emissions.

3
4 *Equation [3]6*

5 $FDV_{i,adj} = FDV_i - IAE_i$,

6
7 where “i” corresponds to a given monitoring site.

8 Resulting adjusted FDV are shown in Table [74]75. Consistent with the truncation and rounding
9 procedures for the 8-hour ozone NAAQS, the projected DVs are truncated to integers in units of
10 ppb^{186[172]}. All sites demonstrate attainment when the contribution of international anthropogenic
11 emission sources is subtracted from the FDV calculated in the attainment demonstration modeling.

12
13 *Table [74]75: Future design values (FDV), source contribution estimates for international anthropogenic emissions (IAE) and
14 adjusted future design values (FDV adj) at monitoring locations within the northern Wasatch Front non-attainment area.*

Site	Site ID	County	FDV (ppb)	IAE (ppb)	FDV_adj
Bountiful	490110004	Davis	71	4.54	66
Hawthorne	490353006	Salt Lake	72	4.50	67
Herriman	490353013	Salt Lake	72	3.81	68
Erda	490450004	Tooele	70	4.06	65
Harrisville	490571003	Weber	70	3.12	66

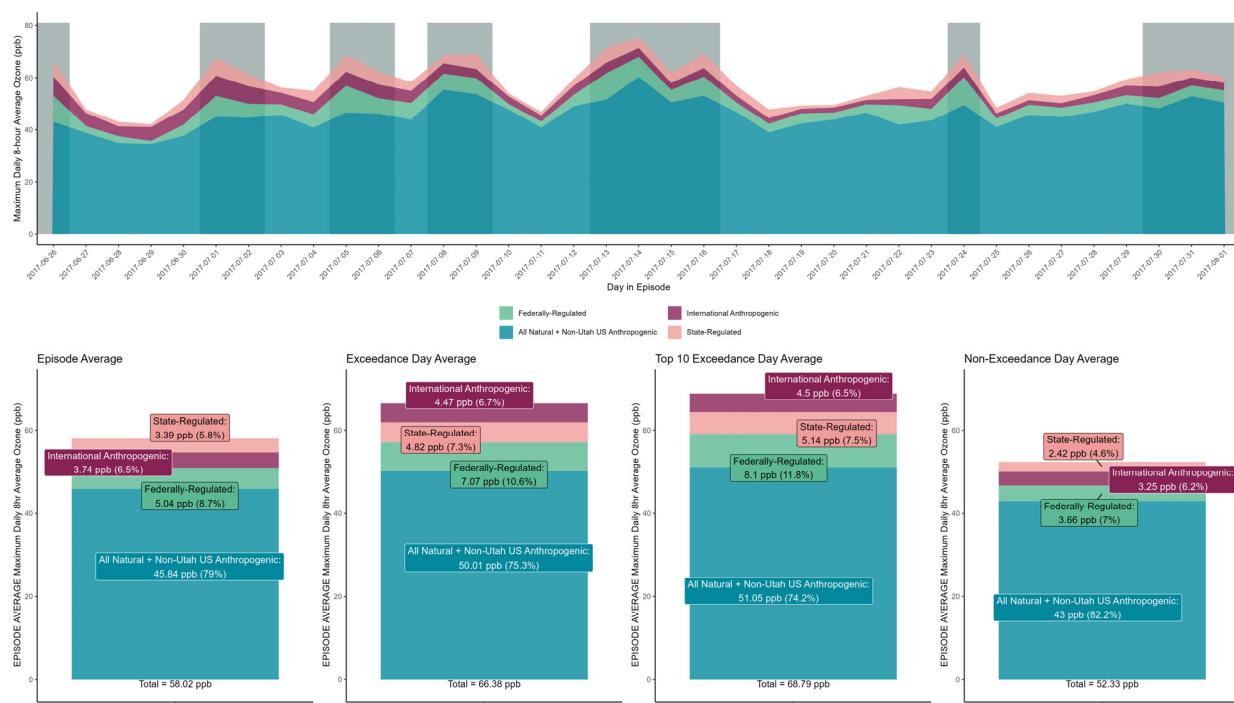
15 *9.5 Conclusion*

16 In its document overviewing the disapproval of Utah’s retrospective 179B(b) demonstration,
17 EPA cited a lack of “sufficient technical information”^{182[173]} to support the modeled conclusions including:
18 a lack of emission data, observations, and meteorological analyses. Further, EPA noted that the model
19 UDAQ relied on for its submission did not demonstrate adequate model performance to creditably
20 determine the influence of international contributions in the NAA’s ability to attain the standard.^{188[174]}

21 The 179B(a) demonstration provided as part of this SIP revision leverages the wealth of
22 information included within the SIP and in the technical supporting documentation. This includes
23 detailed information on the underlying emission inventories (section 3), modeled and observed
24 concentrations (section 8), and meteorological modeling (section 8).^{189[175]} The improved modeling also
25 conforms with EPA’s modeling performance metrics (section 8). Thus, the analysis and conclusions
26 provided in this 179B(a) demonstration and SIP revision fulfill the technical deficiencies EPA noted in
27 Utah’s retrospective submission, and conclusively identifies the role international emissions play in the
28 NWF NAA’s ability to attaining the standard by the attainment date.

29 Beyond the lack of technical information cited by EPA in its disapproval of Utah’s 179B(b)
30 demonstration, EPA noted that the state’s demonstration diverged from EPA’s interpretation of criteria

[172]¹⁸⁶ 40 CFR Part 50, Appendix P to Part 50 – Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone.


[173]¹⁸⁷ 179B NWF TSD at 2.2

[174]¹⁸⁸ *Id.*

[175]¹⁸⁹ Meteorological Modeling for Wasatch Front O3 SIP. Technical Support Documentation and Model Performance Evaluation.

1 for a successful demonstration in several ways.¹⁹⁰^[176] EPA noted that the states did not demonstrate that
2 international transport is significantly different on ozone exceedance days compared to non-exceedance
3 days and that international contributions appear to contribute less than local ozone production.¹⁹¹^[177]

4 As shown in Figure [22]²³[23], the UDAQ has identified that international emissions contribute
5 to ~6% of ozone in NWF NAA on non-exceedance days. That contribution increases to ~7% of the total
6 modeled ozone across all exceedance days. The observed increase during exceedance days relative to
7 non-exceedance days represents a significant additional contribution to the observed ozone
8 concentrations when considering that only 18.5% of the overall ozone contributions are attributed to in-
9 state anthropogenic emissions. Thus, the additional 1% observed international contributions on
10 exceedance days represents excess international contributions relative to modeled non-exceedance day
11 contributions.

12
13 *Figure [22][23]: International contributions at Hawthorne monitor site on exceedance and non-exceedance days.*

14 As further demonstrated by Figure [22][23], international emissions represent a significant
15 contribution to the NAA relative to ozone attributable to anthropogenic emissions within the NAA, and
16 thus emissions which this SIP can regulate. For instance, on the top 10 exceedance day during the
17 modeling episode, anthropogenic emissions represent just 19.3% of modeled ozone, with emissions
18 from sources under federal jurisdiction accounting for 11.8% and emissions under state authority
19 accounting for the remaining 7.5%. However, contributions from international anthropogenic emissions
20 account for 6.5% of the modeled ozone concentrations.

[176]¹⁹⁰ 179B NWF TSD at 2-3.

[177]¹⁹¹ *Id.* at 3.

1 The EPA further notes in its disapproval of Utah's 179B(b) submission that the state failed to
2 adequately demonstrate that all "feasible" emission reduction strategies had been implemented.¹⁹²^[178]
3 As noted in the ozone implementation rules,¹⁹³^[179] emission reduction strategies implemented as part of
4 ozone SIPs are to be reasonably available (i.e., RACT or RACM), and thus feasible controls in the context
5 of ozone reductions strategies should be held to a comparable standard. While section 179B of the CAA
6 makes no specific mention of the requirement for implementation of feasible controls, sections 4 and 5
7 of this SIP revision clearly demonstrate that the state of Utah has implemented an exhaustive list of VOC
8 and NO_x emission reduction strategies throughout the NAA as a result of past SIPs targeting wintertime
9 PM_{2.5}, many of which go beyond what would be considered reasonably available. Beyond the controls
10 implemented to date, the UDAQ has identified additional emission reduction controls and strategies as
11 outlined in Sections 4, 5 and 7 of this SIP revision, some of which have been determined to be "beyond-
12 RACT". These emission reductions are planned to be implemented in the coming years and serve as
13 further evidence that the state has implemented feasible controls, and thus the contributions of
14 international emissions should be considered when determining attainment.

15 Lastly, in its disapproval of Utah's 179B(b) demonstration EPA argued that the presence of a
16 nearby ozone NAA, the Southern Wasatch Front (SWF) (figure 1) which recently attained the standard
17 by the marginal attainment date, is evidence that the NWF NAA can attain the current standard despite
18 the presence of international emissions. However, in the same document, EPA demonstrates that the
19 SWF has an order of magnitude lower anthropogenic NO_x emissions and almost a third of the
20 anthropogenic VOC emissions when compared to the NWF¹⁹⁴^[180]. To this point, the SWF has
21 approximately 1.2 million fewer residents than the NWF and a substantially different industrial sector.
22 While the SWF did attain the 2015 ozone NAAQS by the marginal attainment date of August 3, 2021, it
23 did so by just 1.0 ppb, and has subsequently exceeded this standard. The fact that a bordering NAA, with
24 fewer residents, fewer emissions, and a substantially different industrial make-up, is marginally attaining
25 the standard further demonstrates why it is critical that the presence of international emissions be
26 appropriately acknowledged as regulatorily significant. Unless it is the intent of the EPA to suggest that
27 the NWF NAA must reduce its NO_x and VOC emissions to levels similar to that of the SWF, which is
28 impossible given the lack of reasonably available control options available to the state as demonstrated
29 in sections 4 and 5 of this SIP revision, the state does not see how the attainment status of the SWF is
30 relevant. In fact, comparisons between two substantially different NAAs, both of which are facing the
31 Intermountain West's regionally specific challenges in addressing ozone, only further supports that
32 international emissions are regulatorily significant to the region. Thus, section 179B of the CAA is an
33 appropriate mechanism to provide regulatory flexibility to NAAs within this unique geographic region.

34 As discussed in the introduction of this section, an approved 179B(a) demonstration would not
35 prevent the NWF NAA from being reclassified to a more stringent nonattainment status if the area fails
36 to attain the standard by the attainment date based on ambient monitoring data. Instead, this
37 demonstration serves as further evidence that the modeling attainment demonstration and WOE
38 analysis provided in section 8.3 of this SIP revision adequately demonstrates the NWF NAA is projected
39 to attain the standard by the attainment date, but for the presence of international emissions.
40

[178]¹⁹² *Id.* at 3.

[179]¹⁹³ 83 Fed. Reg. 62,998.

[180]¹⁹⁴ 179B NWF TSD at 14, Tables 2 and 3.4

1 **Chapter 10 - Transportation Conformity and Motor Vehicle Emission
2 Budget**

3 *10.1 Introduction*

4 Motor Vehicle Emission Budgets (MVEB) for NO_x and VOCs were submitted to the EPA in 1997 as
5 part of Utah's maintenance plan for the 1979 1-hour ozone standard. EPA approved these MVEB for
6 transportation conformity purposes when it finalized the approval of that maintenance plan,^{195[184]}
7 further reaffirming this budget in subsequent rulemaking.^{196[182]} As a result, the local MPO Wasatch
8 Front Regional Council (WFRC) has been using these budgets for subsequent transportation conformity
9 determinations within the ozone NAA. Following this same approach, the UDAQ has developed an
10 updated MVEB for the NWF NAA to be used in future transportation conformity determinations in
11 relation to the 2015 NAAQS standard for ozone. As required by Section 176(c) of the CAA, this MVEB is
12 based on the best available data for emissions, population, and travel estimates available during the
13 development of this SIP.

14 *10.2 Transportation Conformity*

15 Transportation conformity is a requirement under CAA Section 176(c).^{197[183]} This requirement
16 ensures that any federally funded or approved highway or transportation activity conforms to the
17 relevant promulgated air quality SIPs, in a way that planned transportation activities do not interfere
18 with a SIPs success in reducing the severity or number of exceedances of a NAAQS. The federal level
19 transportation conformity rules establish the criteria and procedures for determining if a metropolitan
20 transportation plan, TIP, or federally supported highway and transportation projects conform to the
21 SIP.^{198[184]} State level transportation conformity requirements are codified in Utah's SIP Section XII.^{199 [185]}
22 Transportation conformity requirements apply to any designated NAA or maintenance area for a
23 primary NAAQS and must be included in any SIP submitted for these areas.

24 The metropolitan planning responsibilities for the area encompassed by the NWF NAA are
25 covered by a single MPO—Wasatch Front Regional Council (WFRC). WFRC serves as the MPO for Box
26 Elder, Davis, Salt Lake, Tooele, and Weber counties.

27 Upon a finding of adequacy or approval by the EPA, the impacted MPO in the NAA will use these
28 budgets to demonstrate that estimated emissions resulting from the implementation of approved
29 transportation plans and TIPs are less than or equal to the budgets included in this SIP revision.

30 *10.3 – Consultation*

31 The ICT is an air quality workgroup in Utah that makes technical and policy recommendations
32 regarding transportation conformity issues related to the SIP development and transportation planning
33 process. Section XII of the Utah SIP established the ICT workgroup and defines the roles and

[184]¹⁹⁵ 62 Fed. Reg. 38,213.

[182]¹⁹⁶ Approval, Disapproval and Promulgation of Air Quality Implementation Plan; Utah; Maintenance Plan for the 1-Hour Ozone Standard for Salt Lake and Davis Counties, 77 Fed. Reg. 35,873 (June 15, 2012).

[183]¹⁹⁷ 42 U.S.C. § 7506(c).

[184]¹⁹⁸ 40 CFR Part 51; 40 CFR Part 93.

[185]¹⁹⁹ Utah State Implementation Plan; Section XII, Transportation Conformity Consultation. Adopted by the Utah Air Quality Board May 2, 2007

1 responsibilities of the participating agencies. Members of the ICT workgroup collaborated on a regular
2 basis during the development of the ozone SIP. They also meet on a regular basis regarding
3 transportation conformity and air quality issues.

4
5 The ICT workgroup is comprised of management and technical staff members from the affected
6 agencies associated directly with transportation conformity including the following agencies:

7

- 8 • UDAQ
- 9 • Cache MPO
- 10 • Mountainland Association of Governments
- 11 • Wasatch Front Regional Council
- 12 • Utah Department of Transportation (UDOT)
- 13 • Utah Local Public Transit Agencies
- 14 • FHWA
- 15 • Federal Transit Administration (FTA)
- 16 • EPA

17 The regional emissions analysis is the primary component of transportation conformity and is
18 administered by the lead transportation agency located in the EPA designated air quality NAA. The
19 responsible transportation planning organization for the Salt Lake City, UT NAA is the WFRC. During the
20 SIP development process, the WFRC coordinated with the ICT workgroup and developed ozone SIP
21 motor vehicle emissions inventories using the latest planning assumptions and tools for traffic analysis
22 and the EPA-approved Motor Vehicle Emission Simulator (MOVES2014a) emissions model. The WFRC
23 and the ICT worked cooperatively to develop local MOVES2014a modeling data inputs using EPA
24 recommended methods where applicable.

25 *10.4 Motor Vehicle Emission Budgets (MVEB)*

26 MVEBs are defined as the “*portion of the total allowable emissions defined in the submitted or
27 approved control strategy implementation plan revision or maintenance plan for a certain date for the
28 purpose of meeting reasonable further progress milestones or demonstrating attainment or
29 maintenance of the NAAQS, for any criteria pollutant or its precursors, allocated to highway and transit
30 vehicle use and emissions.*”²⁰⁰[¹⁸⁶]

31 Thus, a MVEB refers to the maximum allowable emissions originating from the on-road mobile
32 sector for each applicable regulated pollutant (i.e., NO_x and VOCs) as defined in the SIP and required by
33 the CAA. The MVEB must be used in all future transportation conformity analysis and areas must
34 demonstrate that the estimated emissions from transportation plans, programs, and projects do not
35 exceed the MVEB. MVEBs were developed in collaboration with the MPO WFRC. Details regarding the
36 development of the budget can be found in the accompanying Technical Supporting Document
37 (TSD).²⁰¹[¹⁸⁷]

[¹⁸⁶]²⁰⁰ 40 CFR § 93.101.

[¹⁸⁷]²⁰¹ TECHNICAL SUPPORT DOCUMENT FOR ON-ROAD MOBILE SOURCES: MOTOR VEHICLE EMISSIONS BUDGET DERIVATION FOR THE NORTHERN WASATCH FRONT, UT NONATTAINMENT OZONE AREA: <https://documents.deq.utah.gov/air-quality/planning/DAQ-2023-001700.pdf>

1 For the purpose of this SIP revision, MVEBs for precursor emissions of VOC and NO_x are
2 established for the attainment year of 2023, and are based on the projected on-road mobile inventory
3 for the same year as described in section 3.2.6. This MVEB represents a single NAA-wide MVEB to be
4 used in transportation conformity purposes.

5 Within the NWF NAA, both Tooele and Weber counties are not entirely contained within the
6 NAA boundary. Thus, portions of the counties are located outside of the boundary, while most of the
7 population of each county resides within the boundary. To account for the proportion of on-road mobile
8 emissions attributable to the NAA, and thus to be included in a MVEB, 2020 census data was used to
9 determine the percentage of on-road vehicle activity relative to census tracts located within the NAA,
10 and emissions were revised accordingly. For Salt Lake and Davis counties, which are entirely located
11 within the NAA, no such adjustments were made.

12 10.5 Emission Budgets for the Northern Wasatch Front NAA

13 For the purposes of transportation conformity in the NWF NAA, Table [75]76 includes a MVEB in
14 tpd for daily summertime weekday emissions of both VOCs and NO_x.

15 16 *Table [75]76: NWF Ozone 2023 NAA MVEB*

NWF, UT Ozone 2023 NAA MVEB			
Year	County	NO _x (tpd)	VOC** (tpd)
2023*	Davis (NA)	7.42	2.78
2023*	Salt Lake (NA)	20.98	8.53
2023*	Tooele (NA)	3.49	0.81
2023*	Weber (NA)	5.69	2.06
	Total	37.58	14.18

NA = NAA County Portion

* Gasoline 10 PPM Sulfur

**VOC = VOC does not include Refueling Displacement and Spillage

17 It is important to note that the MVEBs presented in Table [75]76 are somewhat different from
18 the on-road mobile emission inventory presented in Table 8. The emissions established for this MVEB
19 were calculated using MOVES3 to reflect an average summer weekday. The totals presented in the
20 summary emissions inventory in section 3, however, represent a summer average-episode-day. Thus,
21 the temporal averaging used to generate these two different products results in slightly different values.
22

23 10.6 Implementation of MVEB in Transportation Conformity Determinations

24 The MVEB for the NWF NAA, once determined adequate or approved by the EPA, will be used
25 for purposes of transportation conformity determinations of Regional Transportation Plans (RTPs) and
26 TIPs for the respective MPOs and planning areas. Once the included MVEB is in effect, the local MPO
27 must make a new determination of conformity for their respective RTP and TIP within two years of EPA's
28 finding of adequacy or SIP approval.²⁰² [188] Throughout the process of determining conformity with the

[188]²⁰² 40 CFR § 93.104(e).

1 MVEB included in this SIP revision, the impacted MPO shall consult with federal, state, and local air
2 agencies through the normal interagency consultation process established in Section XII of the Utah SIP.

3 Chapter 11 - Contingency Measures

4 11.1 Overview

5 Section 172(c)(9) of the CAA requires SIPs to include provisions for specific emission reduction
6 measures to be undertaken if the area fails to demonstrate RFP requirements or attain the NAAQS by
7 the attainment date. These provisions are known as contingency measures. These contingency
8 measures shall take effect “without further action by the State, or the [EPA] Administrator”, thus no
9 further rulemaking activities by the State or EPA would be needed to implement them if the area fails to
10 attain the standard by the attainment date or if a SIP revision fails to demonstrate RFP.²⁰³^[189]
11 Contingency measures should consist of other available control measures or emission reduction
12 strategies beyond those reasonably required (i.e., RACT or RACM) to expeditiously attain the
13 NAAQS.²⁰⁴^[190]

14 The attainment date for the 2015 8-hour ozone NAAQS moderate SIP for the NWF NAA is August
15 3, 2024. Thus, if triggered, contingency measures must result in additional emission reductions after that
16 date, or upon a disapproval of the RFP plan included in this SIP revision by the EPA. Contingency
17 measures shall provide demonstratable emission reductions of one year’s worth of emission reductions,
18 or approximately 3% of the 2017 base year emission inventory.²⁰⁵^[191] Unlike the RFP requirements of a
19 moderate SIP, emission reductions associated with contingency measures can consist entirely, or in part,
20 of NO_x emission reduction strategies.²⁰⁶^[192]

21 11.2 Contingency Measures

22 11.2.1 NO_x Emission Reductions from Boilers

23 The UDAQ has proposed R307-315; NO_x Emission Controls for Natural Gas-Fired Boilers 2.0-5.0
24 MMBtu, and R307-316; NO_x Emission Controls for Natural Gas-Fired Boilers greater than 5.0 MMBtu,
25 both of which were described in section 5.3, Table 58. These rules were adopted by the Utah Air Quality
26 Board in May of 2023, with an implementation beginning in May of 2024. These rules require new and
27 modified industrial and commercial boilers installed in the NWF NAA to comply with an emission
28 threshold of 9 parts per million by volume (ppmv). The NO_x emission reductions from these combined
29 rules are anticipated to result in a total reduction of 7.3 tpd, or 2,689 tpy once the full emission
30 potential of the rules are realized. While these rules do not require retrofits or replacements of existing
31 equipment, when accounting for the useful life span of this equipment it is anticipated that the full
32 emission potential of these rules will be realized in 10 – 20 years. Thus, it is expected that these two
33 rules combined will result in ~0.36 tpd of emission reductions per year, compounding over time to the

[189]²⁰³ State Implementation Plans; General Preamble for the Implementation of Title I of the Clean Air Act Amendments of 1990, 57 Fed. Reg. 13,498, 13,512 (April 16, 1992).

[190]²⁰⁴ *Id.* 57 Fed. Reg. at 13,543.

[191]²⁰⁵ 83 Fed. Reg. 62,998; 80 Fed. Reg. 12,285.

[192]²⁰⁶ 83 Fed. Reg. 62,998.

1 full 7.3 tpd. Given the implementation timeline of these control strategies, one year of emission
2 reductions (0.36 tpd) should be creditable towards contingency measure requirements.

3 **11.2.2 US Magnesium**

4 As part of this SIP revision, and as overviewed in section 4.15, the UDAQ is requiring US
5 Magnesium to install a steam stripper and thermal oxidizer to reduce VOC emissions from its
6 wastewater and deboronated pond water systems.²⁰⁷^[193] The installation of these controls will reduce
7 0.44 tpd (161.7 tpy) of VOC emissions from the airshed. It is anticipated that these controls will be
8 installed by October of 2024. US Magnesium is located outside of the existing NAA boundary and thus
9 emission reductions are not creditable towards RFP, emission reductions implemented in areas outside
10 of a NAA may count towards contingency measures as long as they improve air quality in the subject
11 NAA.²⁰⁸^[194]

12 **11.2.3 NAA NO_x Emission Reductions**

13 As described in detail in section 7.4, the NWF NAA has experienced significant emission
14 reduction of anthropogenic NO_x. From the baseline year of 2017 to the attainment year for this SIP
15 revision of 2023, NO_x emission decreased from 108.3 tpd down to 87.0 tpd. Thus, the area experienced a
16 21.3 tpd reduction in NO_x emissions, representing a 19.6% decrease. These emission reductions are
17 largely the result of the introduction of more stringent vehicle emission reduction tiers and the
18 introduction of cleaner burning Tier 3 fuels into the NWF NAA. Thus, as the market penetration of Tier 3
19 fuels continues throughout the NAA as the local refineries finish the transition to refining fuels at these
20 standards, and older vehicles are replaced with newer cleaner vehicles, the emission reductions seen in
21 this sector are expected to continue without further action required.

22 **11.3 Contingency Measures Emission Reduction Demonstration**

23 Currently, no rulemaking exists that precludes a state from implementing a contingency
24 measure before they are triggered, but emission reductions credited towards contingency measures
25 may not be accounted for as part of the RFP demonstration. The emission reductions described in
26 sections 11.2.1 and 11.2.2 will be in effect prior to the attainment date but are not counted towards
27 RFP. The emission reductions described section 11.2.3 are already in place and do not count towards
28 RFP or are being used as a control measure for this SIP revision. Table [76]⁷⁷ demonstrates how the
29 area has met the contingency measure requirement of reductions of 3% of baseline emissions.

30
31 *Table [76]⁷⁷: Percent Emission Reductions Based on 2017 Base Year Inventory*

	NO _x Emissions (tpd)	VOC Emissions (tpd)
2017 Baseline Inventory	108.3	93.7
3% Baseline Inventory	3.2	2.8
Emission Reductions for Contingency Measures (Percent of 2017 Inventory)	21.66 (20%)	0.44 (0.47%)
Meets Contingency Measure Requirements?	Yes	--

32

[193]²⁰⁷ Utah State Implementation Plan; Section IX, Part H.32.k

[194]²⁰⁸ See e.g., *Louisiana Env't Action Network v. U.S. E.P.A.*, 382 F.3d 575, 585 (5th Cir. 2004).

1 Chapter 12 - Environmental Justice & Title VI Considerations

2 12.1 Environmental Justice

3 EPA defines Environmental Justice (EJ)
4 as the fair treatment and meaningful
5 involvement of all people regardless of race,
6 color, national origin, or income, with respect
7 to development, implementation, and
8 enforcement of environmental laws,
9 regulations, and policies.²⁰⁹^[195] Fair treatment
10 ensures no group of people are
11 disproportionately burdened by environmental
12 harms or risks, including those resulting from
13 industrial, governmental, and commercial
14 operations, programs, or policies. Meaningful
15 involvement ensures that populations
16 potentially affected by an action have an
17 opportunity to participate in decisions
18 impacting their environment and health.
19 Meaningful involvement also includes the
20 stipulations that the public's contributions can
21 influence a regulatory agency's decision, the
22 concerns of the public will be considered in the
23 decision-making process, and the rule-writers
24 and decision-makers will seek out and facilitate the involvements of these potentially-affected
25 populations. Executive Order (E.O.) 12898: Environmental Justice,²¹⁰^[196] directs federal agencies to
26 incorporate environmental justice initiatives into their missions. E.O. 14008 issued in 2021²¹¹^[197] further
27 reiterated a national focus on EJ. As a result, EPA has encouraged states to consider EJ in their SIP
28 development process as their resulting actions may have impacts on disproportionately affected areas.
29 EPA has also issued guidance on incorporating EJ consideration during the development of regulatory
30 actions.²¹²^[198]

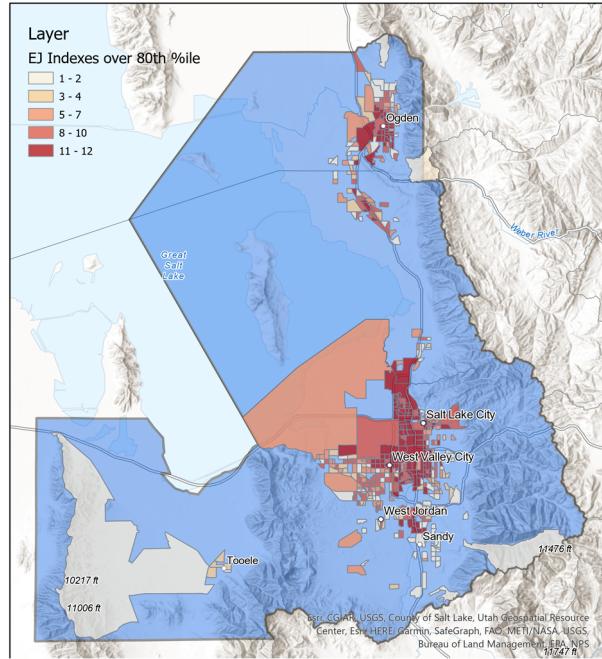


Figure [23]24: EJ Indexes >80th percentile in Each NWF NAA Census Block

31 12.2 Title VI of the Civil Rights Act

32 Title VI of the Civil Rights Act is a federal law that prohibits recipients of federal financial
33 assistance (e.g., states, universities, and local governments) from discriminating based on race, color, or
34 national origin in any program or activity.²¹³^[199] This prohibition against discrimination under Title VI has
35 been a statutory mandate since 1964 and EPA has had Title VI regulations since 1973. Title VI allows

[195][200] <https://www.epa.gov/environmentaljustice>

[196][210] Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, 59 Fed. Reg. 7,629 (Feb. 11, 1994).

[197][211] Tackling the Climate Crisis at Home and Abroad, 86 Fed. Reg. 7,619 (Jan. 27, 2021).

[198][212] Guidance on Considering Environmental Justice During the Development of Regulatory Actions (May 2015), available at <https://www.epa.gov/environmentaljustice/guidance-considering-environmental-justice-during-development-action>.

[199][213] Title VI, 42 U.S.C § 2000d et seq.

1 persons to file administrative complaints with federal departments and agencies alleging discrimination
2 based on race, color, or national origin and EPA has a responsibility to ensure its funds are not being
3 used to subsidize discrimination. Should a complaint be filed, EPA's Office of Civil Rights is responsible
4 for the Agency's administration of Title VI, including investigation of such complaints. In accordance with
5 Title VI, federal agencies shall ensure that all programs and activities receiving federal financial
6 assistance that affect human health or the environment do not discriminate based on race, color, or
7 national origin. The NWF NAA SIP revision falls under this category of programs and has potential
8 impacts on such areas.

9 *12.3 Screening-Level Analysis*

10 Using Utah's Environmental Interactive Map,²¹⁴^[200] UDAQ conducted an analysis of the EJ indices
11 surrounding the NWF NAA. UDAQ reviewed all pollution and sources as well as socioeconomic indicators
12 (a total of 20 indices) as percentiles calculated by comparing data from census blocks within the State of
13 Utah. UDAQ notes that this SIP revision does not have the authority to control the following indexes
14 included in this analysis: lead paint, superfund sites, wastewater discharge, RMP facilities, hazardous
15 waste, or underground storage tanks. Figure [22]²⁴ shows the count of EJ indexes above the 80th
16 percentile in each of the census blocks within the NWF NAA. Table [77]⁷⁸ shows the number of census
17 blocks in the NFW NAA at the 80th percentile and above for each EJ index.

18 *Table [77]⁷⁸: Environmental Justice Indexes Over the 80th Percentile in the NWF NAA*

EJ Index	Number of Census Blocks >80 th Percentile
Superfund Proximity	400
PM_{2.5}	387
Ozone	364
Hazardous Waste Proximity	318
Air Toxics Respiratory Health Index	306
People of Color	294
Diesel PM	291
Air Toxics Cancer Risk	282
Underground Storage Tanks	267
Traffic Proximity	262
RMP Facility Proximity	258
Demographic Index	250
Less than High School Education	244
Lead Paint	236
Limited English Speaking	215
Low Income	181
Wastewater Discharge	153
Unemployment Rate	136
Under Age 5	113
Over Age 64	61

19

[200]²¹⁴ <https://enviro.deq.utah.gov/>

1 12.3.1 EJ Screening Findings

2 Based on Figure [23][24], the areas within the NWF NAA with the highest concentrations of indexes
3 above the 80th percentile include Ogden, Salt Lake City, West Valley City, and West Jordan. There is a
4 total of 498 census blocks within the NWF NAA.

5 Table [77][78] shows a high number of census blocks at the 80th percentile or greater for all EJ indexes,
6 with the most prevalent indexes in the NAA being:

- Superfund Proximity
- PM_{2.5}
- Ozone
- Hazardous Waste Proximity
- Air Toxics Respiratory Health Index
- People of Color
- Diesel PM
- Air Toxics Cancer Risk
- Underground Storage Tanks
- Traffic Proximity

7 12.4 Identified Stakeholders

8 As a result of this EJ analysis, UDAQ has identified the general public and public health
9 departments within the Ogden, Salt Lake City, West Valley City, and West Jordan areas as populations
10 potentially affected by the decisions made in this SIP. UDAQ identified these stakeholders as entities and
11 groups requiring additional facilitation and involvement in the SIP development process.

12 12.5 Stakeholder Outreach, Meaningful Involvement, and Information Distribution

13 UDAQ made it a priority to ensure that the identified stakeholders would have ample and equal
14 opportunity within the division's ability to participate in this SIP process through the measures described
15 in section 12.5.1 to 12.5.5.

16 12.5.1 Public Informational Meetings

17 UDAQ hosted two virtual public meetings on the subject of "Finding Ozone Emissions Reduction
18 Ideas." The first meeting took place on Wednesday, March 23, 2022, from 6 to 7 PM MST, and the
19 second meeting took place on Saturday, May 3, 2022, also from 6 to 7 PM MST. These times were
20 selected to maximize attendance from households with traditional working hours. Handouts for this
21 meeting were issued via an interactive webpage²¹⁵[204] and potential attendees were invited to submit
22 comments through a public Google Form to be addressed at each of the meetings. 67 individuals
23 attended the first meeting. 45 individuals attended the second meeting. Recordings of each of these
24 meetings are publicly available on YouTube.²¹⁶[202]

25 UDAQ also presented SIP-related updates to the State of Utah Governance Committee, a joint
26 coordination effort by the Utah Department of Health and local health departments. These
27 presentations took place on September 27, 2022, and on January 24, 2023, to inform the committee of
28 the progress UDAQ has made in the SIP development process and emission reduction strategies
29 employed.

[204][215] <https://deq.utah.gov/air-quality/northern-wasatch-front-ozone-emissions-inventory>

[202][216] <https://www.youtube.com/watch?v=ip5D7nRaLTI> & <https://www.youtube.com/watch?v=b0fHNSFcqvE>

1 **12.5.2 Environmental Advocate and Industrial Stakeholder Meetings**

2 UDAQ holds regular environmental advocate meetings, industrial stakeholder meetings, and
3 academic stakeholder meetings where UDAQ updated these groups on the development of this SIP and
4 online postings of the SIP-related documents. Members of all groups were provided equal opportunities
5 to ask questions and were encouraged to comment during these meetings as well as follow up
6 afterward.

7 **12.5.3 Public Commenting Period**

8 Upon the approval of the Air Quality Board on April 5, 2023, this SIP and all relating documents
9 were made available for public comment from June 1 to July 17, 2023. Public notices for the
10 commenting period were issued on the UDAQ webpage, via electronic mail, and in the Utah State
11 Bulletin. Commenters included:

- 49 private citizens;
- US EPA Region 8;
- Breathe Utah;
- HEAL Utah;
- Utah Petroleum Association and Utah Mining Association;
- Chevron Products Company;
- Marathon Tesoro Refining & Marketing Company LLC;
- Rio Tinto Kennecott;
- Western Resource Advocates; and
- Utah Manufacturers Association

12 **12.5.4 Public Hearing**

13 As part of the public commenting period, a public hearing was conducted at the State of Utah
14 Multi-Agency State Office Building on July 12, 2023 at 12:00 PM. The public hearing information was
15 advertised in the Utah State Bulletin, and the UDAQ webpage 41 days prior to the event. Attendance to
16 this hearing was available both in-person as well as virtually. Commenters included:

- Nick Schou of Western Resource Advocates;
- Alex Veilleux of Heal Utah; and
- Gregor Green a private citizen

17 All comments made by groups and individuals listed in Sections 12.5.3 and 12.5.4 were duly
18 considered in the decision-making process of this SIP. These comments are summarized and responded
19 to in APPENDIX B with original versions of each group or individual's comments available at
20 <https://deq.utah.gov/air-quality/northern-wasatch-front-moderate-ozone-sip-technical-support-documentation>.
22

23 **12.5.5 Information Dissemination**

24 All materials related to this SIP have been posted on UDAQ's public platforms as the division has
25 received and processed them throughout the development of this SIP. UDAQ uses all resources at its
26 disposal to disseminate information to its stakeholders including:

- UDAQ webpage [217\[203\]](https://deq.utah.gov/division-air-quality)
- State Bulletin
- Ozone SIP webpage [218\[204\]](https://deq.utah.gov/air-quality/northern-wasatch-front-moderate-ozone-sip-technical-support-documentation)
- Stakeholder meetings
- Local newspapers in identified stakeholder communities.

1

[203]²¹⁷ <https://deq.utah.gov/division-air-quality>

[204]²¹⁸ <https://deq.utah.gov/air-quality/northern-wasatch-front-moderate-ozone-sip-technical-support-documentation>

Utah Governor's Letter to EPA Administrator, Michael Regan

State of Utah

SPENCER J. COX
Governor

DEIDRE M. HENDERSON
Lieutenant Governor

Office of the Governor

July 2, 2024

Michael S. Regan, Administrator
Environmental Protection Agency
Mail Code 1101A
1200 Pennsylvania Avenue, N.W.
Washington, D.C. 20460

Dear Administrator Regan,

Thank you for your willingness to talk last week. As promised, I'm following up with more details around the plan we discussed.

On Nov. 7, 2022, Utah's Northern Wasatch Front (NWF) nonattainment area (NAA) was reclassified from marginal to moderate status for the 2015 8-hour average ozone National Ambient Air Quality Standard (NAAQS).¹ To meet the requirements for a moderate NAA, Utah had to identify and implement 15% reductions of volatile organic compounds (VOCs) in the NAA between 2017 and 2023, and submit a revision to Utah's State Implementation Plan (SIP) codifying these requirements. While Utah has developed and submitted a moderate NAA SIP revision, the revision does not fully implement a 15% VOC reduction, a requirement known as Reasonable Further Progress (RFP).² As a result, the state is facing potential sanctions under Section 179(b)³ of the Clean Air Act (CAA)⁴ affecting Utah's ability to access and utilize federal highway funds. This is a difficult position given that Utah is one of the fastest-growing states in the nation.

¹ Determinations of Attainment by the Attainment Date, Extensions of the Attainment Date, and Reclassification of Areas Classified as Marginal for the 2015 Ozone National Ambient Air Quality Standards, 87 Fed. Reg. 60897, 60898 (Oct. 7, 2022).

² 42 U.S.C. § 7511a(b)(1)(A)(i).

³ 40 C.F.R. § 52.31.

⁴ 42 U.S.C. § 7410.

Utah frequently commented to the Environmental Protection Agency (EPA) regarding the array of challenges facing nonattainment areas located in the Intermountain West.^{5,6,7,8} While many challenges highlighted in these comments apply to nonattainment areas across the Intermountain West, the NWF NAA faces a unique and independent challenge. As part of Utah's past fine particulate matter (PM_{2.5}) SIP revisions,^{9,10} the state has already implemented significant year-round VOC reductions, and thus identifying additional SIP-creditable VOC reductions has become exceedingly difficult, especially in the quantity required to fulfill RFP requirements.

This letter is a request to EPA to exercise its authority to reasonably interpret statute¹¹ as it relates to specific language in the 2015 ozone implementation rule¹² and allow Utah to credit past VOC reductions toward ongoing ozone planning efforts. To our knowledge, there is no other state in the country facing the same situation, where the area has significantly reduced VOCs for a different NAAQS, yet is facing punitive sanctions under the current interpretation of the rule. Utah believes that reasonably broadening the interpretation would have a very narrow impact.

I. Ozone Implementation Rule and NO_x Substitutions

The 2015 ozone implementation rule states that a NAA designated as moderate that has implemented federally enforceable VOC emission reductions equal to or greater than the current 15% requirement **from a previous ozone NAAQS SIP revision**, should be granted the opportunity to substitute a comparable amount of NO_x emission reductions under Section 172(c)(2), **as long as those reductions deliver an equivalent improvement in air quality.**¹³ Specifically, the rule states that, “the EPA continues to interpret CAA section 172(c)(2) as requiring Moderate areas with an approved SIP under the *1-hour ozone NAAQS or prior 8-hour ozone NAAQS* [emphasis added] to achieve 15% ozone precursor (NO_x and/or VOC) emission reductions.” Utah is requesting that EPA interpret this language to similarly include VOC reductions from a previous PM_{2.5} SIP revision. This minor change would allow the NWF to meet RFP requirements for the NWF NAA moderate 2015 8-hour ozone NAAQS SIP for the reasons outlined in this letter. Utah believes this is a reasonable interpretation of the implementation rule

⁵ Utah Request for Adjustment of the Northern Wasatch Front Nonattainment Area Boundary for the 2015 8-hour Ozone National Ambient Air Quality Standard, February 27, 2023.

⁶ Utah Comments on Air Plan Disapproval; Utah; Interstate Transport of Air Pollution for the 2015 8-Hour Ozone National Ambient Air Quality Standard, Docket ID No. EPA-R08-OAR-2022-0315, July 22, 2022. DAQP-065-22.

⁷ Utah Comments on Federal Implementation Plan Addressing Regional Ozone Transport for the 2015 Primary Ozone National Ambient Air Quality Standard, Docket ID No. EPA-HQ-OAR-2021-0668, June 21, 2022. DAQP-055-22.

⁸ Utah Comments on Determinations of Attainment by the Attainment Date, Extensions of the Attainment Date, and Reclassification of Areas Classified as Marginal for the 2015 Ozone National Ambient Air Quality Standards, Docket ID No. EPA-HQ-OAR-2021-0742, June 16, 2022. DAQP-054-22.

⁹ Utah State Implementation Plan Section IX, Part A.21: Control Measures for Area and Point Sources, Fine Particulate Matter, PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Adopted December 3, 2014.

¹⁰ Utah State Implementation Plan Section IX, Part A.31: Control Measures for Area and Point Sources, Fine Particulate Matter, Serious Area PM_{2.5} SIP for the Salt Lake City, UT Nonattainment Area. Adopted January 2, 2019.

¹¹ *Michigan v. EPA*, 576 U.S. 743 (2015). Also see *Util. Air Regul. Grp v. EPA*, 573 U.S. 302 (2014), and *State of Wisconsin v. Env't Prot. Agency*, 938 F.3.d (D.C. Cir. 2019).

¹² Implementation of the 2015 National Ambient Air Quality Standards for Ozone: Nonattainment Area State Implementation Plan Requirements, 83 Fed. Reg. 62,998 (Dec. 6, 2018).

¹³ *Id.*, 83 Fed. Reg. at 63,004 (“Areas classified Moderate for the 2015 ozone NAAQS that had SIPs previously approved to meet the ROP [RFP] requirements for the 1-hour, 1997 8-hour or 2008 8-hour ozone NAAQS would be treated like areas covered under CAA section 172(c)(2)... the EPA continues to interpret CAA section 172(c)(2) as requiring Moderate areas with an approved SIP under the 1-hour ozone NAAQS or prior 8-hour ozone NAAQS to achieve 15 percent ozone precursor (NO_x and/or VOC) emission reductions.”).

and the corresponding statute and is well within EPA's authority given the year-round nature of the VOC reductions and the scale of these reductions.

As shown in Table 1, through Utah's PM_{2.5} SIP work, the NWF NAA has previously implemented VOC emission reductions equivalent to 255% of the current RFP requirement, in addition to the 25% reduced for the moderate ozone SIP. Similarly, before the start of the moderate ozone SIP, Utah implemented a 254% equivalent reduction in NO_x emissions, while also reducing NO_x emissions by 152% of RFP requirements during the moderate SIP timeline.

II. RFP and Past Emission Reductions

The total RFP requirements for the NWF moderate ozone SIP revision was 14.0 tons per day (tpd) of VOC emission reductions. Utah has been able to account for 3.7 tpd of emission reductions, leaving the state with 10.3 tpd of additional emission reductions required to fulfill RFP. The state has shown a 21.3 tpd reduction of NO_x emissions over the same six-year period, representing 152% of the required RFP reductions if Utah could substitute NO_x for VOC reductions. While the NO_x reductions in the NWF NAA during the moderate SIP timeline represent considerable reductions and a significant step in attempts to improve air quality, they are small compared to the substantial emission reductions through Utah's PM_{2.5} SIP which account for more than a 250% emission reduction of both NO_x and VOCs relative to RFP requirements.

Table 1: VOC and NO_x reduction in the NWF NAA through ozone and PM_{2.5} SIPs.

	RFP Requirements	2017 - 2023 moderate ozone SIP (% RFP)	2010 - 2020 PM _{2.5} SIP (% RFP)
VOC (tpd reduced)	14.0 tpd	3.7 tpd (26%)	35.7 (255%)
NO _x (tpd reduced)	NA*	21.3 tpd (152%)	35.45 (254%)

*EPA has not yet allowed NO_x substitutions under its current interpretation of ozone implementation rule. Utah believes that these NO_x reductions should count towards RFP requirements given the scale and nature of past VOC reductions.

While Utah's PM_{2.5} air quality challenges are predominantly a wintertime issue, the emission reductions implemented to address these pollution episodes were largely adopted as year-round emission reduction strategies. As a result, the associated NO_x and VOC emission reductions decrease both wintertime PM_{2.5} and summertime ozone throughout the NWF NAA.

Furthermore, the state of Utah also implemented significant VOC reductions under the 1979 1-hour standard ozone NAAQS, which resulted in 67.7 tpd of reductions.¹⁴ However, as air quality subsequently improved, the area was ultimately granted a clean data determination which resulted in the suspension of RFP requirements prior to federal approval of the SIP,¹⁵ therefore preventing Utah from being able to directly credit these past reductions towards current ozone

¹⁴Utah State Implementation Plan Section IX, Part D: Control Measures for Area and Point Sources for Salt Lake and Davis Counties.

¹⁵ Withdrawal of the Determination of Attainment of Ozone Standard for the Salt Lake and Davis Counties Ozone Nonattainment Area; Utah; and the Determination Regarding Applicability of Certain Reasonable Further Progress and Attainment Demonstration Requirements, 60 Fed. Reg. 36,723 (July 18, 1995).

planning efforts. Had EPA approved Utah's 1979 NAAQS SIP revision prior to the finalization of a clean data determination, Utah would currently be able to pursue RFP compliance through NO_x substitutions under Section 172(c)(2).

III. PM_{2.5} Chemistry and VOC Reductions

Analogous to the prior interpretation in the 2015 ozone implementation rule that past VOC reductions could be counted towards RFP requirements if implemented under a previous ozone SIP, Utah is requesting that the EPA allows VOC reductions applied as part of past PM_{2.5} SIPs to be eligible to be credited towards the RFP requirement. This is a further reasonable interpretation of the implementation rule given that the VOC emission reductions under Utah's PM_{2.5} SIP revisions were specifically targeting ozone formation, which also plays a critical role in the secondary formation of PM_{2.5} in the Wasatch Front.

The interconnectedness of ozone and wintertime PM_{2.5} in the Wasatch Front is complex, but breaks down into three essential components, which are outlined in detail in Appendix A:

- 1) VOC emissions drive the daytime formation of ozone in both the wintertime and summertime which subsequently drives the availability of hydroxyl radicals (OH) within the troposphere.
- 2) This added OH subsequently acts as fuel catalyzing the daytime PM_{2.5} chemistry in which the NO_x-HO_x cycle is responsible for the daytime production of ozone and nitric acid (HNO₃).¹⁶ HNO₃ undergoes an acid-based reaction with gas phase ammonia (NH₄) to form particulate ammonium nitrate (NH₄NO₃), the predominant secondary particulate compound found in wintertime Persistent Cold Air Pool (PCAP) events in northern Utah.¹⁷
- 3) The presence of ozone also plays a direct instigating (oxidative) force in the nighttime PM_{2.5} chemistry as at night NO_x converts to particulate ClNO₂ and HNO₃ through NO₃ and N₂O₅.¹⁸ As with daytime chemistry, the resulting HNO₃ reacts with NH₃ to form particulate nitrate NH₄NO₃, with NO₃, N₂O₅, and ClNO₂ converted back to NO₂ and ozone the following morning and further contributing to daytime chemistry.

The importance of ozone in wintertime PM_{2.5} is reinforced by the fact that tropospheric ozone is completely depleted during PCAP events (0.00 ppb) throughout the Wasatch Front, as ozone acts as a fuel driving secondary particulate formation.¹⁹ Because of the importance ozone plays in both the daytime and nighttime formation of PM_{2.5}, Utah's PM_{2.5} SIPs specifically targeted reductions of ozone and its precursor emissions to limit the effectiveness of these pathways. Utah

¹⁶ Womack, C. C., McDuffie, E. E., Edwards, P. M., Bares, R., de Gouw, J. A., Docherty, K. S., et al. (2019). An oddoxygen framework for wintertime ammonium nitrate aerosol pollution in urban areas: NO_x and VOC control as mitigation strategies. *Geophysical Research Letters*, 46, 4971–4979. <https://doi.org/10.1029/2019GL082028>.

¹⁷ Kelly, K. E.; Kotchenruther, R.; Kuprov, R.; Silcox, G. D. Receptor model source attributions for Utah's Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol. *J. Air Waste Manage. Assoc.* 2013, 63 (5), 575–590.

¹⁸ Munkhbayar Baasandorj, Sebastian W. Hoch, Ryan Bares, John C. Lin, Steven S. Brown, Dylan B. Millet, Randal Martin, Kerr Kelly, Kyle J. Zarzana, C. David Whiteman, William P. Dube, Gail Tonnesen, Isabel Cristina Jaramillo, and John Sohl. *Environmental Science & Technology* 2017 51 (11), 5941-5950. DOI: 10.1021/acs.est.6b06603.

¹⁹ Munkhbayar Baasandorj, Sebastian W. Hoch, Ryan Bares, John C. Lin, Steven S. Brown, Dylan B. Millet, Randal Martin, Kerr Kelly, Kyle J. Zarzana, C. David Whiteman, William P. Dube, Gail Tonnesen, Isabel Cristina Jaramillo, and John Sohl. *Environmental Science & Technology* 2017 51 (11), 5941-5950. DOI: 10.1021/acs.est.6b06603.

went as far as to provide explicit language within its most recent PM_{2.5} SIP explaining the interconnectedness of ozone and PM_{2.5} formation.²⁰

IV. NO_x Reduction Effectiveness, Photochemical Assessment Monitoring, and Ozone Studies

To examine the effect of NO_x and VOC emission reductions on ozone concentrations in the NWF NAA, Utah conducted a photochemical analysis examining the predicted reductions in ozone concentrations for a given reduction of anthropogenic NO_x or VOC emissions. The resulting isopleth plots, as demonstrated in Figure 1, show that much of the NWF NAA is largely insensitive to VOC emission reductions, so much so that the controlling monitor in Bountiful does not demonstrate compliance with the 2015 8-hour ozone NAAQS even with a 100% reduction in anthropogenic VOC emissions. This analysis also demonstrates that even a full implementation of a 15% reduction in VOCs would result in a minimal to negligible improvement in 8-hour ozone concentrations.

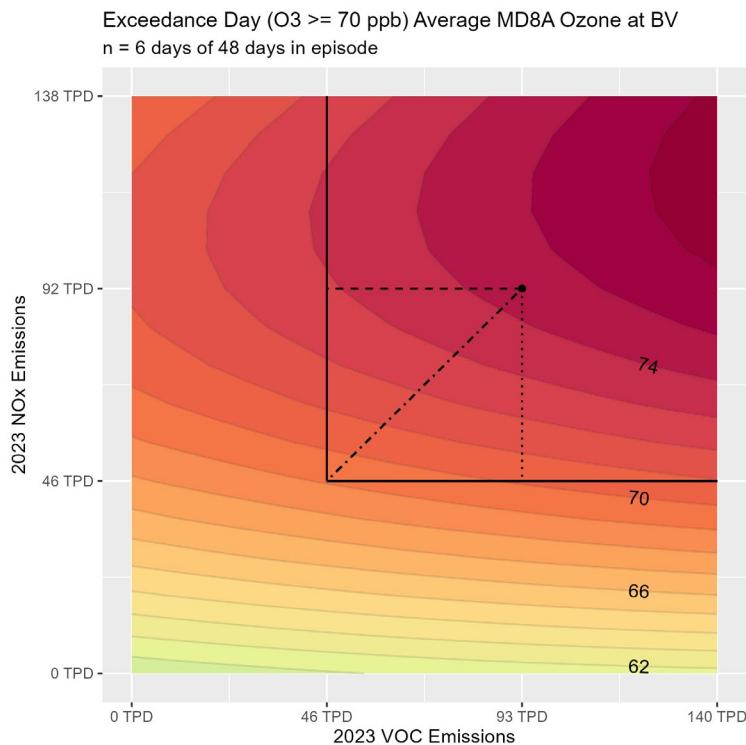


Figure 1: 8-hour ozone isopleths representing NO_x and VOC reductions and the resulting predicted ozone concentrations at Bountiful monitoring station in the NWF NAA. Analysis was conducted using CAMx version 7.1 High-Order Decoupled Direct Method (HDDM) and demonstrates the sensitivity of the NWF NAA to changes in anthropogenic NO_x and/or VOC reductions.

This same analysis identified that the area is more sensitive to NO_x reductions, however significant reductions of greater than 50% of NAA anthropogenic emissions would still be needed to attain 2015 8-hr ozone NAAQS. This analysis highlights that NO_x reductions play a

²⁰<https://documents.deq.utah.gov/air-quality/planning/technical-analysis/research/northern-utah-airpollution/utah-winter-fine-particulate-study/DAO-2018-004037.pdf> (“Aerosol chloride can also contribute to the formation of nitryl chloride (CINO₂), a source of radicals which act to enhance the daytime photochemical production of ozone and nitrate, both of which are important contributors to PM_{2.5} formation. This formation of CINO₂ is particularly active in the Salt Lake Valley, as shown by recent aircraft measurements (2017 Utah Winter Fine Particulate Study (UWFPS)).”)

critical role in Utah pursuing a reasonable pathway towards attaining the standard, with a NO_x heavy - limited VOC reduction pathway being the most beneficial pathway for the NWF NAA to improve summertime air quality. These results confirm the unique characteristics of the NWF NAA airshed and show that an equivalent reduction in NO_x emissions relative to VOC reductions, provides as great or greater an improvement in air quality. Therefore, the 21.5 tpd of NO_x reductions implemented as part of the moderate ozone SIP deliver a greater return on investment than the full 15% RFP (14.0 tpd) requirement of VOC reductions.

A secondary benefit in complying with the RFP requirement through NO_x substitutions under section 172(c)(2) would be the additional time to identify a reasonable and viable pathway to attainment through the leveraging of pending speciated VOC data as part of Utah's Photochemical Assessment Monitoring network, in addition to the wealth of scientific data expected to be collected as part of the upcoming 2024 Utah Summertime Ozone Study. The state believes that the added speciated VOC data from these efforts will provide critical insights into the best pathway to attainment. Yet, as these monitoring sites and scientific campaigns are coming online throughout this calendar year, the state is facing potential punitive sanctions before it can conduct this critical analysis.

V. Section 172(c)(2) Pathway for RFP Requirements

Utah requests that EPA exercise its authority to reasonably interpret statute and the relevant portions of the 2015 ozone implementation rule to allow the NWF NAA to credit past VOC reductions achieved for PM_{2.5} SIPs to demonstrate compliance with the moderate RFP requirements²¹ through NO_x substitutions under CAA Section 172(c)(2). Utah believes this interpretation is reasonable given the substantial past VOC reductions implemented throughout the NWF NAA as part of PM_{2.5} SIPs, the year-round nature of these reductions, the explicit intent behind these reductions to decrease tropospheric ozone, and the benefits of NO_x reductions relative to VOC reductions for the airshed. This interpretation would treat the NWF NAA the same when compared to other NAAs that can demonstrate past federally enforceable VOC reductions equivalent to RFP requirements, only under a different NAAQS.

This request is not an attempt to skirt the state's obligation to improve air quality. On the contrary, Utah has achieved significant emission reductions throughout the NWF NAA that substantially improved air quality in the area.²² Further recent actions demonstrate the state's continued commitment to improving air quality and complying with CAA requirements including: requesting the expansion of the NAA boundary,²³ reducing NO_x emissions from natural gas-fired boilers,²⁴ reducing VOC emissions from hot mix asphalt plants,²⁵ and implementing the requirement of costly controls on existing major point sources within the NAA.²⁶ Instead, this letter is a request for EPA to adopt a reasonable interpretation of statute and existing rule language which would treat the NWF NAA the same when compared to any other

²¹ 42 U.S.C. § 7511a(b)(1)(A)(i).

²² Approval and Promulgation of Implementation Plans; State of Utah; Salt Lake City and Provo, Utah PM_{2.5} Redesignations to Attainment and Utah State Implementation Plan Revisions, 85 Fed. Reg. 71,023 (Nov 11, 2020).

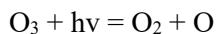
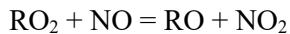
²³ Utah Request for Adjustment of the Northern Wasatch Front Nonattainment Area Boundary for the 2015 8-hour Ozone National Ambient Air Quality Standard, February 27, 2023.

²⁴ Utah Administrative rules R307-315: NO_x Emission Controls for Natural Gas-Fired Boilers 2.0-5.0 MMBtu & R307-316: NO_x Emission Controls for Natural Gas-Fired Boilers Greater Than 5.0 MMBtu. Effective dates: 07/10/2023.

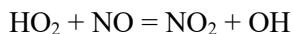
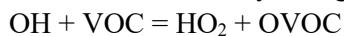
²⁵ Utah Administrative rule R307-313: VOC and Blue Smoke Controls for Hot Mix Asphalt Plants. Effective Date: 07/24/2023.

²⁶ Utah State Implementation Plan Section IX, Part H.31 and Part H.32. Emission Limits and Operating Practices

NAA that can demonstrate past federally enforceable VOC reductions equivalent to RFP requirements. As regulatory partners we are tasked with the responsibilities of finding solutions to improve air quality, comply with CAA requirements, and protect human health. The state of Utah believes that this request fulfills these responsibilities in a way that is reasonable and consistent with the intent of the CAA and our shared mission, while preventing punitive sanctions against a state that has, and will continue to, work successfully towards meeting these critical goals.

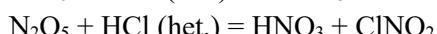
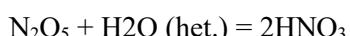


Sincerely,

A handwritten signature in black ink, appearing to read "Spencer J. Cox".



Spencer J. Cox
Governor

APPENDIX A: Interconnectedness of Ozone and Secondary PM_{2.5} Chemistry.

- 1) VOC emissions drive the daytime formation of ozone (O₃) in both the wintertime and summertime which subsequently drives the availability of hydroxyl radicals (OH) within the troposphere:

- 2) The presence of O₃ as formed in the reactions above during the day drives the availability of OH which subsequently acts as fuel for the daytime PM_{2.5} chemistry in which the NO_x-HO_x cycle is responsible for the daytime production of O₃ and nitric acid (HNO₃).²⁷ This cycle begins when VOCs are oxidized by OH, generating HO₂ or RO₂ radicals.

HNO₃ undergoes an acid based reaction with gas phase ammonia (NH₄) to form particulate ammonium nitrate (NH₄NO₃), the predominant secondary particulate compound found in wintertime Persistent Cold Air Pool (PCAP) events in northern Utah.²⁸

- 3) The presence of O₃ plays a direct instigating (oxidative) force in the nighttime PM_{2.5} chemistry as at night NO_x converts to particulate ClNO₂ and HNO₃ through NO₃ and N₂O₅.²⁹

As with daytime chemistry, the resulting HNO₃ reacts with NH₃ to form particulate nitrate NH₄NO₃, with NO₃, N₂O₅, and ClNO₂ converted back to NO₂ and O₃ the following morning and further contributing to daytime chemistry.

²⁷ Womack, C. C., McDuffie, E. E., Edwards, P. M., Bares, R., de Gouw, J. A., Docherty, K. S., et al. (2019). An oddoxygen framework for wintertime ammonium nitrate aerosol pollution in urban areas: NO_x and VOC control as mitigation strategies. *Geophysical Research Letters*, 46, 4971–4979. <https://doi.org/10.1029/2019GL082028>.

²⁸ Kelly, K. E.; Kotchenruther, R.; Kuprov, R.; Silcox, G. D. Receptor model source attributions for Utah's Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol. *J. Air Waste Manage. Assoc.* 2013, 63 (5), 575–590.

²⁹ Munkhbayar Baasandorj, Sebastian W. Hoch, Ryan Bares, John C. Lin, Steven S. Brown, Dylan B. Millet, Randal Martin, Kerry Kelly, Kyle J. Zarzana, C. David Whiteman, William P. Dube, Gail Tonnesen, Isabel Cristina Jaramillo, and John Sohl. *Environmental Science & Technology* 2017 51 (11), 5941–5950. DOI: 10.1021/acs.est.6b06603.

ITEM 5

State of Utah

SPENCER J. COX
Governor

DEIDRE HENDERSON
Lieutenant Governor

Department of
Environmental Quality

Kimberly D. Shelley
Executive Director

DIVISION OF AIR QUALITY
Bryce C. Bird
Director

DAQ-056-24a

M E M O R A N D U M

TO: Air Quality Board

THROUGH: Bryce C. Bird, Executive Secretary

THROUGH: Erica Pryor, Rules Coordinator

FROM: Rachel Chamberlain, Environmental Scientist

DATE: July 3, 2024

SUBJECT: PROPOSE FOR PUBLIC COMMENT: Amend R307-202. Emission Standards: General Burning.

On March 12, 2024, Governor Cox signed into law House Bill 567 (HB567), Fire Regulation Amendments. This bill has an effective date of May 1, 2024. The proposed amendments to Rule R307-202 result in several changes to permitted open burning in the state to align with HB567. The bill changes the following:

- the areas of the state that have different permit burning windows;
- the time frame of the burning windows; and
- the clearing index values at which burns are allowed to occur.

HB567 relies on attainment area definitions to distinguish between the open burning permit criteria. R307-202 currently allows areas to receive burn permits when the clearing index value is at or over 500 from March 30th – May 30th, and when the state forester approves burning from September 15th – October 30th. Ten southern counties were also allowed to perform permitted burns from March 1st – March 30th with a longer fall window between September 15th and November 15th.

The amendments eliminate the southern counties' criteria by shifting the rule to distinguish burning window and clearing index eligibility by nonattainment, maintenance, and attainment areas. HB567 allows for open permitted burning within attainment areas when the clearing index value is over 250 from

November 1st – March 31st, in addition to portions of the previously approved burning windows (March 30th – May 30th) at a clearing index of 500 and (September 15th – October 30th) when approved by the state forester. Additionally, the Division is proposing to update the previously approved burning windows to include the first and last day of each month for ease of implementation and further alignment with other Utah Code (Section 65A-8-211).

This change increases the burning window in attainment areas to include the full months of November, December, January, February, and March and lowers the allowable clearing index window to obtain a burn permit from 500 to 250 during those months. Since the burns are occurring in attainment areas, there is minimal risk of State Implementation Plan backsliding. In addition, smoke impacts could be more effectively temporally dispersed and cause less of an impact to most impaired days for regional haze.

Recommendation: Staff recommends the Board approve the amendment to Rule R307-202, General Burning, for a 30-day public comment period.

State of Utah
Administrative Rule Analysis
Revised May 2024

NOTICE OF SUBSTANTIVE CHANGE

TYPE OF FILING: Amendment

Rule or Section Number: R307-202

Filing ID: Office Use Only

Date of Previous Publication (Only for CPRs): Click or tap to enter a date.

Agency Information

1. Title catchline:	Environmental Quality, Division of Air Quality	
Building:	Multi-Agency State Office Building	
Street address:	195 N 1950 W	
City, state:	Salt Lake City	
Mailing address:	PO BOX 144820	
City, state and zip:	Salt Lake City, UT 84114-4820	
Contact persons:		
Name:	Phone:	Email:
Erica Pryor	385-499-3416	epryor1@utah.gov
Rachel Chamberlain	385-414-3390	rachelchamberlain@utah.gov

Please address questions regarding information on this notice to the persons listed above.

General Information

2. Rule or section catchline:

R307-202. Emission Standards: General Burning.

3. Purpose of the new rule or reason for the change:

The Division of Air Quality is filing an amendment to Rule R307-202 on account of HB567 becoming effective May 1, 2024.

4. Summary of the new rule or change:

This filing amends Rule R307-202 to align with the changes in statute because of HB567. On March 12, 2024, Governor Cox signed into law HB567 Fire Regulation Amendments. This bill has an effective date of May 1, 2024. The proposed amendments to R307-202 result in several changes to open burning with permits in the state. The bill changes the following: 1) the areas of the state that have different permit burning windows; 2) the time frame of the burning windows, and 3) the clearing index values at which burns are allowed to occur. The bill defines attainment areas to distinguish between the open burning timeframes.

Fiscal Information

5. Provide an estimate and written explanation of the aggregate anticipated cost or savings to:

A) State budget:

There is no anticipated cost or savings to the state budget and will have no impact besides some staff time spent reprogramming the permit interface which will be absorbed by the general budget.

B) Local governments:

There is no anticipated cost or savings to local governments but could increase permits application requests and reviews. The number is unknown and therefore costs or savings cannot be calculated.

C) Small businesses ("small business" means a business employing 1-49 persons):

There is no anticipated cost or savings to small businesses.

D) Non-small businesses ("non-small business" means a business employing 50 or more persons):			
There is no anticipated cost or savings for non-small businesses.			
E) Persons other than small businesses, non-small businesses, state, or local government entities ("person" means any individual, partnership, corporation, association, governmental entity, or public or private organization of any character other than an <i>agency</i>):			
There is no anticipated cost or savings to persons other than small businesses, non-small businesses, state, or local government entities.			
F) Compliance costs for affected persons (How much will it cost an impacted entity to adhere to this rule or its changes?):			
There are no anticipated compliance costs for affected persons.			
G) Regulatory Impact Summary Table (This table only includes fiscal impacts that could be measured. If there are inestimable fiscal impacts, they will not be included in this table. Inestimable impacts will be included in narratives above.)			
Regulatory Impact Table			
Fiscal Cost	FY2025	FY2026	FY2027
State Government	\$0	\$0	\$0
Local Governments	\$0	\$0	\$0
Small Businesses	\$0	\$0	\$0
Non-Small Businesses	\$0	\$0	\$0
Other Persons	\$0	\$0	\$0
Total Fiscal Cost	\$0	\$0	\$0
Fiscal Benefits	FY2025	FY2026	FY2027
State Government	\$0	\$0	\$0
Local Governments	\$0	\$0	\$0
Small Businesses	\$0	\$0	\$0
Non-Small Businesses	\$0	\$0	\$0
Other Persons	\$0	\$0	\$0
Total Fiscal Benefits	\$0	\$0	\$0
Net Fiscal Benefits	\$0	\$0	\$0
H) Department head comments on fiscal impact and approval of regulatory impact analysis:			
The Executive Director of the Department of Environmental Quality, Kim D. Shelley, has reviewed and approved this regulatory impact analysis.			

Citation Information

6. Provide citations to the statutory authority for the rule. If there is also a federal requirement for the rule, provide a citation to that requirement:		
Utah Code 19-2-104	U.S.C. Title 42 Chapter 85 Subchapter I Part A Section 7410 (a)(1)2(A)	

Incorporations by Reference Information

7. Incorporations by Reference (if this rule incorporates more than two items by reference, please include additional tables):
A) This rule adds or updates the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; <i>if none, leave blank</i>):
Official Title of Materials Incorporated

(from title page)	
Publisher	
Issue Date	
Issue or Version	

B) This rule adds or updates the following title of materials incorporated by references (a copy of materials incorporated by reference must be submitted to the Office of Administrative Rules; *if none, leave blank*):

Official Title of Materials Incorporated (from title page)	
Publisher	
Issue Date	
Issue or Version	

Public Notice Information

8. The public may submit written or oral comments to the agency identified in box 1. (The public may also request a hearing by submitting a written request to the agency. See Section 63G-3-302 and Rule R15-1 for more information.)

A) Comments will be accepted until: 09/03/2024

B) A public hearing (optional) will be held:

Date (mm/dd/yyyy):	Time (hh:mm AM/PM):	Place (physical address or URL):
08/26/2024	1:00 PM	<p>R307-202 Public Hearing</p> <p>In Person: MASOB, Room 1015, Air Quality Board Room</p> <p>For Virtual: Monday, August 26 · 1 – 2pm Time zone: America/Denver</p> <p>Google Meet joining info</p> <p>Video call link: https://meet.google.com/ses-ddhr-jrm</p> <p>Or dial: (US) +1 386-753-7897 PIN: 243 528 443#</p> <p>More phone numbers: https://tel.meet/ses-ddhr-jrm?pin=1787277907303</p> <p>In accordance with 63G-3-302, please note that if no requests for a public hearing for R307-202 are received by 2:00pm on August 22nd, 2024, then we will cancel this hearing.</p> <p>To determine if the hearing has been cancelled and/or view the cancellation notice, you can visit:</p> <p>https://deq.utah.gov/air-quality/air-quality-rule-plan-changes-open-public-comment</p>

To the agency: If more than one hearing will take place, continue to add rows.

9. This rule change MAY become effective on:

09/10/2024

NOTE: The date above is the date the agency anticipates making the rule or its changes effective. It is NOT the effective date.

Agency Authorization Information

To the agency: Information requested on this form is required by Sections 63G-3-301, 63G-3-302, 63G-3-303, and 63G-3-402. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin* and delaying the first possible effective date.

Agency head or designee and title:	Bryce C. Bird, Director, Division of Air Quality	Date:	07/02/2024
---	---	--------------	------------

1 **R307. Environmental Quality, Air Quality.**

2 **R307-202. Emission Standards: General Burning.**

3 **R307-202-1. Applicability.**

4 Sections R307-202-4 through R307-202-8 apply to general burning within incorporated
5 community under the authority of county or municipal fire authority.

6 **R307-202-2. Definitions.**

7 The following additional definitions apply only to Rule R307-202.

8 "Attainment areas" means any area that meets the national primary and secondary ambient air quality
9 standard (NAAQS) for the pollutant.

10 "County or municipal fire authority" means the public official so designated with the responsibility,
11 authority, and training to protect people, property, and the environment from fire, within their respective area
12 of jurisdiction.

13 "Federal Class I Area" means an area that consists of national parks exceeding 6,000 acres,
14 wilderness areas and national memorial parks exceeding 5,000 acres, and ~~all~~any international parks that
15 were in existence on August 7, 1977. See Clean Air Act ~~s~~Section 162(a).

16 "Fire hazard" means a hazardous condition involving combustible, flammable, or explosive material
17 that represents a substantial threat to life or property if not immediately abated, as declared by the county or
18 municipal fire authority.

19 "Maintenance Area" as defined in Section R307-101-2, means an area that is subject to the
20 provisions of a maintenance plan that is included in the Utah state implementation plan, and that has been
21 redesignated by EPA from nonattainment to attainment of any NAAQS.

22 "Native American spiritual advisor" means a person who leads, instructs, or facilitates a Native
23 American religious ceremony or service~~s~~, or provides religious counseling~~s~~, is an enrolled member of a
24 federally recognized Native American tribe~~s~~, and is recognized as a spiritual advisor by a federally
25 recognized Native American tribe. "Native American spiritual advisor" includes a sweat lodge leader,
26 medicine person, traditional religious practitioner, or holy man or woman.

27 "Nonattainment Area" means an area designated by the Environmental Protection Agency as
28 nonattainment under Section 107, Clean Air Act for any NAAQS. The designations for Utah are listed in
29 40 CFR 81.345.

30 **R307-202-3. Exclusions.**

31 As provided in Section 19-2-114, the ~~provisions~~requirements of Rule R307-202 are not applicable
32 to:

33 (1) ~~E~~except for areas zoned as residential, burning incident to horticultural or agricultural
34 operations of:

35 (a) ~~P~~prunings from trees, bushes, and plants; and

36 (b) ~~D~~dead or diseased trees, bushes, and plants, including stubble~~s~~;

37 (2) ~~B~~burning of weed growth along ditch banks for clearing these ditches for irrigation purposes;

38 (3) ~~C~~controlled heating of orchards or other crops during the frost season to lessen the chances of
39 their being frozen so long as the emissions from this heating do not cause or contribute to an exceedance of
40 any ~~national ambient air quality standards~~NAAQS and is consistent with the federally approved State
41 Implementation Plan;~~s~~ and

42 (4) ~~F~~the controlled burning of not more than two structures per year by an organized and operating
43 fire department for the purpose of training fire service personnel when the National Weather Service clearing
44 index is above 500~~s~~, ~~S~~see also Section 11-7-1(2)(a)~~s~~; and

45 (5) ~~C~~ceremonial burning is excluded from Subsection R307-202-4(2) when conducted by a Native
46 American spiritual advisor.

47 **R307-202-4. Prohibitions.**

48 (1) No open burning ~~shall~~may be done at sites used for disposal of community trash, garbage, and
49 other wastes.

50 (2) No person ~~shall~~may burn under this rule when the director issues a public announcement under
51 Rule R307-302. The director ~~will~~shall distribute ~~such~~the announcement to the local media notifying the

1 public that a mandatory no-burn period is in effect for the area where the burning is to occur.

2

3 **R307-202-5. General Requirements.**

4 (1) Except as otherwise provided in this rule, no person [shall]may set or use an open outdoor fire
5 for the purpose of disposal or burning of: [~~of disposal or burning of petroleum wastes; demolition or~~
6 ~~construction debris; residential rubbish; garbage or vegetation; tires; tar; trees; wood waste; other combustible~~
7 ~~or flammable solid; liquid or gaseous waste; or for metal salvage or burning of motor vehicle bodies.~~]

8 (a) petroleum wastes;
9 (b) demolition or construction debris;
10 (c) rubbish;
11 (d) garbage or vegetation;
12 (e) tires;
13 (f) tar;
14 (g) trees;
15 (h) wood waste;
16 (i) other combustible or flammable solid;
17 (j) liquid or gaseous waste; or
18 (k) for metal salvage or burning of motor vehicle bodies.

19 (2) The county or municipal fire authority shall approve burning based on the predicted
20 meteorological conditions and whether the emissions would impact the health and welfare of the public or
21 cause or contribute to an exceedance of any ~~national ambient air quality standard~~NAAQS.

22 (3) Nothing in this regulation [shall]may be construed as relieving any person conducting open
23 burning from meeting the requirements of any applicable federal, state, or local requirements concerning
24 disposal of any combustible materials.

25 (4) The county or municipal fire authority that approves any open burning permit ~~will~~shall retain a
26 copy of each permit issued for one year.

27

28 **R307-202-6. Open Burning - Without Permit.**

29 The following types of open burning do not require a permit when not prohibited by other local,
30 state, or federal laws and regulations, when it does not create a nuisance, as defined in Section 76-10-803, and
31 does not impact the health and welfare of the public[.]:

32 (1) ~~D~~Bdevices for the primary purpose of preparing food ~~such as~~including outdoor grills and
33 fireplaces;

34 (2) ~~C~~Ecampfires and fires used solely for recreational purposes where ~~such~~the fires are under
35 control of a responsible person and the combustible material is clean, dry, wood or charcoal; and

36 (3) ~~H~~Indoor fireplaces and residential solid fuel burning devices except as provided in Section
37 R307-302-2.

38

39 **R307-202-7. Open Burning - With Permit.**

40 (1) No person [shall]may knowingly conduct open burning unless the open burning activities may
41 be conducted without a permit pursuant to Section R307-202-6 or the person has a valid permit for burning
42 on a specified date or period, issued by the county or municipal fire authority having jurisdiction in the area
43 where the open burning ~~will~~shall take place.

44 (2) A permit applicant shall provide information as requested by the county or municipal fire
45 authority. No permit or authorization [shall]may be deemed valid unless the issuing authority determines that
46 the applicant has provided the required information.

47 (3) Persons seeking an open burning permit shall submit to the county or municipal fire authority an
48 application on a form provided by the director for each separate burn.

49 (4) A permit shall be valid only on the lands specified on the permit.

50 (5) No material [shall]may be burned unless it is clearly described and quantified as material to be
51 burned on a valid permit.

52 (6) No burning [shall]may be conducted contrary to the conditions specified on the permit.

53 (7) Any permit issued by a county or municipal fire authority ~~will be~~is subject to the local, state,
54 and federal rules and regulations.

(8) Open burning is authorized by the issuance of a permit, as stipulated within this rule, for specification in Subsection R307-202-7(10). These permits can only be issued when not prohibited by other local, state, or federal laws and regulations and when a nuisance as defined in Section 76-10-803 is not created and does not impact the health and welfare of the public.

(9) Except as provided in Section R307-202-7(10)(f)(ii), [t]individual permits, as stipulated within this rule, for the types of burning listed in Subsection R307-202-7(10) may be issued by a county or municipal fire authority when the clearing index is 500 or greater. When the clearing index is below 500, [all]any permits issued for that day [will]shall be null and void until further notice from the county or municipal fire authority. Additionally, anyone burning on the day when the clearing index is below 500, or is found to be violating any part of this rule, shall be liable for a fine in accordance with Rule R307-130.

(10) The following include [T]ypes of open burning for which a permit may be granted[-are]:

(a) [E]except in nonattainment and maintenance areas, open burning of tree cuttings and slash in forest areas where the cuttings accrue from pulping, lumbering, and similar operations, but excluding waste from sawmill operations [such as]including sawdust and scrap lumber[.];

(b) [θ]open burning of trees and brush within railroad rights-of-way, provided that dirt is removed from stumps before burning, and that tires, oil more dense than #2 fuel oil, tar, or other materials which can cause severe air pollution, are not present in the materials to be burned, and are not used to start fires or to keep fires burning[-];

(c) [Ø]open burning of a fire hazard that a county or municipal fire authority determines cannot be abated by any other viable option[–];

(d) []open burning of highly explosive materials when a county or municipal fire authority, law enforcement agency, or governmental agency having jurisdiction determines that onsite burning or detonation in place is the only reasonably available method for safely disposing of the material[.];

(e) [θ]open burning for the disposal of contraband in the possession of public law enforcement personnel provided they demonstrate to the county or municipal fire authority that open burning is the only reasonably available method for safely disposing of the material[-]:

(f) [O]pen burning of clippings, bushes, plants, and pruning's from trees incident to property clean-up activities, including residential cleanup, provided that the following conditions have been met:

(i) [W]ithin [only] the counties designated as nonattainment and maintenance areas, [of Washington, Kane, San Juan, Iron, Garfield, Beaver, Piute, Wayne, Grand and Emery,] the county or municipal fire authority may issue a permit between [March 1] **May 1** and May 3[0]1 when the clearing index is 500 or greater. The county or municipal fire authority may issue a permit between September 15 to **October 31** [November 15] for [such]the burning to occur when the state forester has approved the burning window under Section 65A-8-211 and the clearing index is 500 or greater[-];

(ii) [F]in [all other areas of the state]attainment areas, the county or municipal fire authority may issue a permit between [March 30 and May 30]November 1 and March 31 for [such]burning to occur when the clearing index is [500]250 or greater. Additionally, in attainment areas, the county or municipal fire authority may issue a permit between April 1 and May 31 for burning to occur when the clearing index is 500 or greater. The county or municipal fire authority may issue a permit between September 15 and October 3[0]1 for [such]burning to occur when the state forester has approved the burning window under Section 65A-8-211 and the clearing index is 500 or greater[-];

- (iii) [Such-]burnings occur in accordance with state and federal requirements;
- (iv) [M]aterials to be burned are thoroughly dry; and
- (v) [N]o trash, rubbish, tires, or oil are included in the material to be burned, used to start fires, or used to keep fires burning.

(g) [E]except for nonattainment and maintenance areas, the director may grant a permit for types of open burning not specified in Subsection R307-202-7(3) on written application if the director finds that the burning is consistent with the federally approved State Implementation Plan and does not cause or contribute to an exceedance of any [national ambient air quality standards]NAAQS.

(i) This permit may be granted once the director has reviewed the written application with the requirements and criteria found within this rule ~~at~~ in Section R307-202-7.

(ii) Open [B]burning [P]ermit [E]riteria shall include the following requirements.

(A) The director or the county or municipal fire authority shall consider the following factors in determining whether, and upon what conditions, to issue an open burning permit:

(I) [T]he location and proximity of the proposed burning to any building, other structures, the public, and federal Class I areas that might be impacted by the smoke and emissions from the burn;

(II) [B]burning [will]shall only be conducted when the clearing index is 500 or above; and

(III) [W]whether there is any practical alternative method for the disposal of the material to be burned.

(B) Methods to minimize emissions and smoke impacts may include[~~, but are not limited to~~]:

(I) [F]the use of clean auxiliary fuel;

(II) [D]drying the material [~~prior to~~]before ignition; and

(III) [S]separation for alternative disposal of materials that produce higher levels of emissions and smoke during the combustion process.

(C) Open burning permits are not valid during periods when the clearing index is below 500 or publicly announced air pollution emergencies or alerts have been declared in the area of the proposed burn.

(D) For burns of piled material, [all]any piles shall be reasonably dry and free of dirt.

(E) Open burns shall be supervised by a responsible person who shall notify the local fire department and have available, either on-site or by the local fire department, the means to suppress the burn if the fire does not comply with the terms and conditions of the permit.

(F) [All]Any open burning operations shall be subject to inspection by the director or county or municipal fire authority. The permittee shall maintain at the burn site the original or a copy of the permit that shall be made available without unreasonable delay to the inspector.

(G) If at any time the director or the county or municipal fire authority granting the permit determines that the permittee has not complied with any term or condition of the permit, the permit is subject to partial or complete suspension, revocation, or imposition of additional conditions. [All]Any burning activity subject to the permit shall be terminated immediately upon notice of suspension or revocation. In addition to suspension or revocation of the permit, the director or county or municipal fire authority may take any other enforcement action authorized under state or local law.

R307-202-8. Special Conditions.

(1) Open burning for special purposes or under unusual or emergency circumstances may be approved by the director if it is consistent with the federally approved State Implementation Plan and does not cause or contribute to an exceedance of any ~~national ambient air quality standards~~ NAAQS.

([a]2) This permit may be granted once the director has reviewed the written application with the requirements and criteria in Section R307-202-7.

KEY: air pollution, open burning, fire authority

Date of Enactment or Last Substantive Amendment: October 6, 2014

Notice of Continuation: December 9, 2019

Authorizing, and Implemented or Interpreted Law: 19-2-104; 11-7-1(2)(a); 65A-8-211; 76-10-803

ITEM 6

State of Utah

SPENCER J. COX
Governor

DEIDRE HENDERSON
Lieutenant Governor

Department of
Environmental Quality

Kimberly D. Shelley
Executive Director

DIVISION OF AIR QUALITY
Bryce C. Bird
Director

DAQ-055-24

M E M O R A N D U M

TO: Air Quality Board

THROUGH: Bryce C. Bird, Executive Secretary

FROM: Erica Pryor, Rules Coordinator

DATE: June 25, 2024

SUBJECT: FIVE-YEAR REVIEWS: R307-125. Clean Air Retrofit, Replacement, and Off-Road Technology Program; R307-501. Oil and Gas Industry: General Provisions; R307-502. Oil and Gas Industry: Pneumatic Controllers; R307-503. Oil and Gas Industry: Flares; and R307-504. Oil and Gas Industry: Tank Truck Loading.

Utah Code 63G-3-305 requires each agency to review and justify each of its rules within five years of a rule's original effective date or within five years of the filing of the last five-year review. This review process is not a time to revise or amend the rules, but only to verify that the rule is still necessary and allowed under state and federal law. As part of this process, we are required to identify any comments received since the last five-year review of each rule. This process is not the time to revisit those comments or to respond to them.

DAQ has completed a five-year review of R307-125, Clean Air Retrofit, Replacement, and Off-Road Technology Program; R307-501, Oil and Gas Industry, General Provisions; R307-502, Oil and Gas Industry, Pneumatic Controllers; R307-503, Oil and Gas Industry, Flares; and R307-504, Oil and Gas Industry, Tank Truck Loading.

The results of these reviews are found in the attached Five-Year Notice of Review and Statement of Continuation forms.

Recommendation: Staff recommends that the Board continue these rules, by approving the attached forms to be filed with the Office of Administrative Rules.

State of Utah
Administrative Rule Analysis
Revised May 2024

NOTICE OF FIVE-YEAR REVIEW AND STATEMENT OF CONTINUATION

Rule Number:	R307-125	Filing ID: Office Use Only
Effective Date:	Office Use Only	

Agency Information

1. Title catchline:	Environmental Quality, Division of Air Quality	
Building:	MASOB	
Street address:	195 N 1950 W	
City, state	Salt Lake City	
Mailing address:	PO BOX 144820	
City, state and zip:	Salt Lake City, UT 84114-4820	
Contact persons:		
Name:	Phone:	Email:
Courtney Ehrlich	385-232-5157	cehrlich@utah.gov
Erica Pryor	385-499-3416	epryor1@utah.gov

Please address questions regarding information on this notice to the persons listed above.

General Information

2. Rule catchline:
R307-125. Clean Air Retrofit, Replacement, and Off-Road Technology Program.
3. A concise explanation of the particular statutory provisions under which the rule is enacted and how these provisions authorize or require this rule:
The Air Quality Board is allowed by 19-2-104(1)(a) to make rules "... regarding the control, abatement, and prevention of air pollution from all sources and the establishment of the maximum quantity of air pollutants that may be emitted by an air pollutant source." Also, 19-2-104(3)(q) allows the Board to "...meet the requirements of federal air pollution laws." The Utah Legislature enacted the Clean Air Retrofit, Replacement, and Off-Road Technology (CARROT) Program during the 2014 General Legislative Session through H.B. 61. CARROT allows grants or other programs such as exchange, rebate, or low-cost purchase programs for activities that reduce emissions from non-road or heavy-duty diesel, on road engines. H.B. 61 gives authority to the Air Quality Board to make rules specifying the requirements and procedures of the CARROT Program, which this rule does.
4. A summary of written comments received during and since the last five-year review of this rule from interested persons supporting or opposing this rule:
No comments have been received since the last five-year review on 9/5/19.
5. A reasoned justification for continuation of this rule, including reasons why the agency disagrees with comments in opposition to this rule, if any:
Rule R307-125 specifies the requirements and procedures of the Clean Air Retrofit, Replacement and Off-Road Technology Program that is authorized in Section 19-2-203, including how the director may allocate funds and how grants and exchange, rebate, or low-cost purchase awards are applied for and awarded.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-305. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin*.

Agency head or designee and title:	Bryce C. Bird, Director, Division of Air Quality	Date:	05/20/2024
------------------------------------	--	-------	------------

Reminder: Text changes cannot be made with this type of rule filing. To change any text, please file an amendment or a nonsubstantive change.

1 **R307. Environmental Quality, Air Quality.**

2 **R307-125. Clean Air Retrofit, Replacement, and Off-Road Technology Program.**

3 **R307-125-1. Authority and Purpose.**

4 (1) This rule specifies the requirements and procedures of the Clean Air Retrofit, Replacement and
5 Off-Road Technology Program that is authorized in 19-2-203.

6 (2) The procedures of this rule constitute the minimum requirements for the application for and the
7 awarding of funds that are designated for the Clean Air Retrofit, Replacement, and Off-Road Technology
8 Program.

9 **R307-125-2. Definitions.**

10 The terms "certified," "cost," "director," "division," "eligible equipment," "eligible vehicle," and
11 "verified" are defined in 19-2-202.

12 **R307-125-3. Grants Under 19-2-203(1).**

13 (1) A grant under 19-2-203(1) may only be used for:

- (a) verified technologies for eligible vehicles or equipment; and
- (b) certified vehicles, engines, or equipment.

14 (2) In prioritizing grant awards, the director shall consider:

15 (a) whether and to what extent the applicant has already secured some other source of funding;

16 (b) the air quality benefits to the state and local community attributable to the project;

17 (c) the cost-effectiveness of the proposed project;

18 (d) the feasibility and practicality of the project; and

19 (e) other factors that the director determines should apply based on the nature of the application.

20 (3) In prioritizing grant awards, the director may also, at the request of an applicant, consider the
21 financial need of the applicant.

22 (4) A successful grant applicant will be required to agree:

23 (a) to provide information to the division about the vehicles, equipment, or technology acquired with
24 the grant proceeds;

25 (b) to allow inspections by the division to ensure compliance with the terms of the grant;

26 (c) to permanently disable replaced vehicles, engines, and equipment from use; and

27 (d) for any grant that is not given on a reimbursement basis, to commit to complete the project as
28 proposed;

29 (e) not to change the location or use of the vehicle, engine or equipment from the location or use
30 proposed in their application without approval of the director; and

31 (f) to any additional terms as determined by the director.

32 (5) Eligible vehicles are defined in 19-2-202(7). No additional vehicles under 19-2-202(7)(e) are
33 eligible at this time.

34 (6) The division shall use the following procedures to implement the grant program:

35 (a) The division shall provide notice on the division's website of the availability of grants and of cut-
36 off dates for applications.

37 (b) An application for a grant shall be on a form provided by the division.

38 (c) The director may provide grants on a reimbursement basis or as an advance award.

39 (d) Successful grant applicants will be required to sign a grant agreement that contains the terms
40 described in R307-125-3(4).

41 (e) State agencies and employees are eligible to participate in the program and are subject to program
42 requirements.

43 **R307-125-4. Exchange, Rebate, or Low-Cost Purchase Programs Under 19-2-203(2).**

44 (1) The director has discretion to choose whether to use an exchange, rebate or low-cost purchase
45 program.

46 (2) The division shall use the following procedures to implement an exchange, rebate or low-cost
47 purchase program:

48 (a) The division shall provide notice on the division's website of any exchange, rebate or low-cost
49 purchase program.

(b) An application for an exchange, rebate, or low-cost purchase shall be on a form provided by the division.

(c) State agencies and employees are eligible to participate in any program and are subject to program requirements.

(d) The director may establish additional procedures appropriate to the specific program.

(3) A participant in an exchange, rebate, or low-cost purchase program will be required to agree to the terms outlined in the application as determined by the director.

KEY: air quality, grants, rebates, purchase program

Date of Enactment or Last Substantive Amendment: March 3, 2017

Notice of Continuation: September 5, 2019

Authorizing, and Implemented or Interpreted Law: 19-1-203; 19-2-203

State of Utah
Administrative Rule Analysis
Revised May 2024

NOTICE OF FIVE-YEAR REVIEW AND STATEMENT OF CONTINUATION

Rule Number:	R307-501	Filing ID: Office Use Only
Effective Date:	Office Use Only	

Agency Information

1. Title catchline:	Environmental Quality, Division of Air Quality	
Building:	MASOB	
Street address:	195 N 1950 W	
City, state	Salt Lake City	
Mailing address:	PO BOX 144820	
City, state and zip:	Salt Lake City, UT 84114-4820	
Contact persons:		
Name:	Phone:	Email:
Sheila Vance	801-536-4001	svance@utah.gov
Erica Pryor	385-499-3416	epryor1@utah.gov

Please address questions regarding information on this notice to the persons listed above.

General Information

2. Rule catchline:
R307-501. Oil and Gas Industry: General Provisions.
3. A concise explanation of the particular statutory provisions under which the rule is enacted and how these provisions authorize or require this rule:
The Air Quality Board is allowed by 19-2-104(1)(a) to make rules "... regarding the control, abatement, and prevention of air pollution from all sources and the establishment of the maximum quantity of air pollutants that may be emitted by an air pollutant source." Also, 19-2-104(3)(q) allows the Board to "...meet the requirements of federal air pollution laws." In 2012, the state of Utah entered into EPA's Ozone Advance Program with the goal to proactively lower ozone values in the Uinta Basin. Ozone is created by photochemical reaction, and the main precursors are volatile organic compounds (VOC) and (NOx). In the Uinta Basin, oil and gas production accounts for 97% of anthropogenic VOC emissions. Rule R307-501 establishes general requirements for prevention of emissions and use of good air pollution control practices for all oil and gas exploration, production, transmission and distribution operations; well production facilities; natural gas compressor stations; and natural gas processing plants.
4. A summary of written comments received during and since the last five-year review of this rule from interested persons supporting or opposing this rule:
No comments were received since the last five-year review on 9/5/19.
5. A reasoned justification for continuation of this rule, including reasons why the agency disagrees with comments in opposition to this rule, if any:
Rule R307-501 is one of four rules that combats high ozone levels by lowering VOC emissions. This rule helps us to address the EPA's Ozone Advance Program with the goal to proactively lower ozone values in the Uinta Basin. Rule R307-501 establishes general requirements for prevention of emissions and use of good air pollution control practices for all oil and gas exploration, production, transmission, and distribution operations; well production facilities; natural gas compressor stations; and natural gas processing plants.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-305. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the <i>Utah State Bulletin</i> .			
Agency head or designee and title:	Bryce C. Bird, Director, Division of Air Quality	Date:	05/20/2024
Reminder: Text changes cannot be made with this type of rule filing. To change any text, please file an amendment or a nonsubstantive change.			

1 **R307. Environmental Quality, Air Quality.**

2 **R307-501. Oil and Gas Industry: General Provisions.**

3 **R307-501-1. Purpose.**

4 R307-501 establishes general requirements for prevention of emissions and use of good air pollution
5 control practices for all oil and natural gas exploration and production operations, well production facilities,
6 natural gas compressor stations, and natural gas processing plants.

7 **R307-501-2. Definitions.**

8 (1) The definitions in 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural
9 Gas Production, Transmission and Distribution, which is incorporated by reference in R307-210 apply to R307-
10 501.

11 (2) "Well production facility" means all equipment at a single stationary source directly associated
12 with one or more oil wells or gas wells. This equipment includes, but is not limited to, equipment used for
13 production, extraction, recovery, lifting, stabilization, storage, separation, treating, dehydration, combustion,
14 compression, pumping, metering, monitoring, and flowline.

15 (3) "Oil well" means an onshore well drilled principally for the production of crude oil.

16 (4) "Oil transmission" means the pipelines used for the long distance transport of crude oil, condensate,
17 or intermediate hydrocarbon liquids (excluding processing). Specific equipment used in transmission includes,
18 but is not limited to, the land, mains, valves, meters, boosters, regulators, storage vessels, dehydrators, pumps
19 and compressors, and their driving units and appurtenances. The transportation of oil or natural gas to end
20 users is not included in the definition of "transmission".

21 **R307-501-3. Applicability.**

22 (1) R307-501 applies to all oil and natural gas exploration, production, and transmission operations;
23 well production facilities; natural gas compressor stations; and natural gas processing plants in Utah.

24 (2) R307-501 does not apply to oil refineries.

25 **R307-501-4. General Provisions.**

26 (1) General requirements for prevention of emissions and use of good air pollution control practices.

27 (a) All crude oil, condensate, and intermediate hydrocarbon liquids collection, storage, processing and
28 handling operations, regardless of size, shall be designed, operated and maintained so as to minimize emission
29 of volatile organic compounds to the atmosphere to the extent reasonably practicable.

30 (b) At all times, including periods of start-up, shutdown, and malfunction, the installation and air
31 pollution control equipment shall be maintained and operated in a manner consistent with good air pollution
32 control practices for minimizing emissions.

33 (c) Determination of whether or not acceptable operating and maintenance procedures are being used
34 will be based on information available to the director, which may include, but is not limited to, monitoring
35 results, infrared camera images, opacity observations, review of operating and maintenance procedures, and
36 inspection of the source.

37 (2) General requirements for air pollution control equipment.

38 (a) All air pollution control equipment shall be operated and maintained pursuant to the manufacturing
39 specifications or equivalent to the extent practicable and consistent with technological limitations and good
40 engineering and maintenance practices.

41 (b) The owner or operator shall keep manufacturer specifications or equivalent on file.

42 (c) In addition, all such air pollution control equipment shall be adequately designed and sized to
43 achieve the control efficiency rates established in rules or in approval orders issued under R307-401 and to
44 handle reasonably foreseeable fluctuations in emissions of VOCs during normal operations. Fluctuations in
45 emissions that occur when the separator dumps into the tank are reasonably foreseeable.

46 **KEY: air pollution, oil, gas**

47 **Date of Enactment or Last Substantive Amendment: December 1, 2014**

48 **Notice of Continuation: September 5, 2019**

49 **Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)**

State of Utah
Administrative Rule Analysis
Revised May 2024

NOTICE OF FIVE-YEAR REVIEW AND STATEMENT OF CONTINUATION

Rule Number:	R307-502	Filing ID: Office Use Only
Effective Date:	Office Use Only	

Agency Information

1. Title catchline:	Environmental Quality, Division of Air Quality	
Building:	MASOB	
Street address:	195 N 1950 W	
City, state	Salt Lake City	
Mailing address:	PO BOX 144820	
City, state and zip:	Salt Lake City, UT 84114-4820	
Contact persons:		
Name:	Phone:	Email:
Erica Pryor	385-499-3416	epryor1@utah.gov
Sheila Vance	801-536-4001	svance@utah.gov

Please address questions regarding information on this notice to the persons listed above.

General Information

2. Rule catchline:
R307-502. Oil and Gas Industry: Pneumatic Controllers.
3. A concise explanation of the particular statutory provisions under which the rule is enacted and how these provisions authorize or require this rule:
The Air Quality Board is allowed by 19-2-104(1)(a) to make rules "... regarding the control, abatement, and prevention of air pollution from all sources and the establishment of the maximum quantity of air pollutants that may be emitted by an air pollutant source". Also, 19-2-104(3)(q) allows the Board to "...meet the requirements of federal air pollution laws." In 2012, the state of Utah entered into EPA's Ozone Advance Program with the goal to proactively lower ozone values in the Uintah Basin. Ozone is created by photochemical reaction, and the main precursors are volatile organic compounds (VOC) and (NOx). In the Uinta Basin, oil and gas production accounts for 97% of anthropogenic VOC emissions. Pneumatic controllers powered by pressurized natural gas are used in the oil and gas industry. In the past, high-bleed devices that vent natural gas to the atmosphere were commonly used. Oil and gas New Source Performance Standard (NSPS) OOOO requires the use of low-bleed controllers in most circumstances. Rule R307-502 would require the replacement of existing high-bleed devices with low-bleed devices so that all pneumatic controllers in the state would meet the NSPS standard. Rule R307-502 requires the replacement of existing high-bleed devices with low-bleed devices so that all pneumatic controllers in the state would meet the NSPS standard.
4. A summary of written comments received during and since the last five-year review of this rule from interested persons supporting or opposing this rule:
No comments have been received since the last five-year review on 9/5/19.
5. A reasoned justification for continuation of this rule, including reasons why the agency disagrees with comments in opposition to this rule, if any:
Rule R307-502 is one of four rules that combat high ozone levels by lowering VOC emissions. This rule helps us to address the EPA's Ozone Advance Program with the goal to proactively lower ozone values in the Uintah Basin. Rule R307-502 requires the replacement of existing high-bleed devices with low-bleed devices so that all pneumatic controllers in the state would meet the NSPS standard. Ozone continues to be monitored at levels above the National Ambient Air Quality Standard along the Wasatch Front and Uintah Basin. As operators have already invested to comply with the rule there is no additional impact to continue to comply and reduce emissions of ozone precursors.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-305. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin*.

Agency head or designee and title:	Bryce C. Bird, Director, Division of Air Quality	Date:	05/20/2024
---	--	--------------	------------

Reminder: Text changes cannot be made with this type of rule filing. To change any text, please file an amendment or a nonsubstantive change.

1 **R307. Environmental Quality, Air Quality.**

2 **R307-502. Oil and Gas Industry: Pneumatic Controllers.**

3 **R307-502-1. Purpose.**

4 (1) The purpose of R307-502 is to reduce emissions of volatile organic compounds from pneumatic
5 controllers that are associated with oil and gas operations.

6 (2) The rule requires existing pneumatic controllers to meet the standards established for new
7 controllers in 40 CFR Part 60, Subpart OOOO.

8 **R307-502-2. Definitions.**

9 (1) The definitions in 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural
10 Gas Production, Transmission and Distribution, which is incorporated by reference in R307-210 apply to R307-
11 502.

12 (2) "Existing pneumatic controller" means a pneumatic controller affected facility as described in 40
13 CFR 60.5365(d)(1) through (3) that was constructed, modified, or reconstructed prior to October 15, 2013.

14 **R307-502-3. Applicability.**

15 R307-502 applies to the owner or operator of any existing pneumatic controller in Utah.

16 **R307-502-4. Retrofit Requirements.**

17 (1) Effective December 1, 2015, all existing pneumatic controllers in Duchesne County or Uintah
18 County shall meet the standards established for pneumatic controller affected facilities that are constructed,
19 modified or reconstructed on or after October 15, 2013, as specified in 40 CFR 60, Subpart OOOO Standards
20 of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.

21 (2) Effective April 1, 2017 all existing pneumatic controllers in Utah shall meet the standards
22 established for pneumatic controller affected facilities that are constructed, modified or reconstructed on or
23 after October 15, 2013 as specified in 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and
24 Natural Gas Production, Transmission and Distribution.

25 **R307-502-5. Documentation Required.**

26 (1) The tagging requirements in 40 CFR 60.5390(b)(2) and 40 CFR 60.5390(c)(2), incorporated by
27 reference in R307-210, are modified to not require the month and year of installation, reconstruction or
28 modification for existing pneumatic controllers.

29 (2) The recordkeeping requirements in 40 CFR 60.5420(c)(4)(i), incorporated by reference in R307-
30 210, are modified to not require records of the date of installation or manufacturer specifications for existing
31 pneumatic controllers.

32 **KEY: air pollution, oil, gas, pneumatic controllers**

33 **Date of Enactment or Last Substantive Amendment: December 1, 2014**

34 **Notice of Continuation: September 5, 2019**

35 **Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)**

State of Utah
Administrative Rule Analysis
Revised May 2024

NOTICE OF FIVE-YEAR REVIEW AND STATEMENT OF CONTINUATION

Rule Number:	R307-503	Filing ID: Office Use Only
Effective Date:	Office Use Only	

Agency Information

1. Title catchline:	Environmental Quality, Division of Air Quality	
Building:	MASOB	
Street address:	195 N 1950 W	
City, state	Salt Lake City	
Mailing address:	PO BOX 144820	
City, state and zip:	Salt Lake City, UT 84114-4820	
Contact persons:		
Name:	Phone:	Email:
Erica Pryor	385-499-3416	epryor1@utah.gov
Sheila Vance	801-536-4001	svance@utah.gov

Please address questions regarding information on this notice to the persons listed above.

General Information

2. Rule catchline:
R307-503. Oil and Gas Industry: Flares.
3. A concise explanation of the particular statutory provisions under which the rule is enacted and how these provisions authorize or require this rule:
The Air Quality Board is allowed by 19-2-104(1)(a) to make rules "... regarding the control, abatement, and prevention of air pollution from all sources and the establishment of the maximum quantity of air pollutants that may be emitted by an air pollutant source." Also, 19-2-104(3)(q) allows the Board to "...meet the requirements of federal air pollution laws." In 2012, the state of Utah entered into EPA's Ozone Advance Program with the goal to proactively lower ozone values in the Uintah Basin. Ozone is created by photochemical reaction, and the main precursors are volatile organic compounds (VOC) and (NOx). In the Uinta Basin, oil and gas production accounts for 97% of anthropogenic VOC emissions. New or modified oil and gas well production sites are required to capture and control VOC emissions, and the typical control device is a flare. Utah's General Approval Order (GAO) for a Crude Oil and Natural Gas Well Site and/or Tank Battery requires the VOC control device to reduce VOC emissions by 98%. The GAO requires continuous compliance with this control efficiency standard. Rule R307-503 would require all new flares to be equipped with a self-igniter to relight the pilot light if the flame is extinguished.
4. A summary of written comments received during and since the last five-year review of this rule from interested persons supporting or opposing this rule:
No comments have been received since the last five-year review on 9/5/19.
5. A reasoned justification for continuation of this rule, including reasons why the agency disagrees with comments in opposition to this rule, if any:
Rule R307-503 is one of four rules that combat high ozone levels by lowering VOC emissions. This rule helps us to address the EPA's Ozone Advance Program with the goal to proactively lower ozone values in the Uintah Basin. Further, R307-503 addresses the issue of unmanned well production sites. Unmanned well production sites are an issue because of a possible wind or surge of gas blowing out the pilot light possibly causing the combustion device to cease working for an extended period until personnel visit the site and relight the pilot light. Rule R307-503 would require all new flares to be equipped with a self-igniter to relight the pilot light if the flame is extinguished. Ozone continues to be monitored at levels above the National Ambient Air Quality Standard along the Wasatch Front and Uintah Basin. As operators have already invested to comply with the rule there is no additional impact to continue to comply and reduce emissions of ozone precursors.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-305. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the *Utah State Bulletin*.

Agency head or designee and title:	Bryce C. Bird, Director, Division of Air Quality	Date:	05/20/2024
Reminder: Text changes cannot be made with this type of rule filing. To change any text, please file an amendment or a nonsubstantive change.			

1 **R307. Environmental Quality, Air Quality.**

2 **R307-503. Oil and Gas Industry: Flares.**

3 **R307-503-1. Purpose.**

4 R307-503 establishes conditions to ensure that flares used in the oil and gas industry are operated
5 effectively.

6 **R307-503-2. Definitions.**

7 (1) "Auto igniter" means a device which will automatically attempt to relight the pilot flame of a flare
8 in order to combust volatile organic compound emissions.

9

10 (2) "Enclosed flare" means a flare that has an enclosed flame.

11 (3) "Flare" means a thermal oxidation system designed to combust hydrocarbons in the presence of a
12 flame.

13 (4) "Open flare" means a flare that has an open (without enclosure) flame.

14 **R307-503-3. Applicability.**

15 (1) R307-503 applies to all oil and gas exploration and production operations, well sites, natural gas
16 compressor stations, and natural gas processing plants in Utah.

17 (2) R307-503 does not apply to oil refineries.

18 **R307-503-4. Auto-Igniters.**

19 (1) Flares used to control emissions of volatile organic compounds shall be equipped with and operate
20 an auto-igniter as follows:

21 (a) All open flares and all enclosed flares installed on or after January 1, 2015, shall be equipped with
22 an operational auto-igniter upon installation of the flare.

23 (b) All enclosed flares installed before January 1, 2015 in Duchesne County or Uintah County shall
24 be equipped with an operational auto-igniter by December 1, 2015, or after the next flare planned shutdown,
25 whichever comes first.

26 (c) All enclosed flares installed before January 1, 2015 in all other areas of Utah shall be equipped
27 with an operational auto-igniter by April 1, 2017, or after the next flare planned shutdown, whichever comes
28 first.

29 **R307-503-5. Recordkeeping.**

30 The owner or operator shall maintain records demonstrating the date of installation and manufacturer
31 specifications for each auto-igniter required under R307-503-4.

32 **KEY: air pollution, oil, gas, flares**

33 **Date of Enactment or Last Substantive Amendment: December 1, 2014**

34 **Notice of Continuation: September 5, 2019**

35 **Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)**

State of Utah
Administrative Rule Analysis
Revised May 2024

NOTICE OF FIVE-YEAR REVIEW AND STATEMENT OF CONTINUATION

Rule Number:	R307-504	Filing ID: Office Use Only
Effective Date:	Office Use Only	

Agency Information

1. Title catchline:	Environmental Quality, Division of Air Quality	
Building:	MASOB	
Street address:	195 N 1950 W	
City, state	Salt Lake City	
Mailing address:	PO BOX 144820	
City, state and zip:	Salt Lake City, UT 84114-4820	
Contact persons:		
Name:	Phone:	Email:
Erica Pryor	385-499-3416	epryor1@utah.gov
Sheila Vance	801-536-4001	svance@utah.gov

Please address questions regarding information on this notice to the persons listed above.

General Information

2. Rule catchline:
R307-504. Oil and Gas Industry: Tank Truck Loading.
3. A concise explanation of the particular statutory provisions under which the rule is enacted and how these provisions authorize or require this rule:
The Air Quality Board is allowed by 19-2-104(1)(a) to make rules "... regarding the control, abatement, and prevention of air pollution from all sources and the establishment of the maximum quantity of air pollutants that may be emitted by an air pollutant source." Also, 19-2-104(3)(q) allows the Board to "...meet the requirements of federal air pollution laws." In 2012, the state of Utah entered into EPA's Ozone Advance Program with the goal to proactively lower ozone values in the Uintah Basin. Ozone is created by photochemical reaction, and the main precursors are volatile organic compounds (VOC) and (NOx). In the Uintah Basin, oil and gas production accounts for 97% of anthropogenic VOC emissions. The General Approval Order for a Crude Oil and Natural Gas Well Site and/or Tank Battery contains a requirement that all tanker trucks loading on-site use either bottom filling or submerged filling to reduce VOC emissions created by splashing of liquids when loading oil, condensate, or produced water. Rule R307-504 expands this requirement to all existing operations.
4. A summary of written comments received during and since the last five-year review of this rule from interested persons supporting or opposing this rule:
No comments have been received since the last five-year review on 9/5/19.
5. A reasoned justification for continuation of this rule, including reasons why the agency disagrees with comments in opposition to this rule, if any:
Since January 1, 2015, tank trucks used for intermediate hydrocarbon liquid or produced water are required to load using bottom filling or submerged fill pipe. The rule applies to any person who loads or permits the loading of any intermediate hydrocarbon liquid or produced water at a well production facility. Ozone continues to be monitored at levels above the National Ambient Air Quality Standard along the Wasatch Front and Uintah Basin. As operators have already invested to comply with the rule there is no additional impact to continue to comply and reduce emissions of ozone precursors.

Agency Authorization Information

To the agency: Information requested on this form is required by Section 63G-3-305. Incomplete forms will be returned to the agency for completion, possibly delaying publication in the <i>Utah State Bulletin</i> .			
Agency head or designee and title:	Bryce C. Bird, Director, Division of Air Quality	Date:	05/20/2024
Reminder: Text changes cannot be made with this type of rule filing. To change any text, please file an amendment or a nonsubstantive change.			

1 **R307. Environmental Quality, Air Quality.**

2 **R307-504. Oil and Gas Industry: Tank Truck Loading.**

3 **R307-504-1. Purpose.**

4 R307-504 establishes control requirements for the loading of liquids containing volatile organic
5 compounds (VOCs) at oil or gas well sites.

7 **R307-504-2. Definitions.**

8 The definitions in 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural
9 Gas Production, Transmission and Distribution, incorporated by reference in R307-210, apply to R307-504.

10 "Bottom Filling" means the filling of a tank through an inlet at or near the bottom of the tank designed
11 to have the opening covered by the liquid after the pipe normally used to withdraw liquid can no longer
12 withdraw any liquid.

13 "Submerged Fill Pipe" means any fill pipe with a discharge opening which is entirely submerged when
14 the liquid level is six inches above the bottom of the tank and the pipe normally used to withdraw liquid from
15 the tank can no longer withdraw any liquid.

16 "Vapor Capture Line" means a connection hose, fitted with a valve that can be connected to tanker
17 trucks during truck loading operations. The vapor capture line shall be designed, installed, operated, and
18 maintained to optimize capture efficiency.

19 "Well Site" means all equipment at a single stationary source directly associated with one or more oil
20 wells or gas wells.

22 **R307-504-3. Applicability.**

23 (1) R307-504-4(1) applies to any person who loads or permits the loading of any intermediate
24 hydrocarbon liquid or produced water at a well site after January 1, 2015.

25 (2) R307-504-4(2) applies to owners and operators that are required to control emissions from storage
26 vessels in accordance with R307-506.

28 **R307-504-4. Tank Truck Loading Requirements.**

29 (1) Tanker trucks used for intermediate hydrocarbon liquid or produced water shall be loaded using
30 bottom filling or a submerged fill pipe.

31 (2) VOC emissions during truck loading operations shall be controlled at all times using a vapor
32 capture line. The vapor capture line shall be connected from the tanker truck to a control device or process,
33 resulting in a minimum 95 percent VOC destruction efficiency.

34 (a) Well sites in operation on January 1, 2018 shall comply with R307-504-4(2) no later than July 1,
35 2019.

37 **KEY: air pollution, oil, gas**

38 **Date of Enactment or Last Substantive Amendment: March 5, 2018**

39 **Notice of Continuation: September 5, 2019**

40 **Authorizing, and Implemented or Interpreted Law: 19-2-104(1)(a)**

ITEM 7

Air Toxics

State of Utah

SPENCER J. COX
Governor

DEIDRE HENDERSON
Lieutenant Governor

Department of
Environmental Quality

Kimberly D. Shelley
Executive Director

DIVISION OF AIR QUALITY
Bryce C. Bird
Director

DAQA-350-24

M E M O R A N D U M

TO: Air Quality Board

FROM: Bryce C. Bird, Executive Secretary

DATE: June 3, 2024

SUBJECT: Air Toxics, Lead-Based Paint, and Asbestos (ATLAS) Section Compliance Activities – May 2024

Asbestos Demolition/Renovation NESHAP Inspections	25
Asbestos AHERA Inspections	24
Asbestos State Rules Only Inspections	2
Asbestos Notification Forms Accepted	243
Asbestos Telephone Calls	333
Asbestos Individuals Certifications Approved	81
Asbestos Company Certifications	9
Asbestos Alternate Work Practices Approved	4
Lead-Based Paint (LBP) Inspections	0
LBP Notification Forms Approved	0
LBP Telephone Calls	40
LBP Letters Prepared and Mailed	1
LBP Courses Reviewed/Approved	0
LBP Course Audits	0
LBP Individual Certifications Approved	16

LBP Firm Certifications	12
Notices of Violation Sent	0
Compliance Advisories Sent	13
Warning Letters Sent	4
Settlement Agreements Finalized	0

Compliance

State of Utah

SPENCER J. COX
Governor

DEIDRE HENDERSON
Lieutenant Governor

Department of
Environmental Quality

Kimberly D. Shelley
Executive Director

DIVISION OF AIR QUALITY
Bryce C. Bird
Director

DAQC-563-24

M E M O R A N D U M

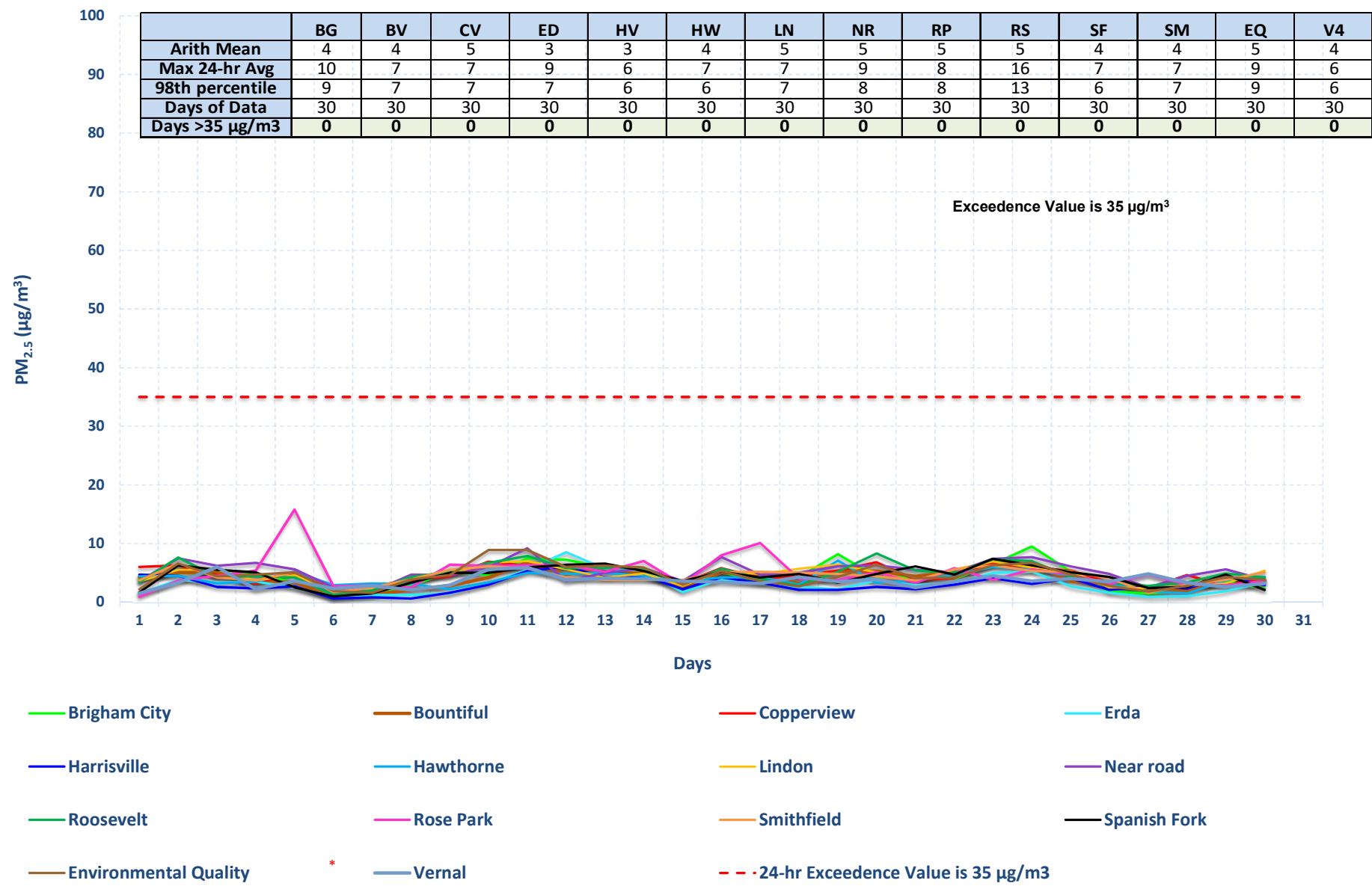
TO: Air Quality Board
FROM: Bryce C. Bird, Executive Secretary
DATE: June 7, 2024
SUBJECT: Compliance Activities – May 2024

ACTIVITIES:

Activity	Monthly Total	36-Month Average
Inspections	83	59
On-Site Stack Test & CEM Audits	3	4
Stack Test & RATA Report Reviews	28	36
Emission Report Reviews	16	17
Temporary Relocation Request Reviews	7	6
Fugitive Dust Control Plan Reviews	149	126
Soil Remediation Report Reviews	2	2
Open Burn Permits Issued	2,219	524
Miscellaneous Inspections ¹	10	16
Complaints Received	16	17
Wood Burning Complaints Received	0	3
Breakdown Reports Received	1	1
Compliance Actions Resulting from a Breakdown	0	0
VOC Inspections (Gas station vapor recovery)	0	0
Warning Letters Issued	0	2
Notices of Violation Issued	0	0
Compliance Advisories Issued	9	5
No Further Action Letters Issued	6	2
Settlement Agreements Reached	3	2
Penalties Assessed	\$4,621.00	\$120,639.51

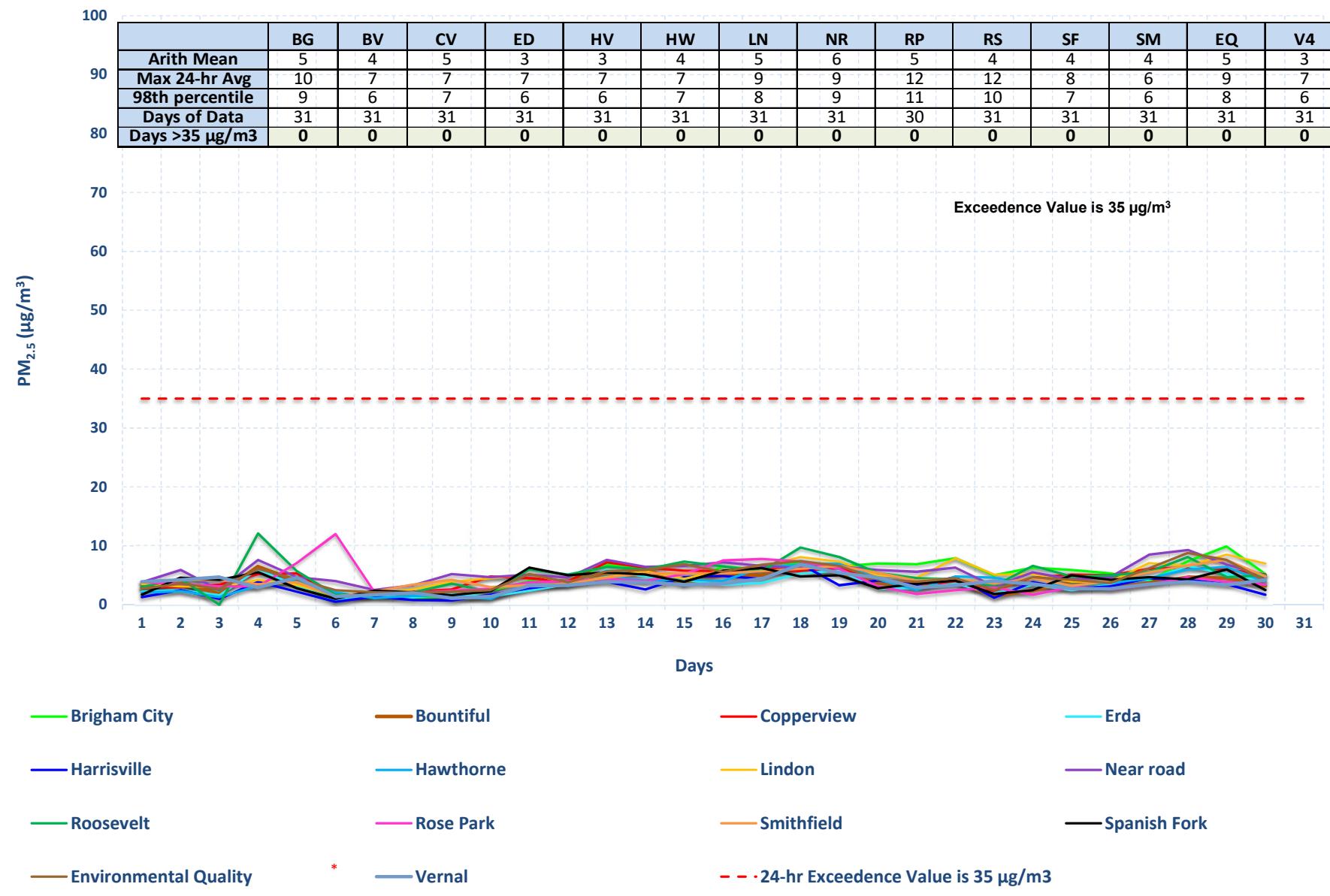
¹Miscellaneous inspections include, e.g., surveillance, complaint, on-site training, dust patrol, smoke patrol, open burning, etc.

SETTLEMENT AGREEMENTS:

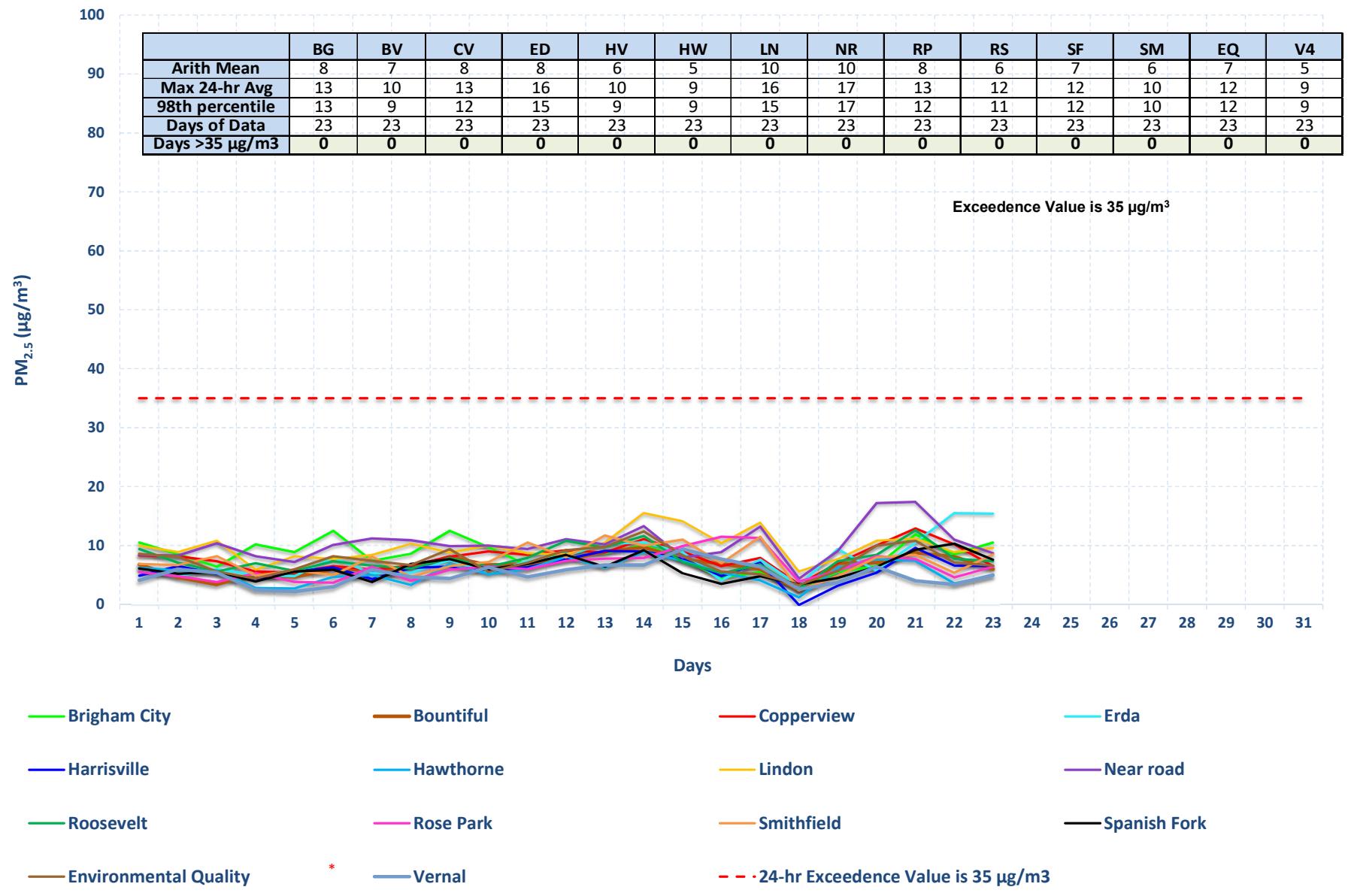

Party	Amount
Adolfo Rodriguez – Residential Burning on Mandatory Action Day	\$150.00
Snowbird Resort LLC	\$471.00
Compass Minerals	\$4,000.00

UNRESOLVED NOTICES OF VIOLATION:

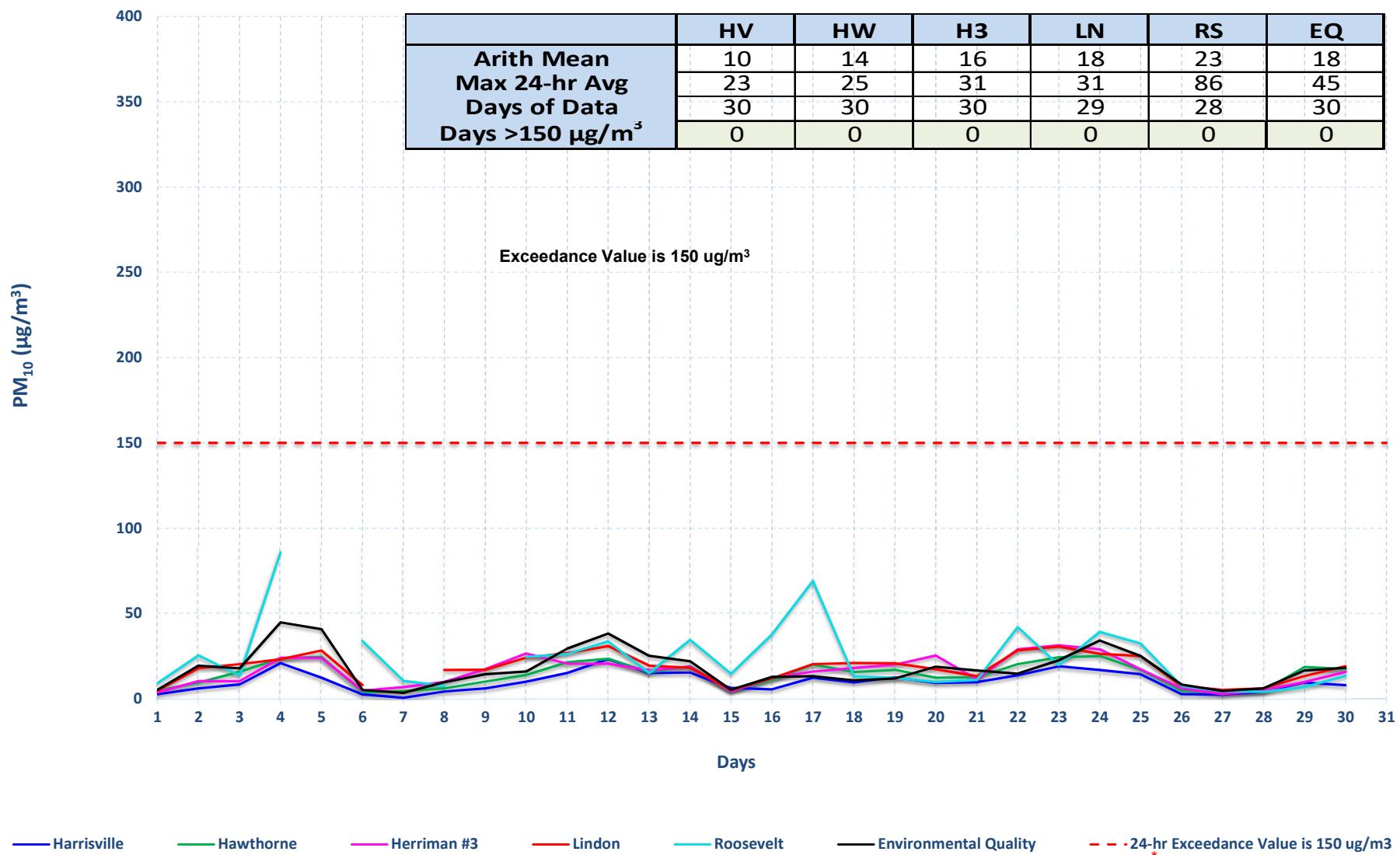
Party	Date Issued
Citation Oil and Gas (in administrative litigation)	01/15/2020
Ovintiv Production Inc.	07/14/2020
Uinta Wax Operating (formerly CH4 Finley)	07/24/2020
Finley Resources	09/15/2022
Holcim	12/19/2023
Holcim	03/01/2024
Holcim	03/27/2024


Air Monitoring

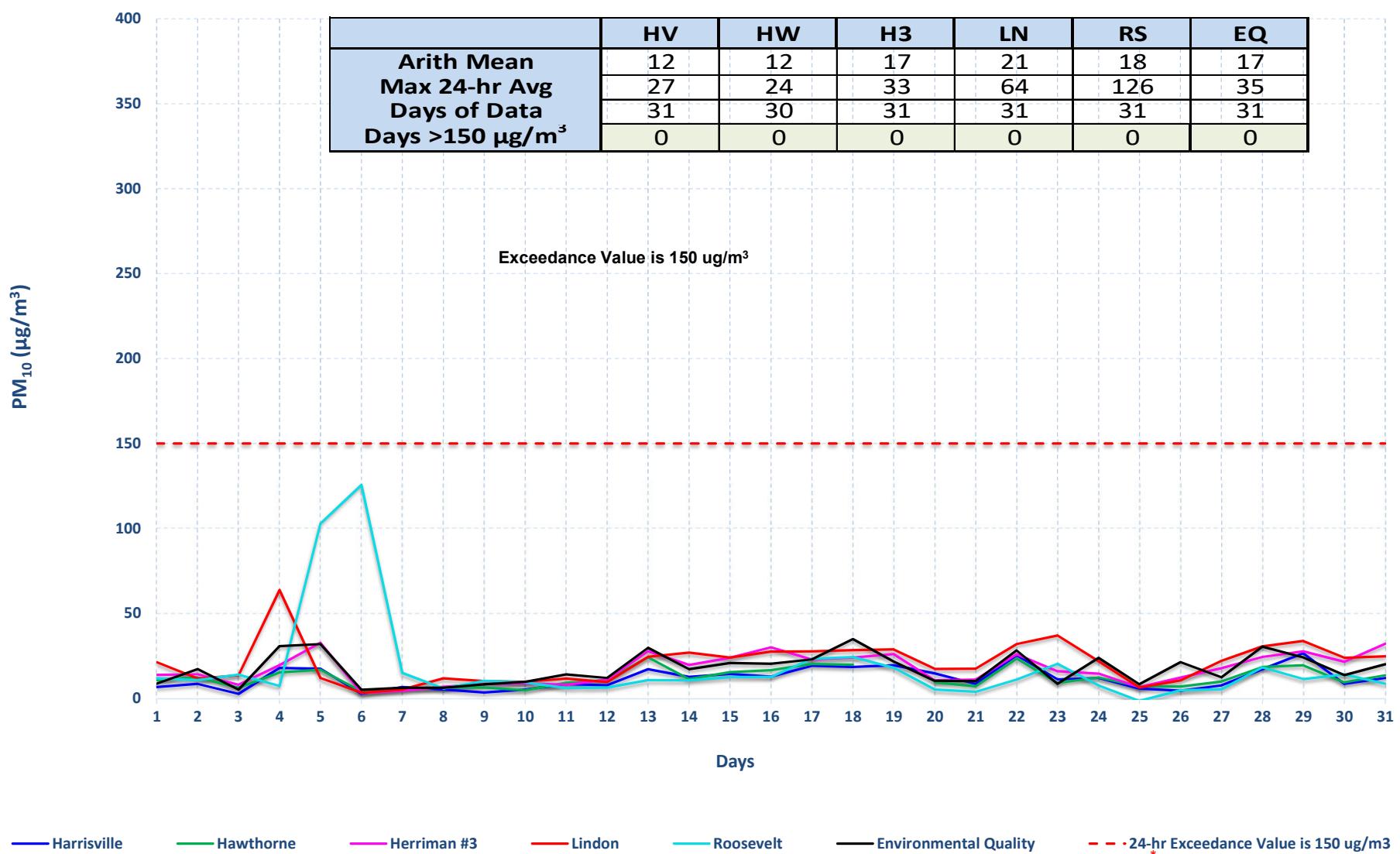
Utah 24-Hr PM_{2.5} Data April 2024



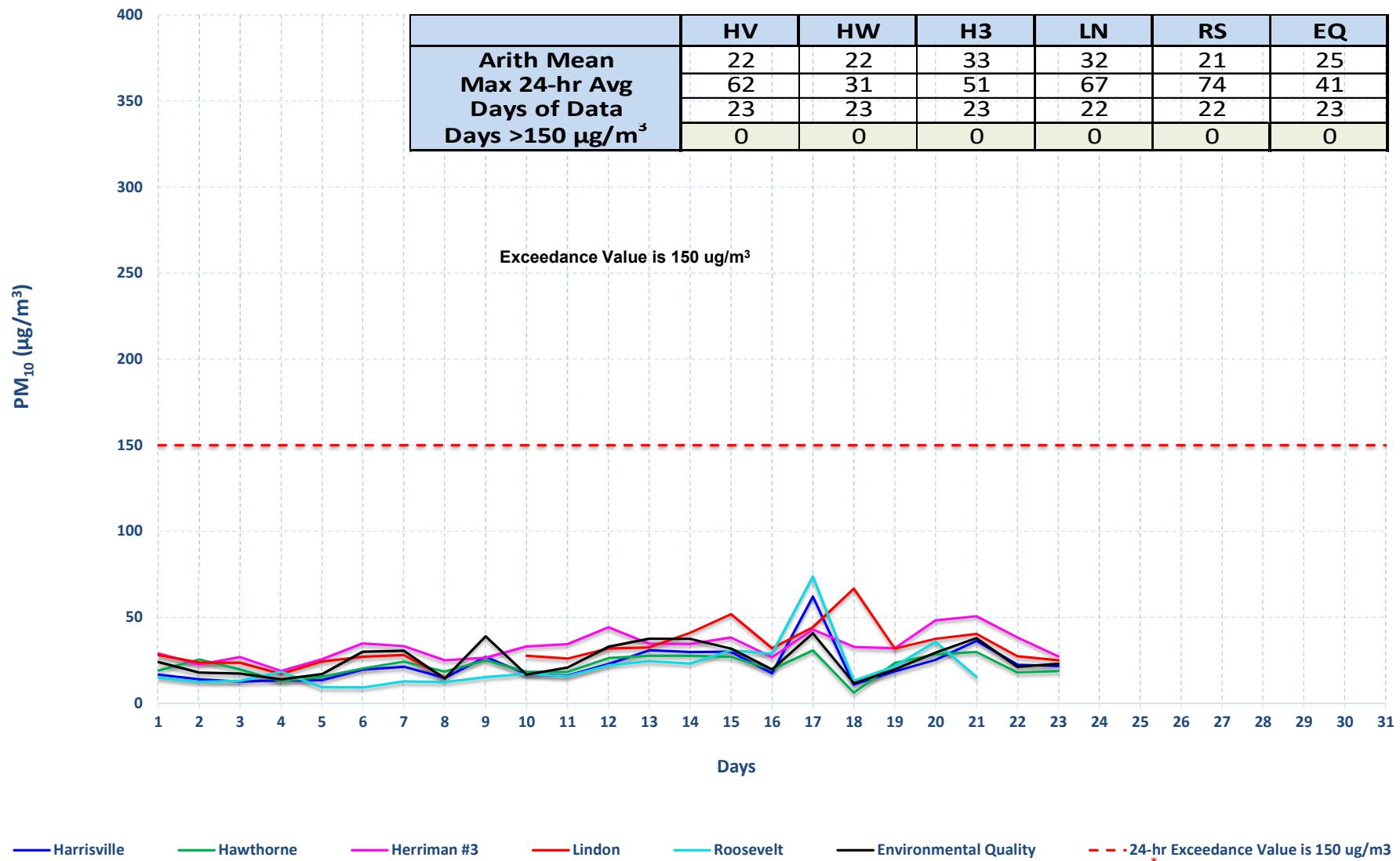
* Environmental Quality (EQ) previously named Technical Support Center (TSC)


Utah 24-Hr PM_{2.5} Data May 2024

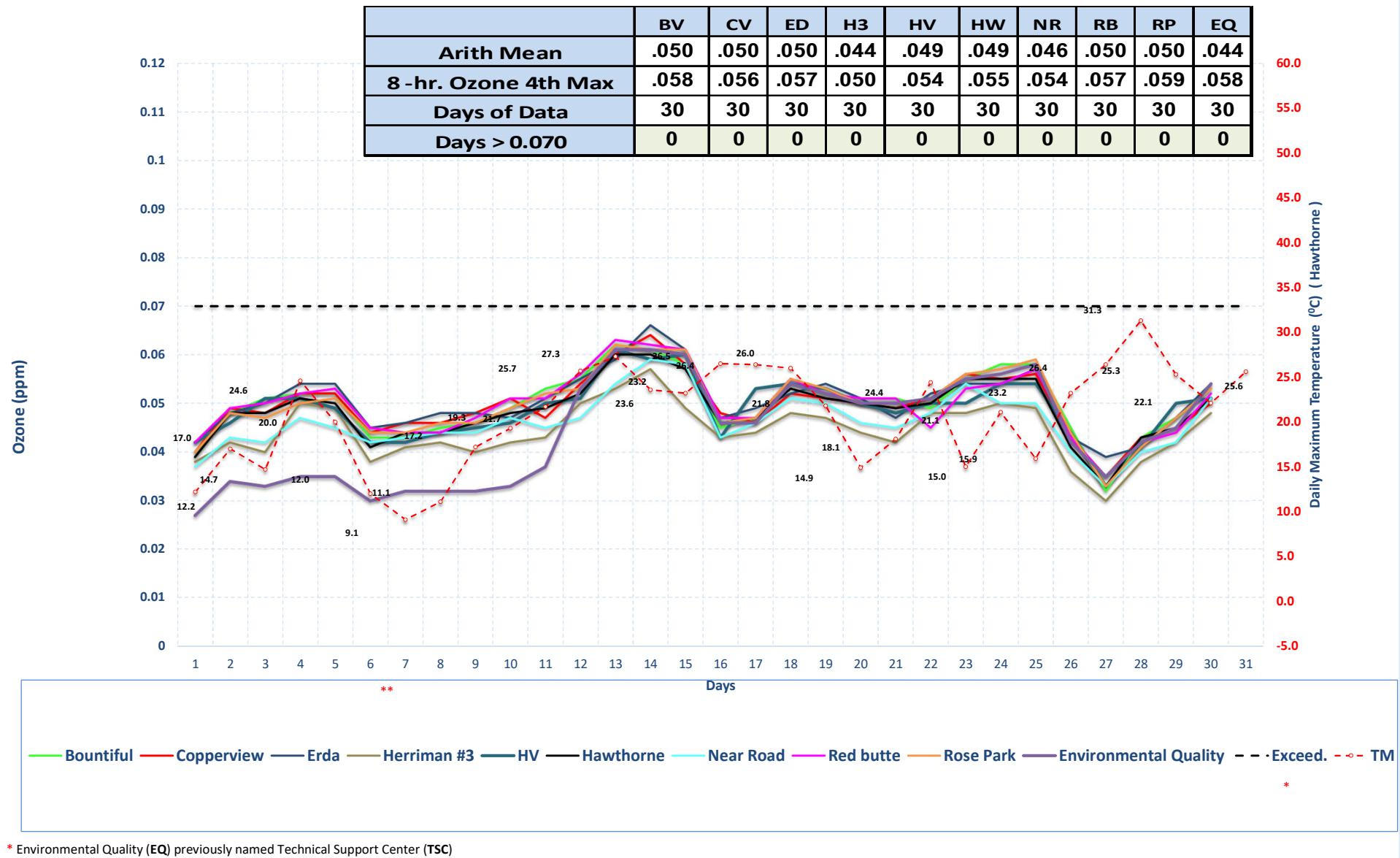
Utah 24-Hr PM_{2.5} Data June 2024


Utah 24-hr PM₁₀ Data April 2024

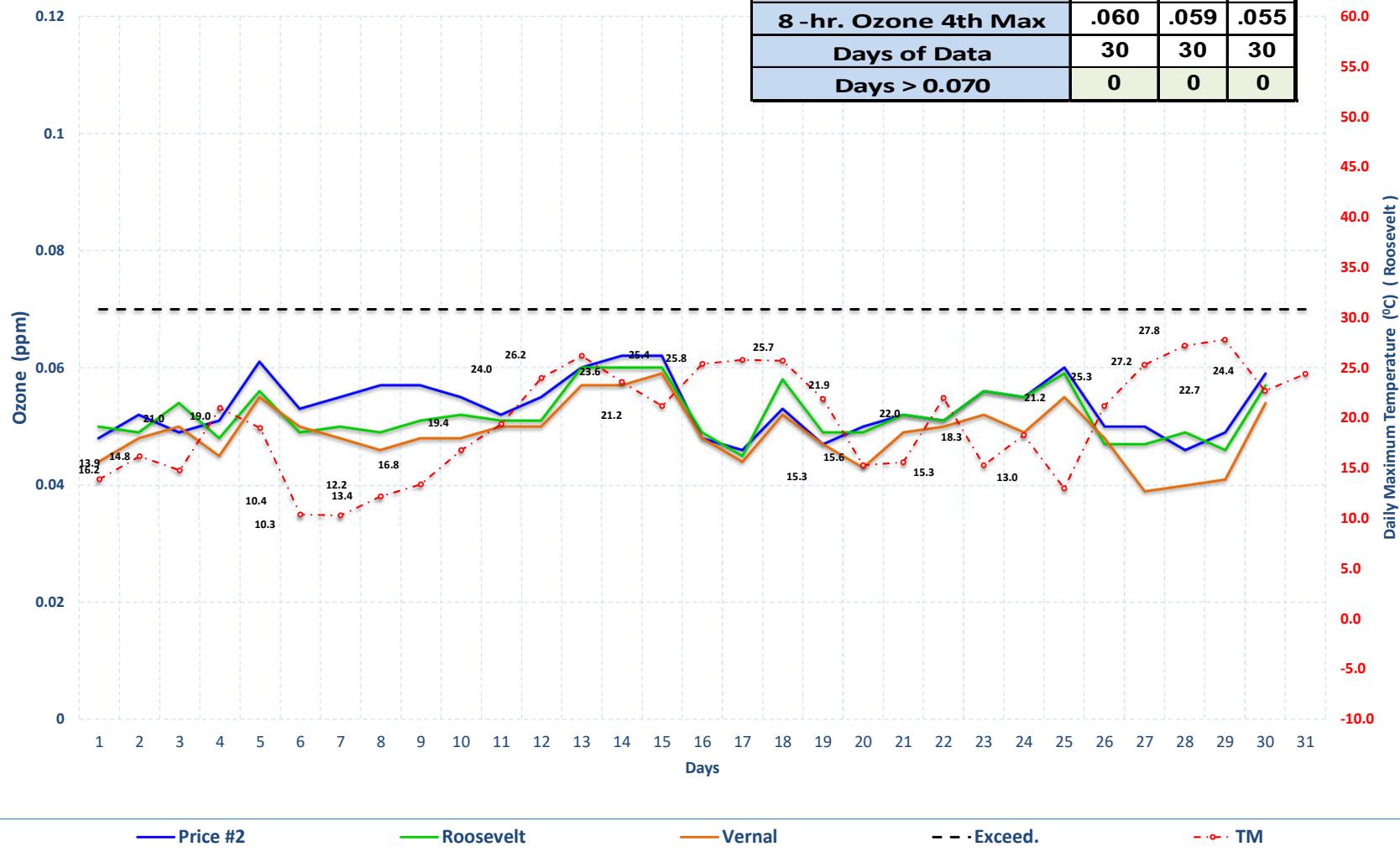
* Environmental Quality (EQ) previously named Technical Support Center (TSC)


Utah 24-hr PM₁₀ Data May 2024

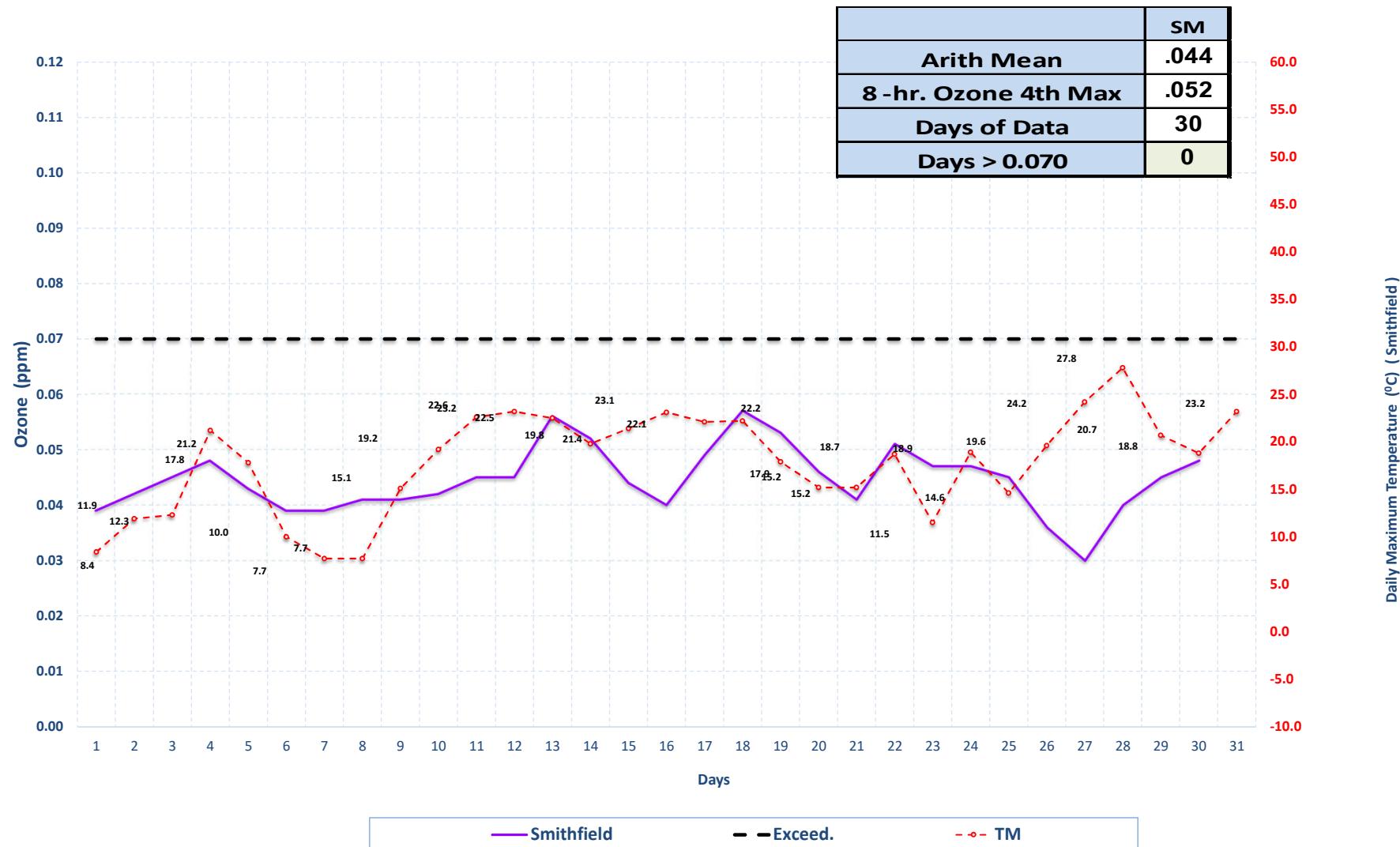
	HV	HW	H3	LN	RS	EQ
Arith Mean	12	12	17	21	18	17
Max 24-hr Avg	27	24	33	64	126	35
Days of Data	31	30	31	31	31	31
Days >150 µg/m³	0	0	0	0	0	0


* Environmental Quality (EQ) previously named Technical Support Center (TSC)

Utah 24-hr PM₁₀ Data June 2024

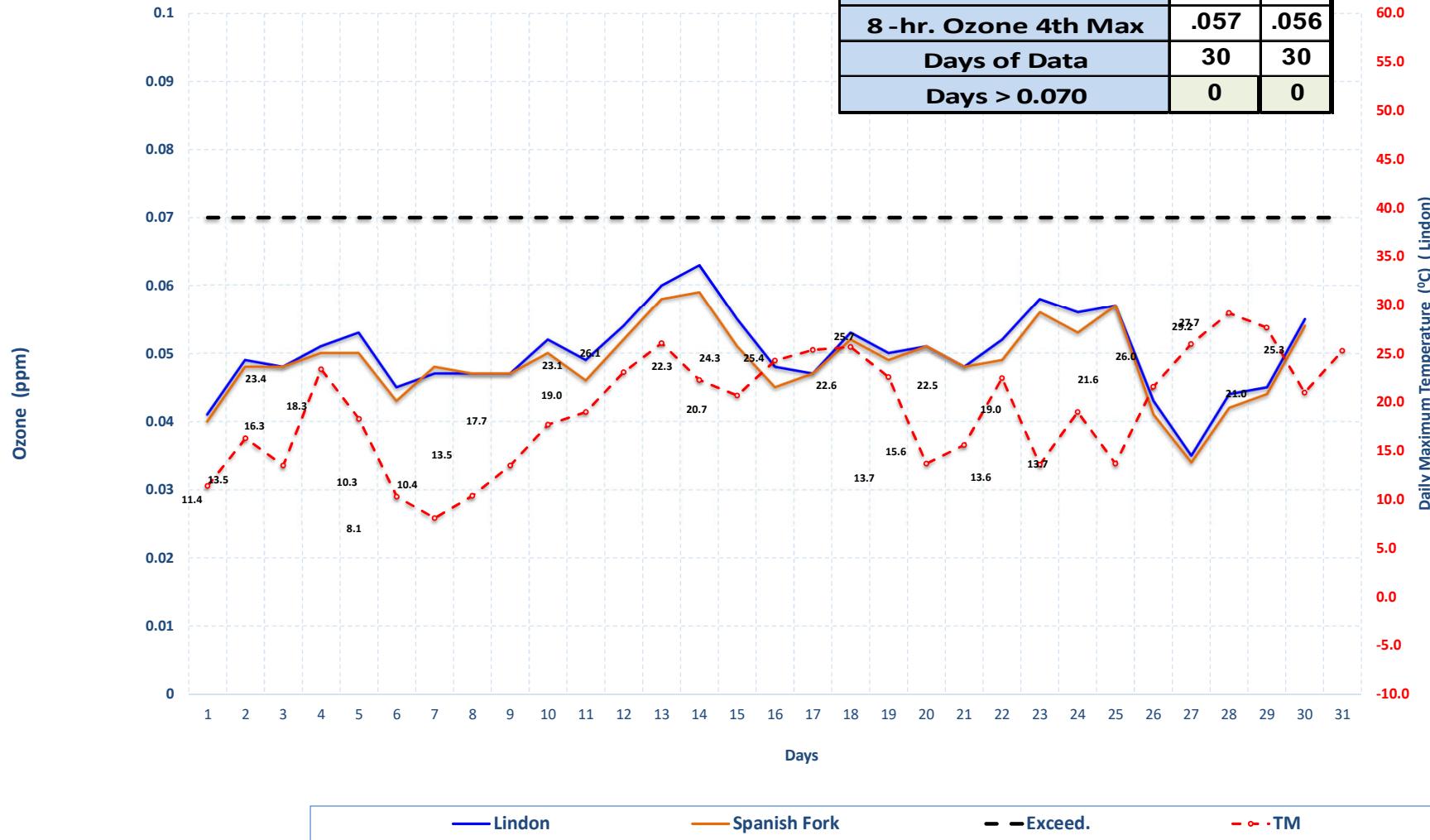

* Environmental Quality (EQ) previously named Technical Support Center (TSC)

Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2024

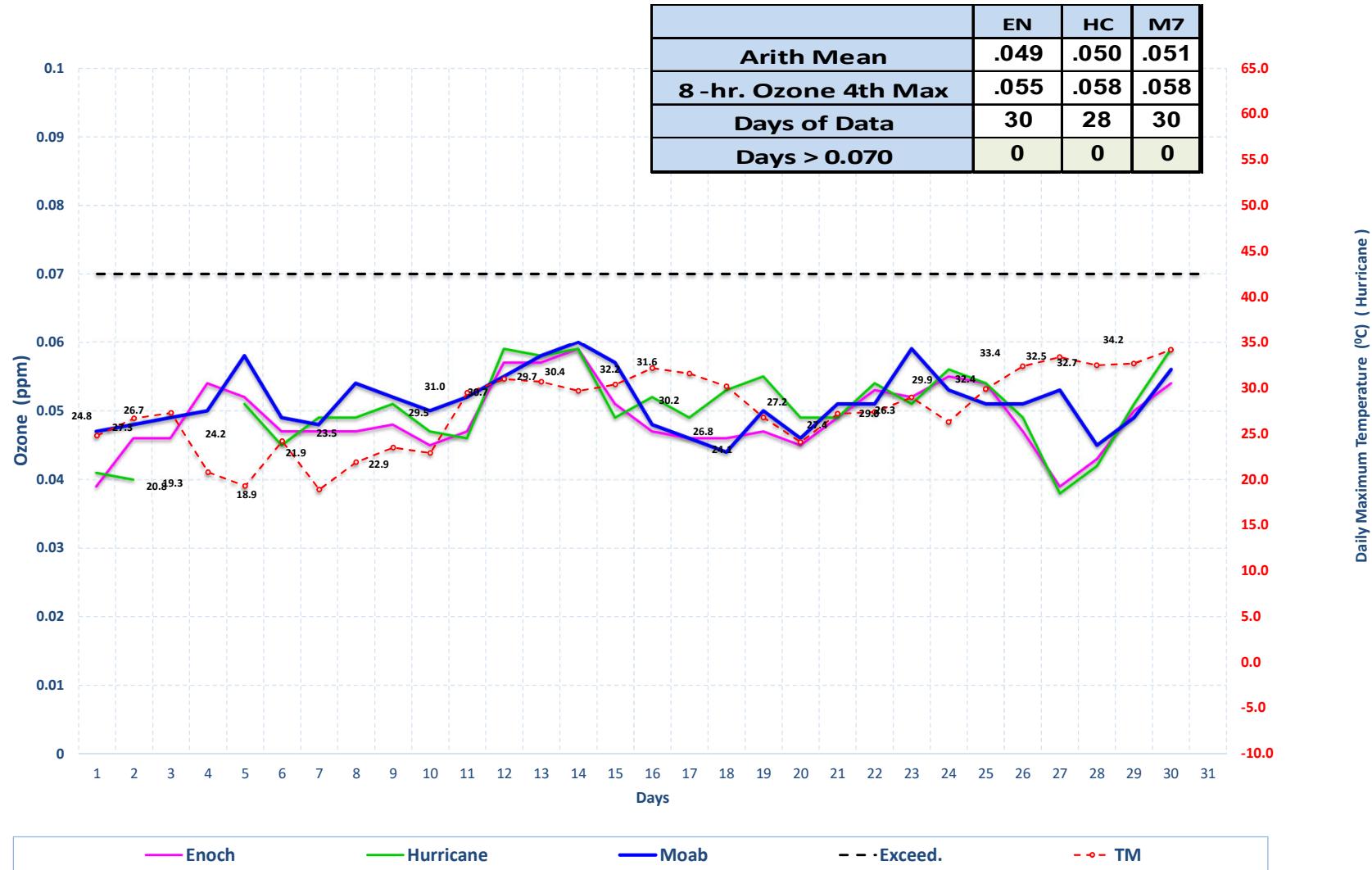


Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2024

	P2	RS	V4
Arith Mean	.053	.052	.049
8 -hr. Ozone 4th Max	.060	.059	.055
Days of Data	30	30	30
Days > 0.070	0	0	0

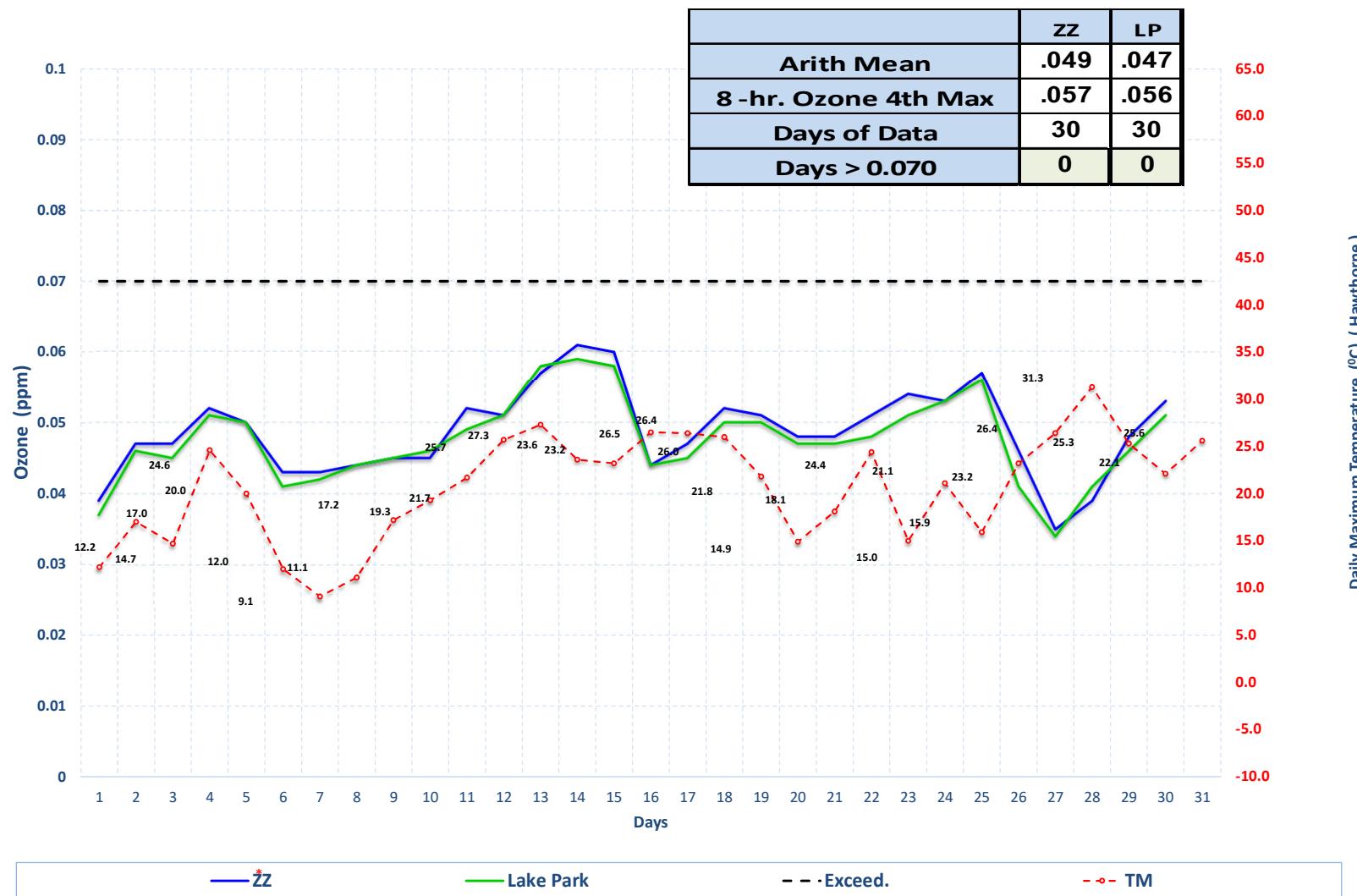


Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2024

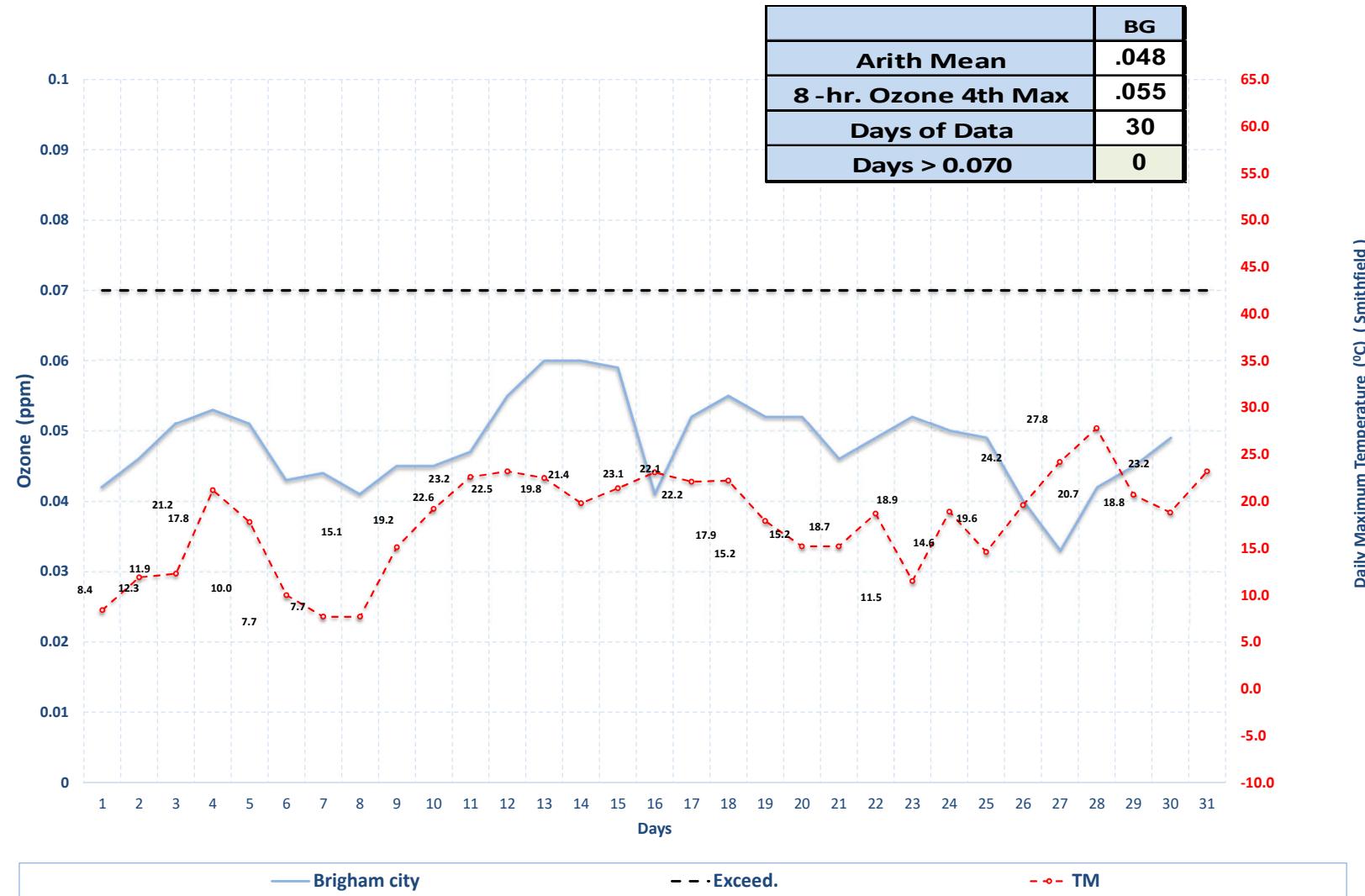


Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2024

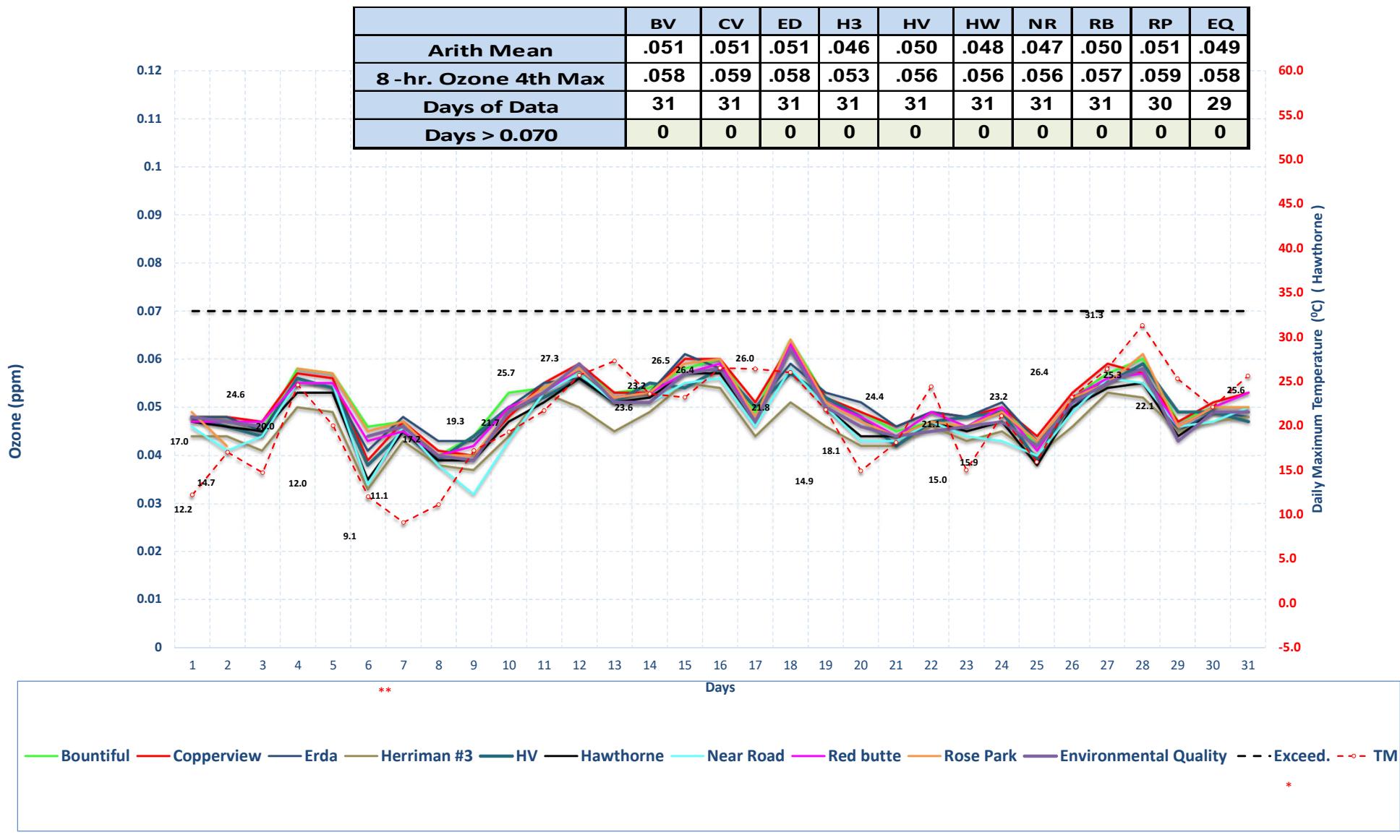
	LN	SF
Arith Mean	.050	.048
8 -hr. Ozone 4th Max	.057	.056
Days of Data	30	30
Days > 0.070	0	0



Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2024


Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2024

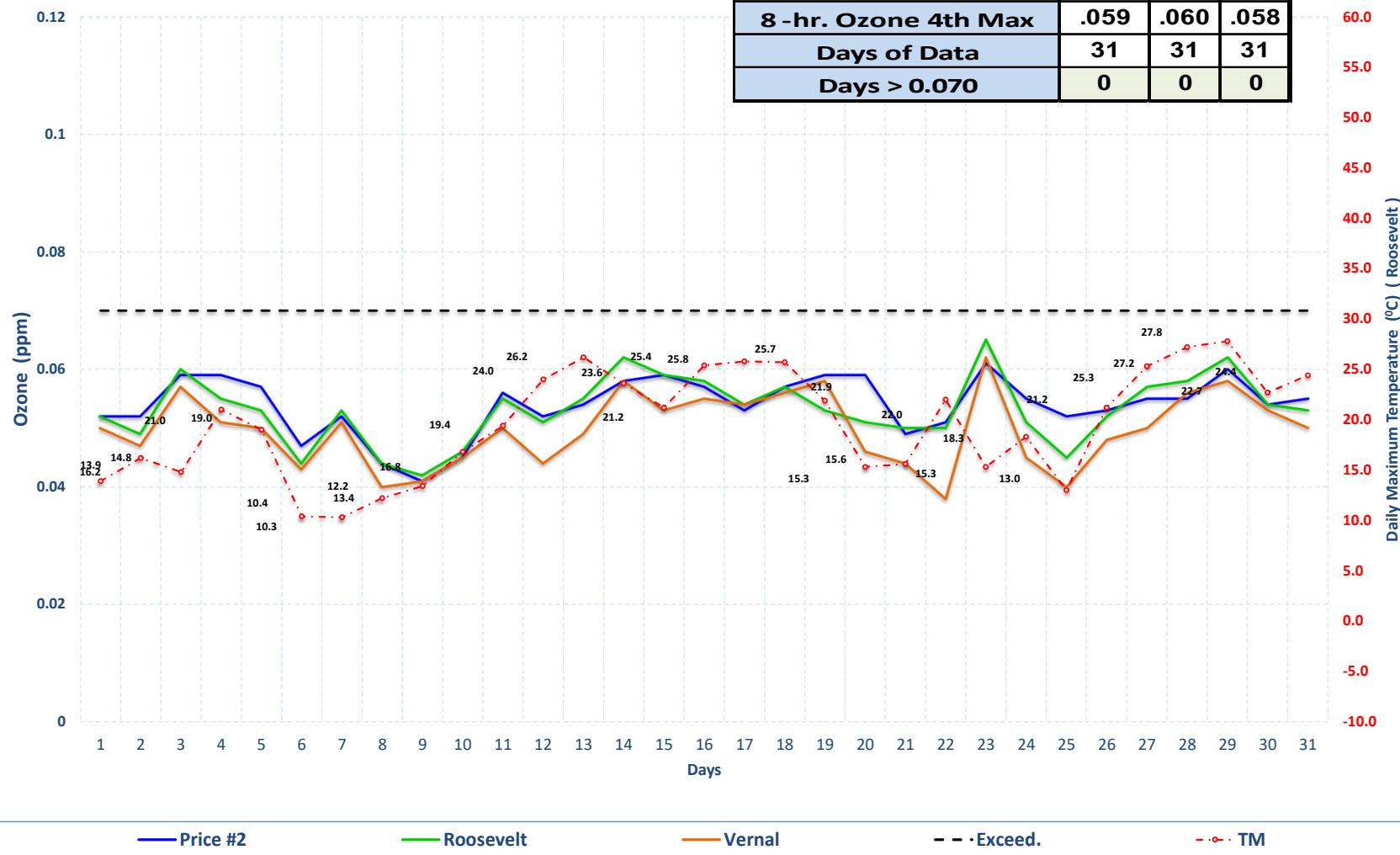
Stations Monitoring the Inland Port Development



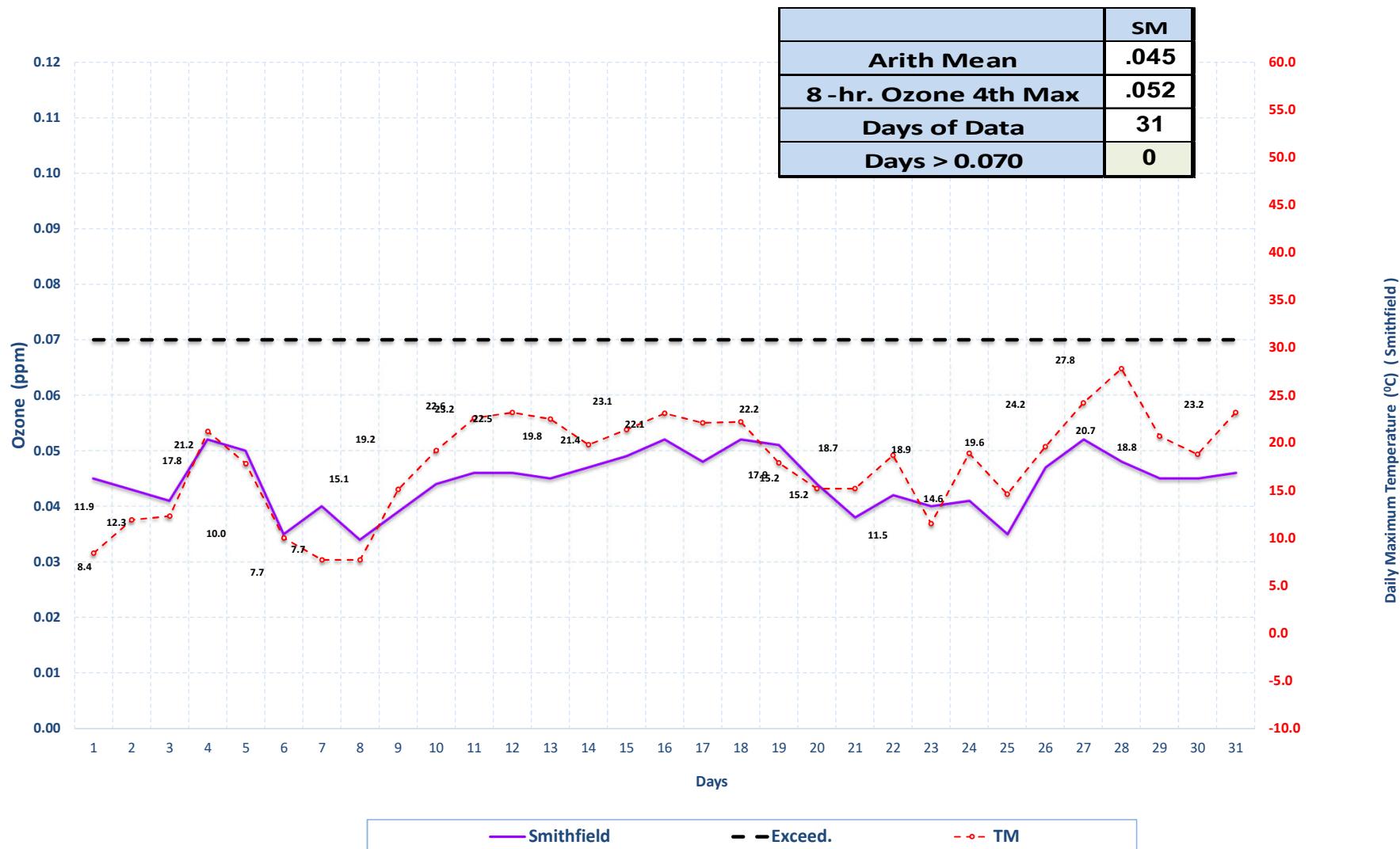
* ZZ is located at the New Utah State Prison (1480 North 8000 West, SLC).
This site was previously named IP

Highest 8-hr Ozone Concentration & Daily Maximum Temperature April 2024

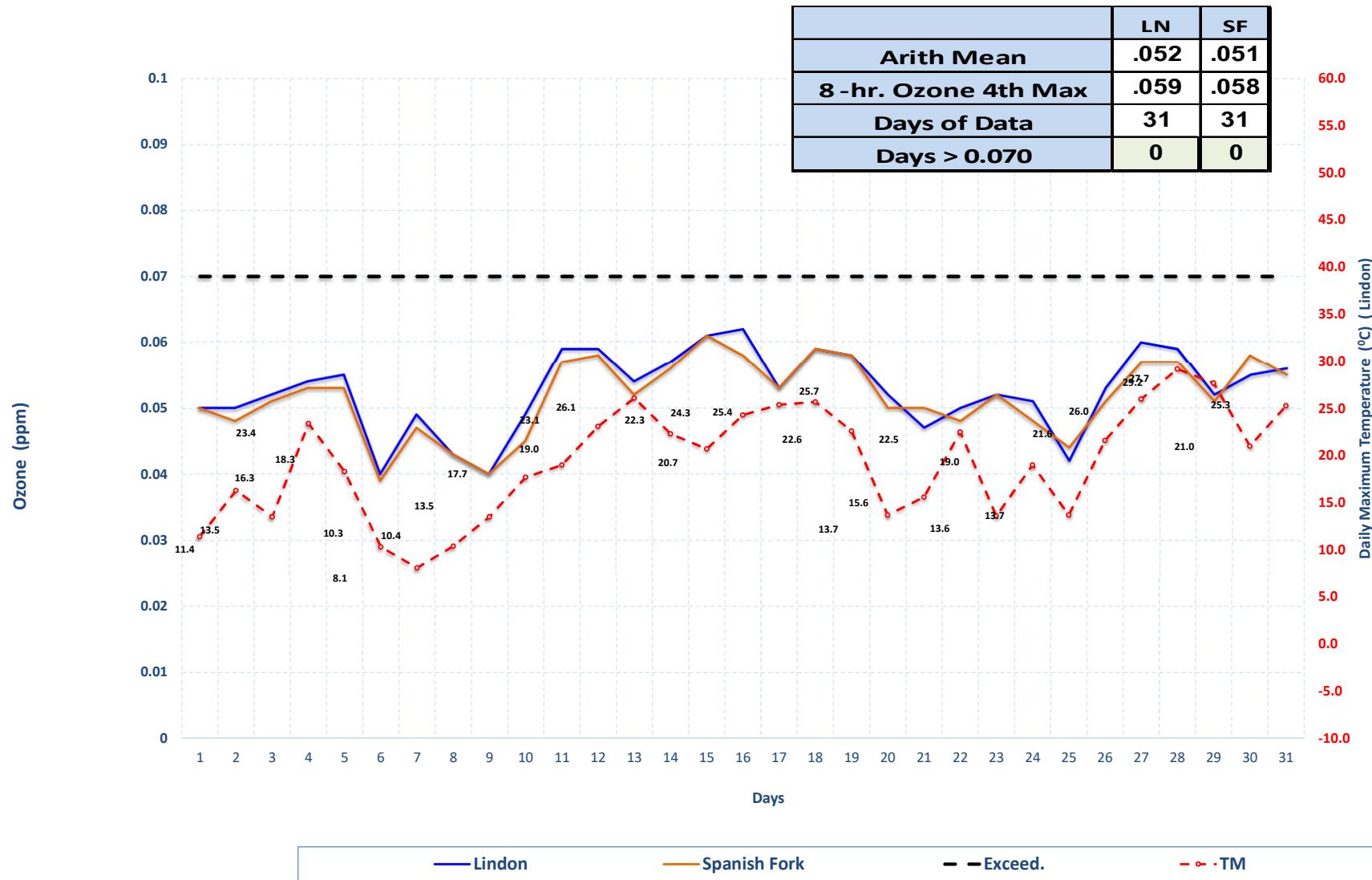
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2024



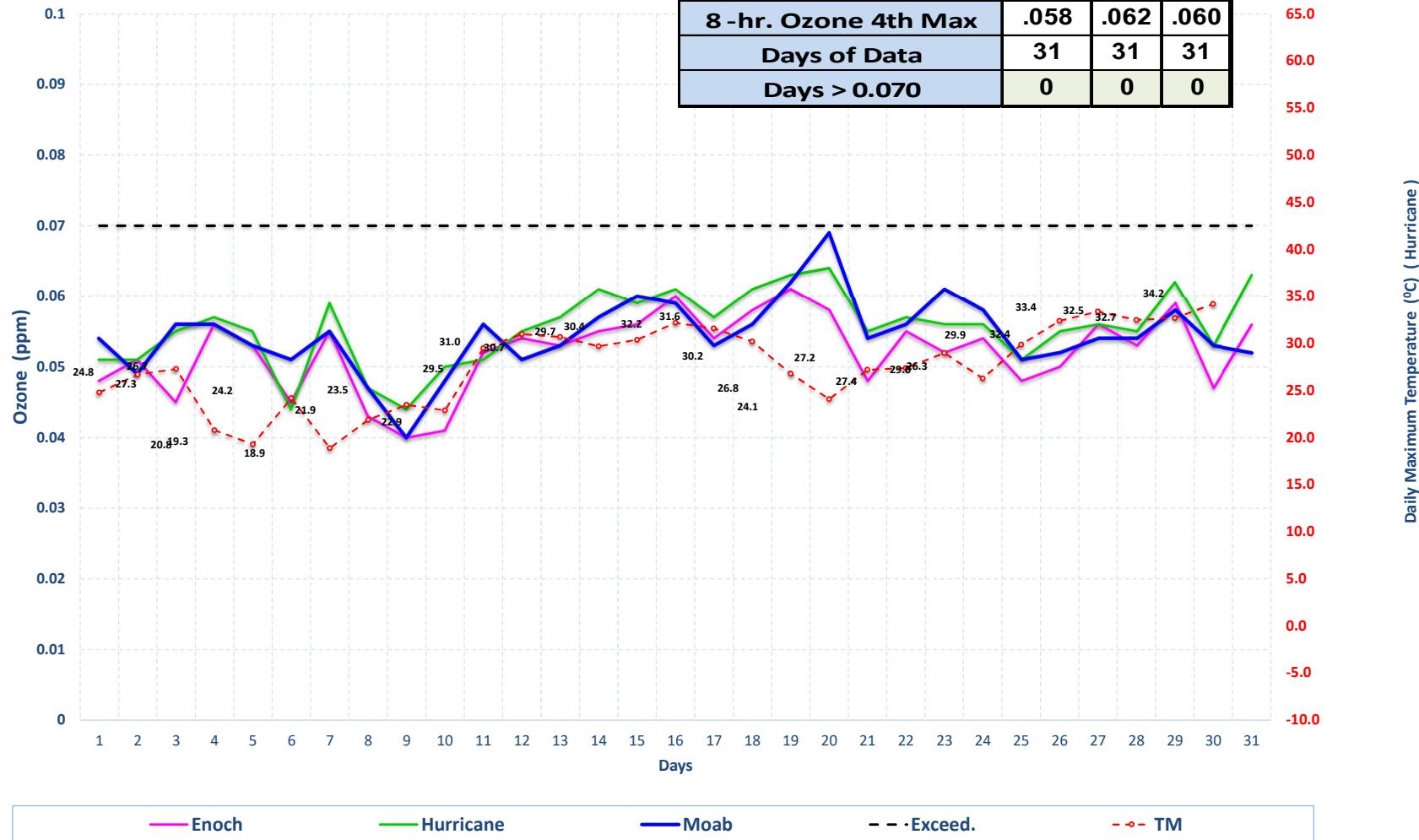
* Environmental Quality (EQ) previously named Technical Support Center (TSC)


** Controlling Monitor

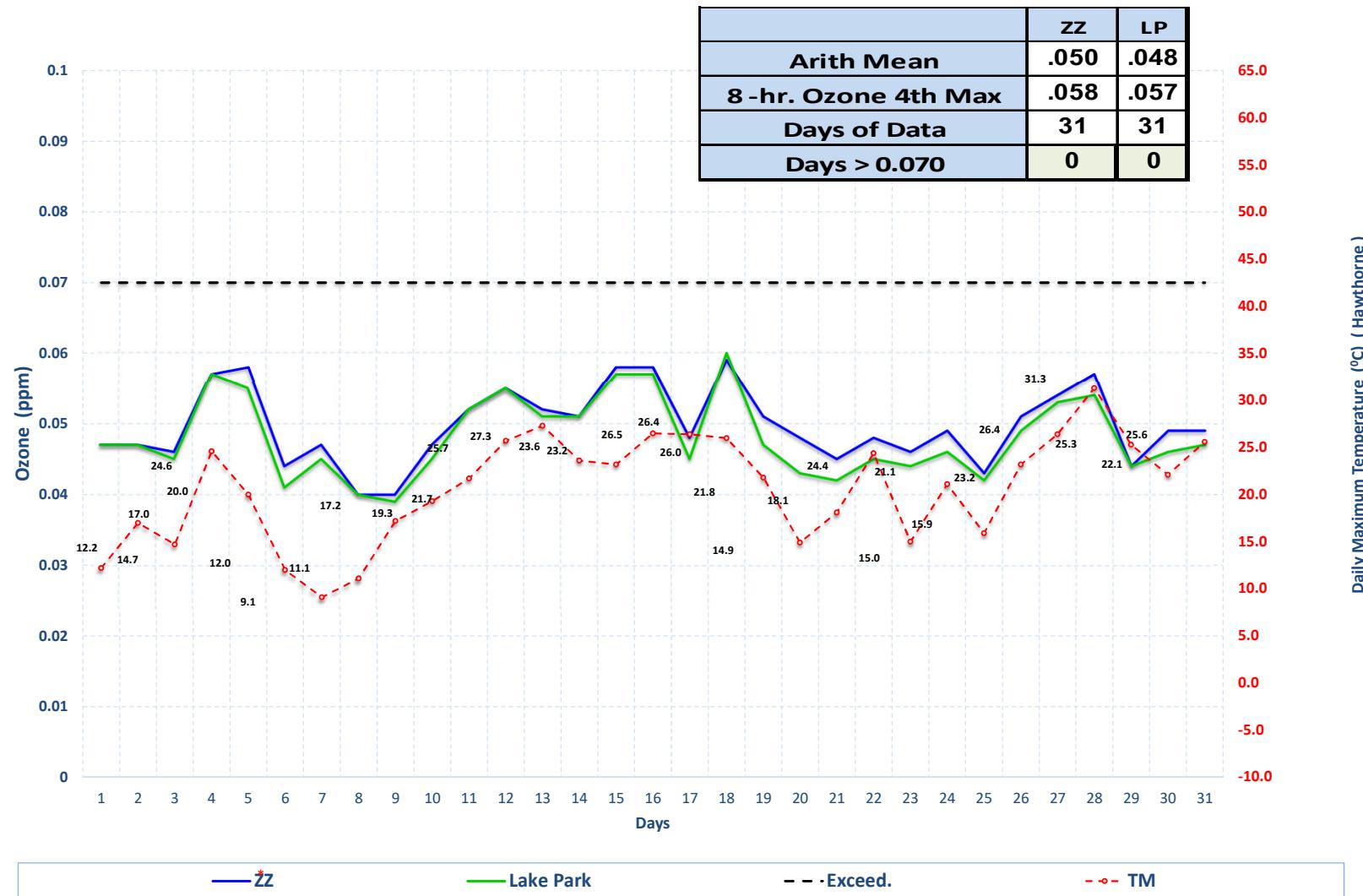
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2024


	P2	RS	V4
Arith Mean	.054	.053	.050
8 -hr. Ozone 4th Max	.059	.060	.058
Days of Data	31	31	31
Days > 0.070	0	0	0

Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2024

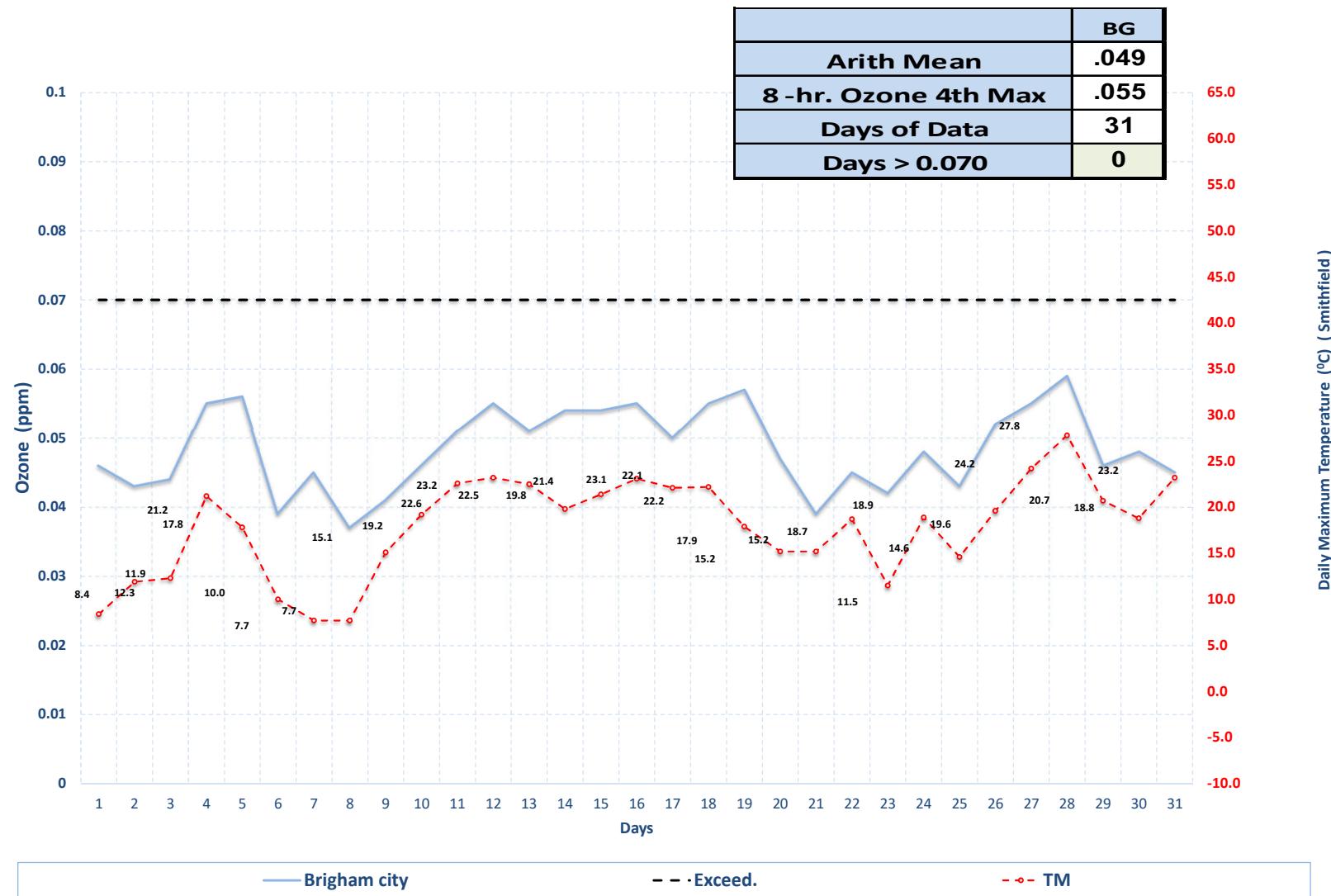


Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2024

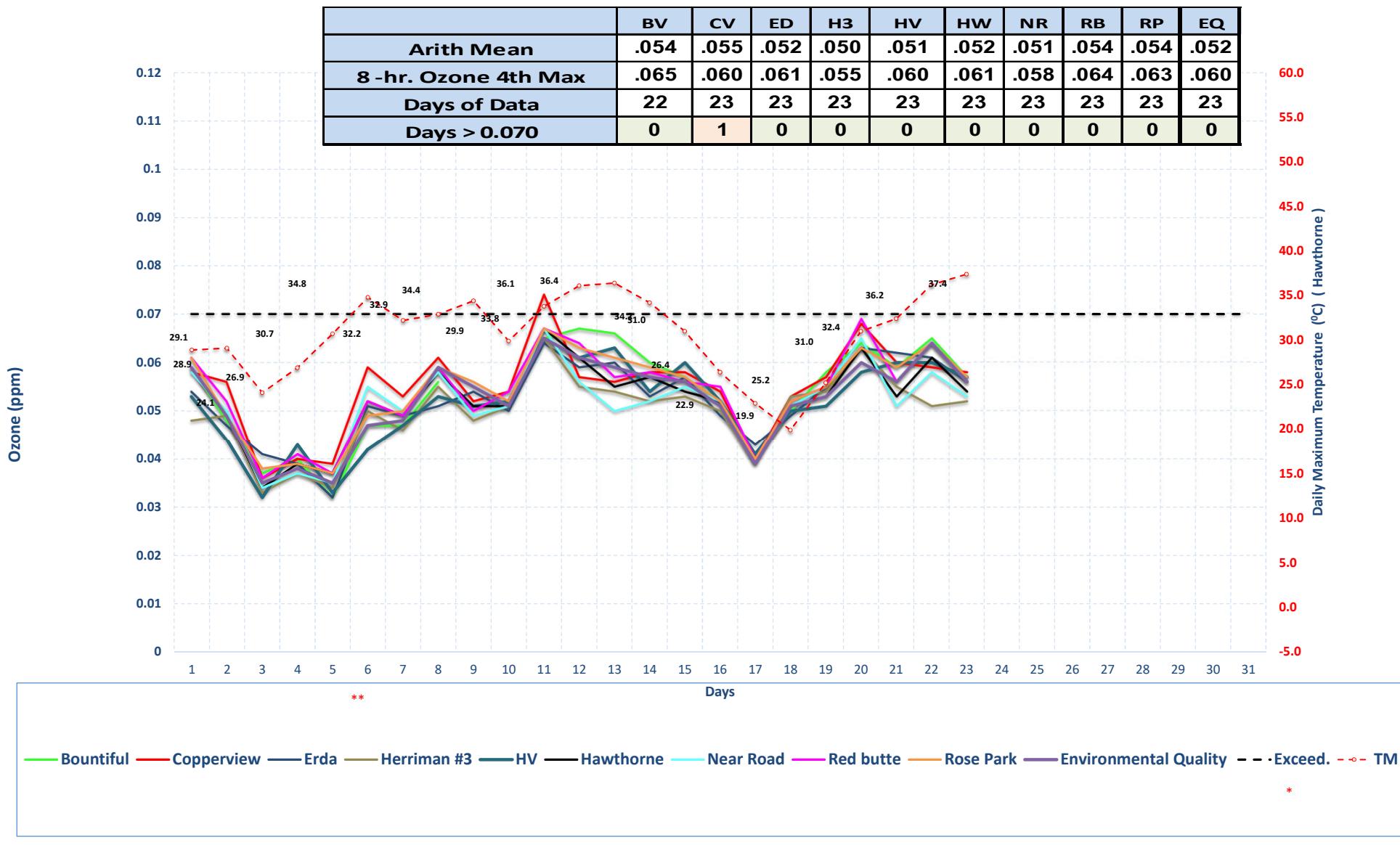


Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2024

	EN	HC	M7
Arith Mean	.052	.055	.055
8 -hr. Ozone 4th Max	.058	.062	.060
Days of Data	31	31	31
Days > 0.070	0	0	0

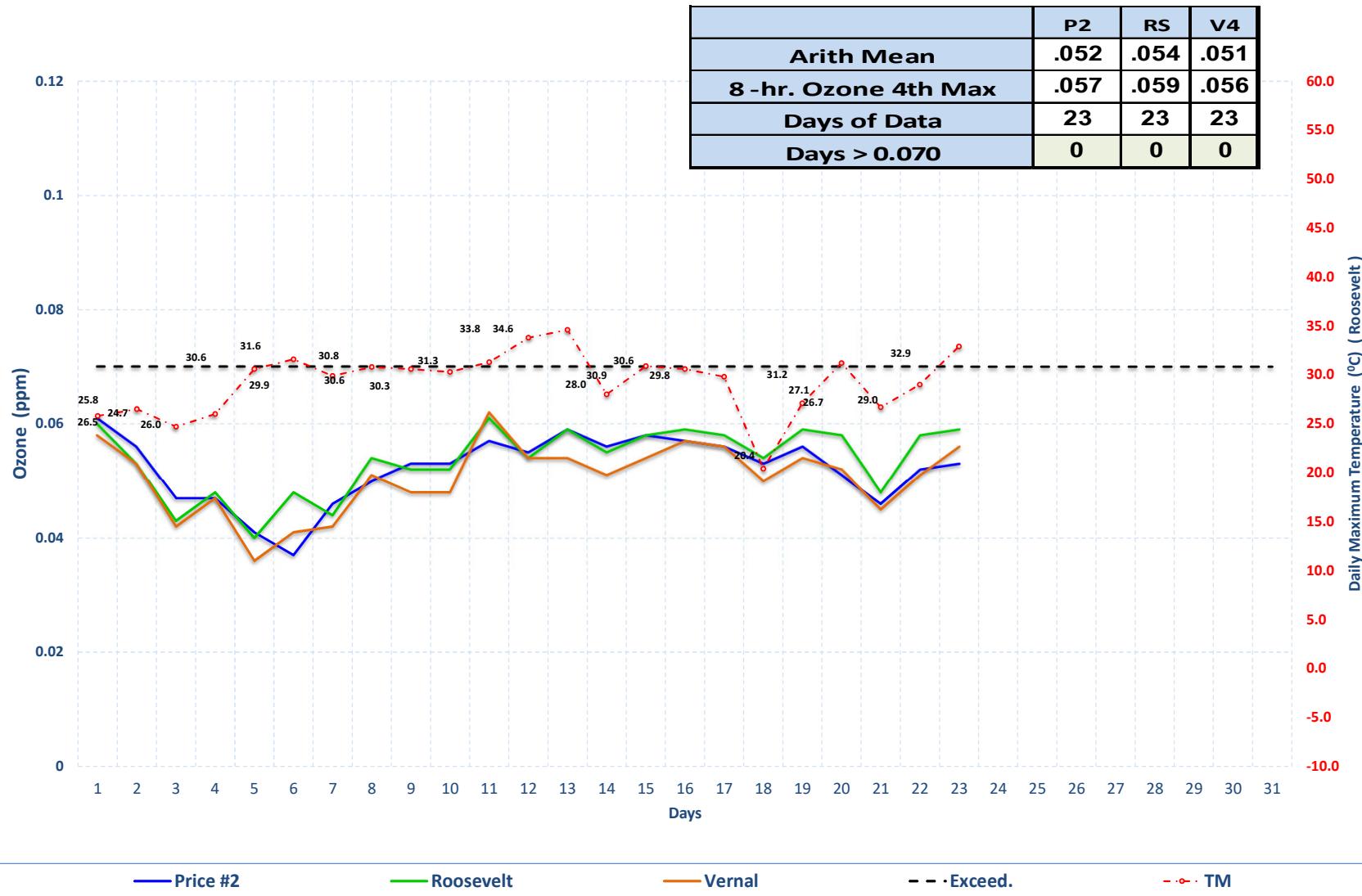


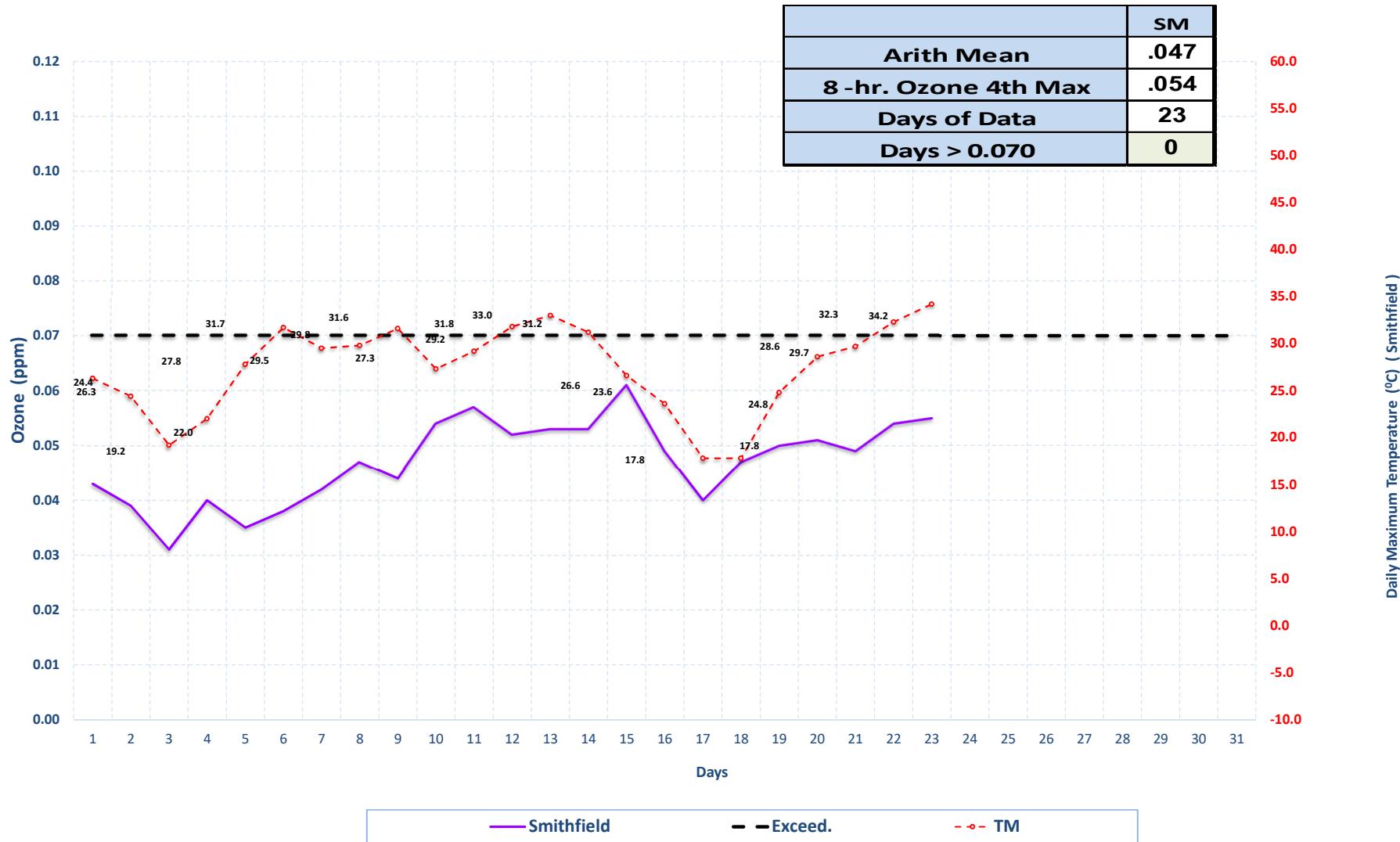
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2024
Stations Monitoring the Inland Port Development



* ZZ is located at the New Utah State Prison (1480 North 8000 West, SLC).
 This site was previously named IP

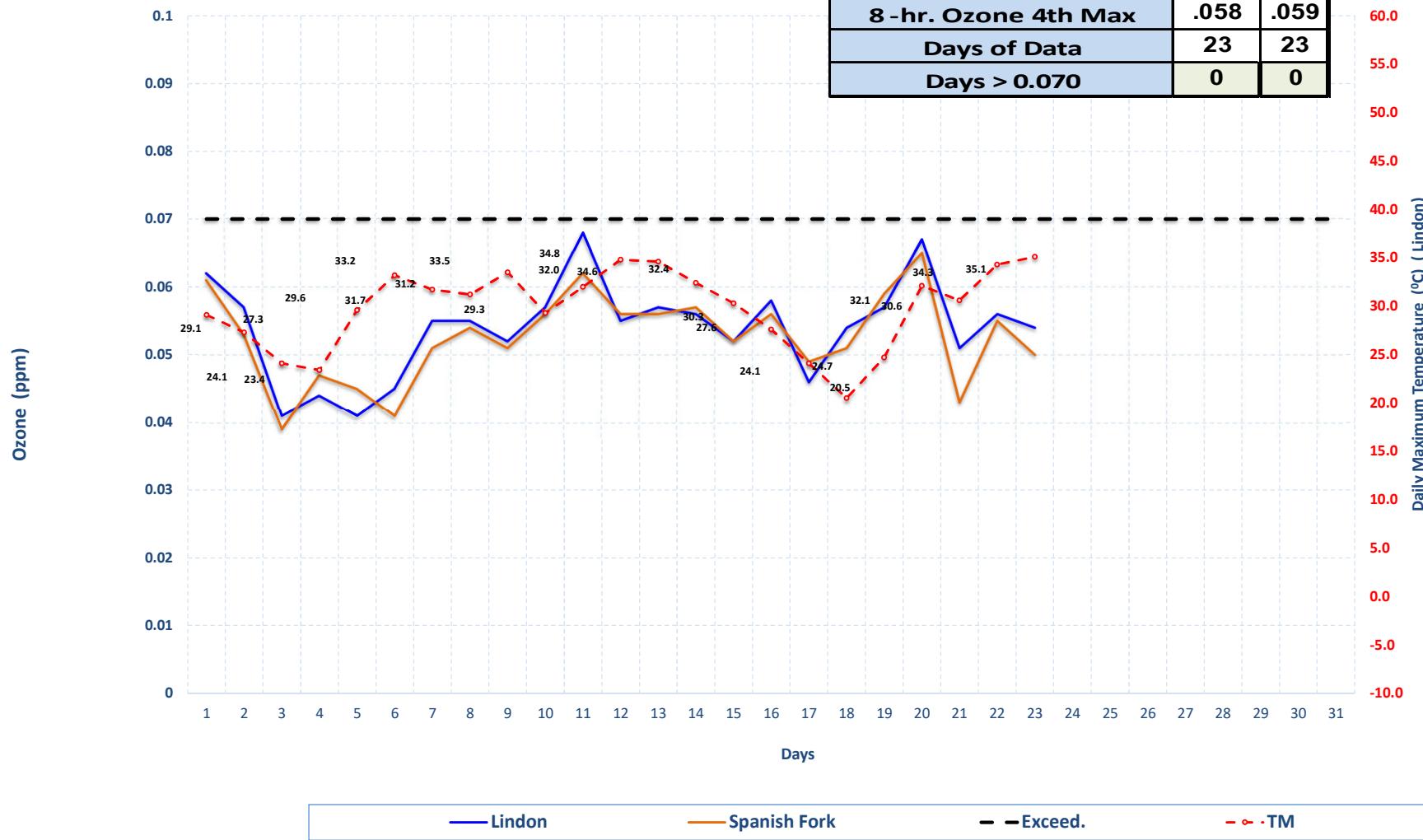
Highest 8-hr Ozone Concentration & Daily Maximum Temperature May 2024


Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2024

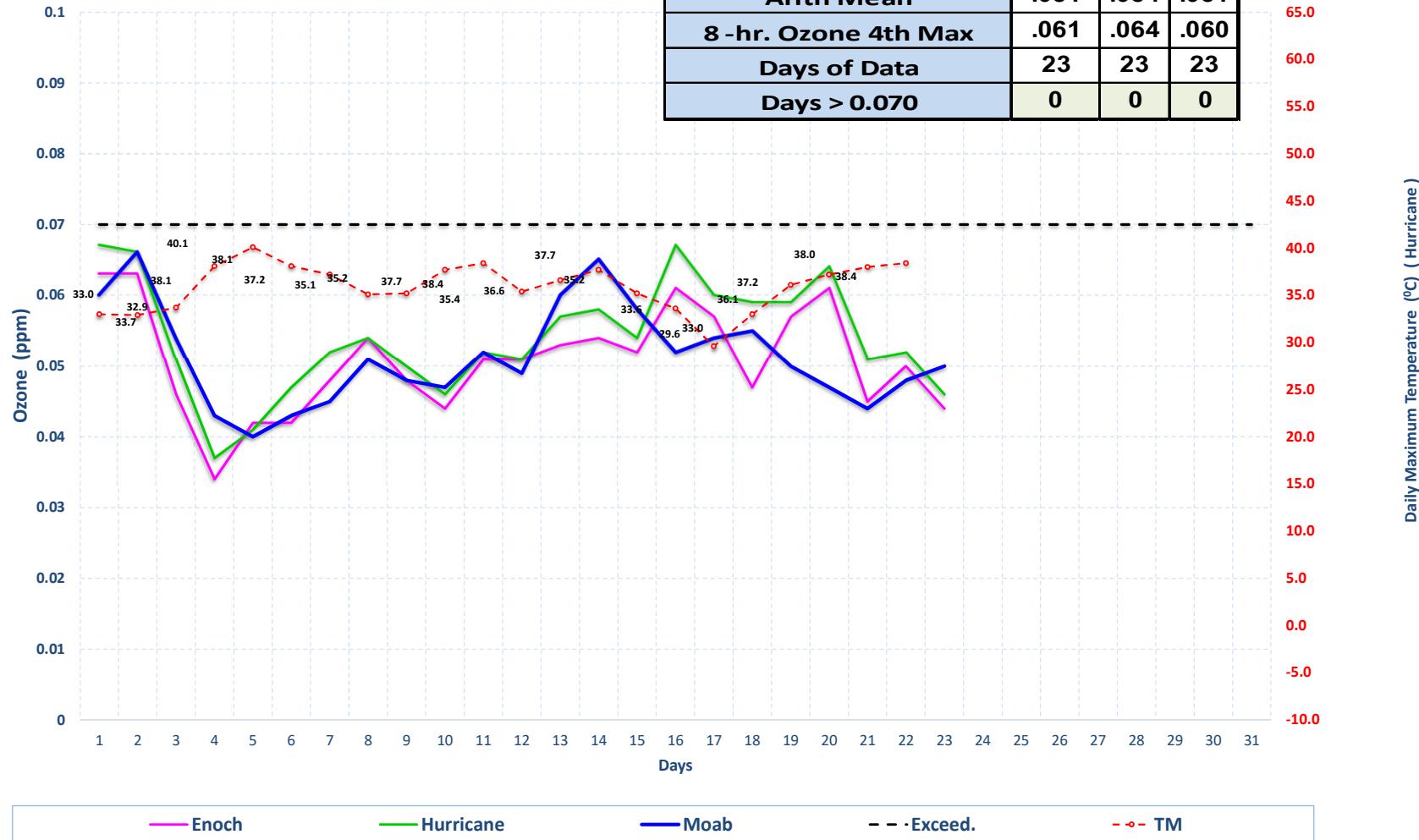

* Environmental Quality (EQ) previously named Technical Support Center (TSC)

** Controlling Monitor

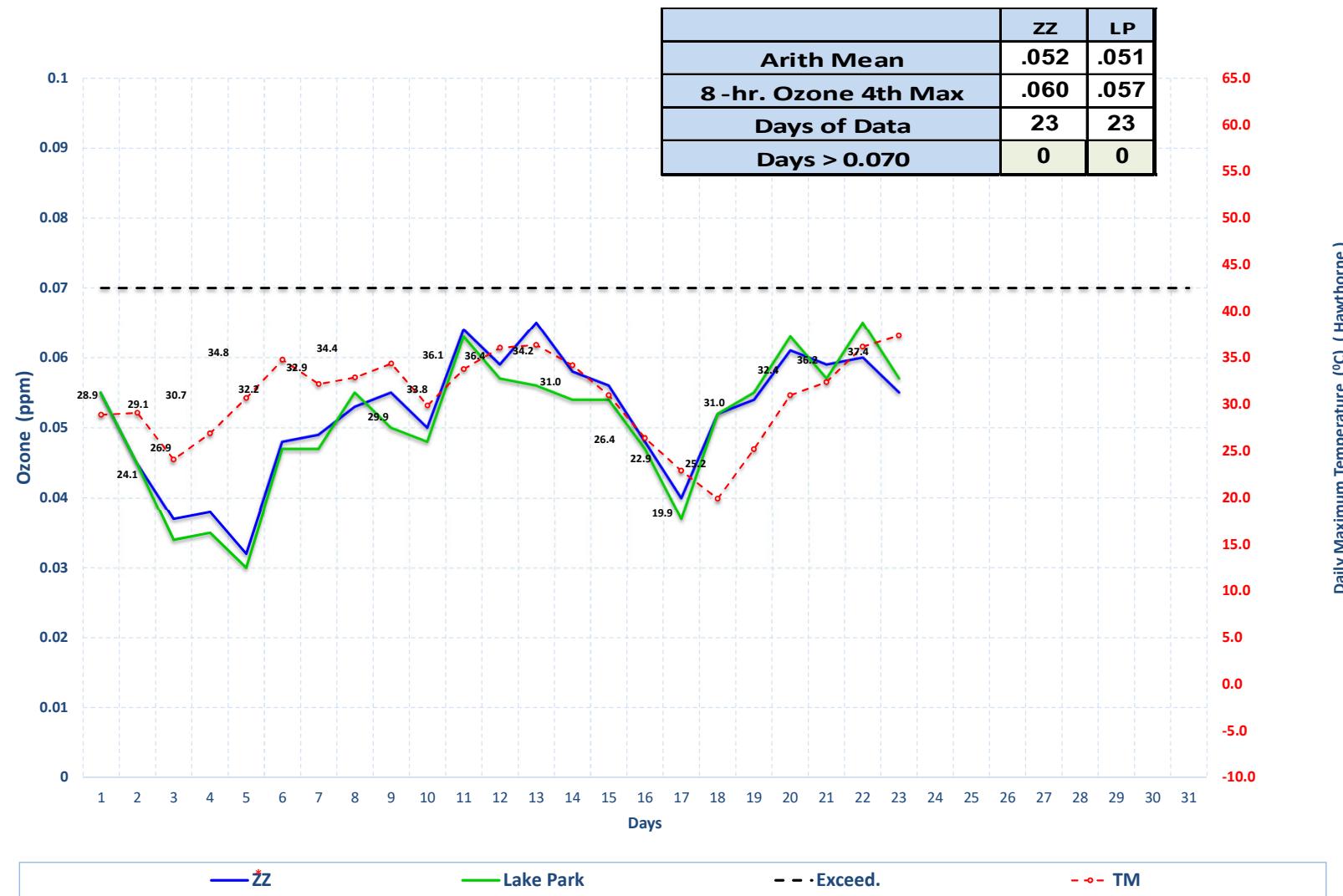
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2024



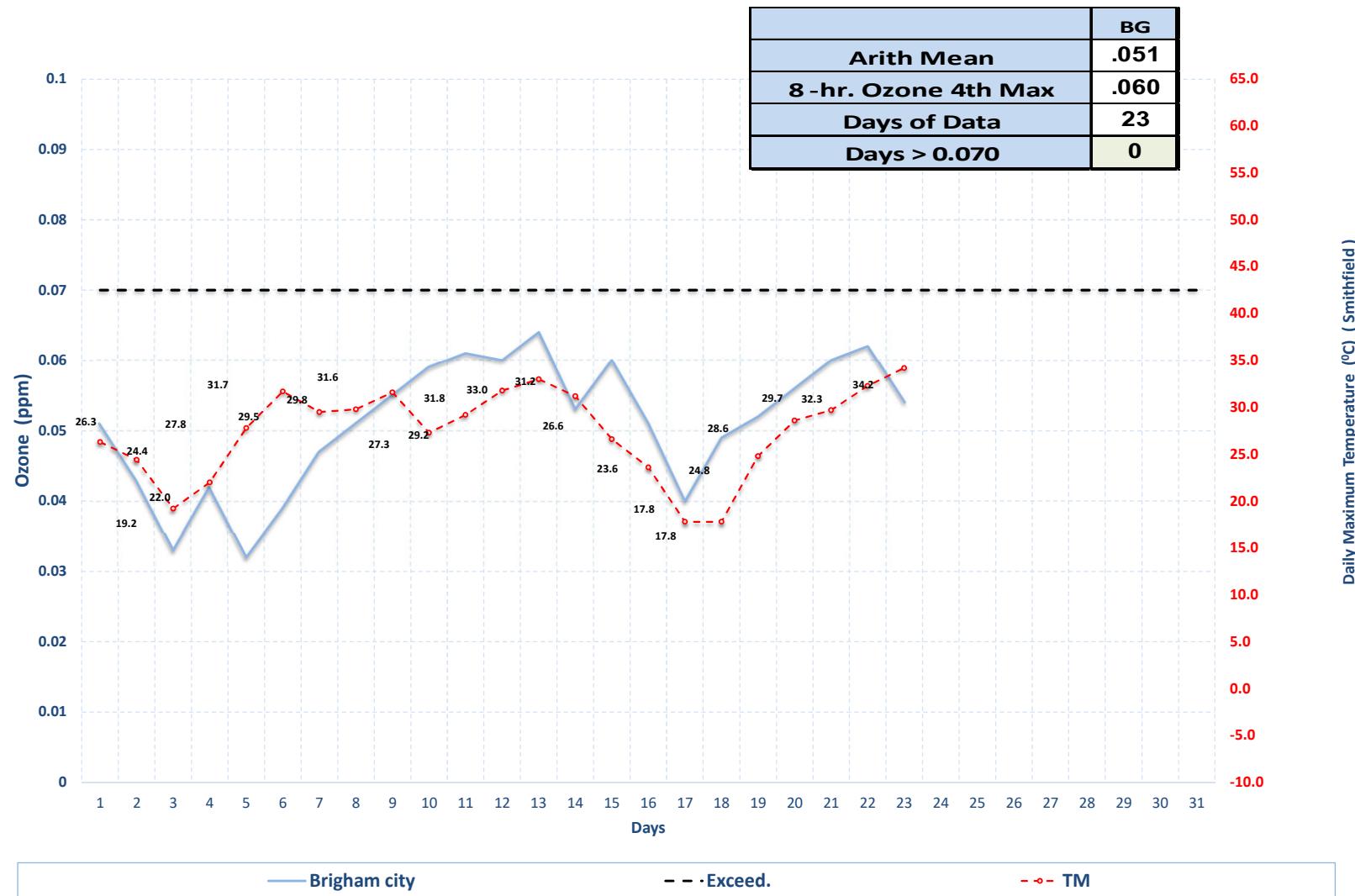
Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2024


Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2024

	LN	SF
Arith Mean	.054	.053
8 -hr. Ozone 4th Max	.058	.059
Days of Data	23	23
Days > 0.070	0	0


Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2024

	EN	HC	M7
Arith Mean	.051	.054	.051
8 -hr. Ozone 4th Max	.061	.064	.060
Days of Data	23	23	23
Days > 0.070	0	0	0


Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2024

Stations Monitoring the Inland Port Development

* ZZ is located at the New Utah State Prison (1480 North 8000 West, SLC).
 This site was previously named IP

Highest 8-hr Ozone Concentration & Daily Maximum Temperature June 2024

